高三数学下册基础达标复习题16.doc

合集下载

专题16 全等三角形的核心知识点精讲(讲义)-备战2024年中考数学一轮复习考点帮

专题16 全等三角形的核心知识点精讲(讲义)-备战2024年中考数学一轮复习考点帮

专题16 全等三角形的核心知识点精讲1.熟悉全等三角形常考5种模型2.掌握全等三角形性质,并运用全等三角形性质解答。

考点1:全等三角形的概念及性质考点2:全等三角形的判定模型一:平移型模型分析:此模型特征是有一组边共线或部分重合,另两组边分别平行,常要在移动的方向上加(减)公共线段,构造线段相等,或利用平行线性质找到对应角相等.模型示例概念两个能完全重合的三角形叫做全等三角形.性质1.两全等三角形的对应边相等,对应角相等.2.全等三角形的对应边上的高相等,对应边上的中线相等,对应角的平分线相等.3.全等三角形的周长、面积相等.模型二:轴对称模型模型分析:所给图形可沿某一直线折叠,直线两旁的部分能完全重合,重合的顶点就是全等三角形的对应顶点,解题时要注意隐含条件,即公共边或公共角相等.模型三:旋转型模型解读:将三角形绕着公共顶点旋转一定角度后,两个三角形能够完全重合,则称这两个三角形为旋转型三角形.旋转后的图形与原图形存在两种情况:①无重叠:两个三角形有公共顶点,无重叠部分,一般有一对隐含的等角②有重叠:两个三角形含有一部分公共角,运用角的和差可得到等角.模型四:一线三垂直型模型解读:一线:经过直角顶点的直线;三垂直:直角两边互相垂直,过直角的两边向直线作垂直,利用“同角的余角相等”转化找等角【题型1:平移型】【典例1】(2023•广州)如图,B是AD的中点,BC∥DE,BC=DE.求证:∠C=∠E.1.(2022•淮安)已知:如图,点A、D、C、F在一条直线上,且AD=CF,AB=DE,∠BAC=∠EDF.求证:∠B=∠E.2.(2022•柳州)如图,点A,D,C,F在同一条直线上,AB=DE,BC=EF.有下列三个条件:①AC=D F,②∠ABC=∠DEF,③∠ACB=∠DFE.(1)请在上述三个条件中选取一个条件,使得△ABC≌△DEF.你选取的条件为(填写序号)(只需选一个条件,多选不得分),你判定△ABC≌△DEF的依据是(填“SSS”或“SAS”或“ASA”或“AAS”);(2)利用(1)的结论△ABC≌△DEF.求证:AB∥DE.【题型2:对称型】【典例2】(2023•福建)如图,OA=OC,OB=OD,∠AOD=∠COB.求证:AB=CD.1.(2023•长沙)如图,AB=AC,CD⊥AB,BE⊥AC,垂足分别为D,E.(1)求证:△ABE≌△ACD;(2)若AE=6,CD=8,求BD的长.2.(2022•西藏)如图,已知AD平分∠BAC,AB=AC.求证:△ABD≌△ACD.【题型3:旋转型】【典例3】(2023•大连)如图,AC=AE,BC=DE,BC的延长线与DE相交于点F,∠ACF+∠AED=180°.求证:AB=AD.1.(2023•乐山)如图,已知AB与CD相交于点O,AC∥BD,AO=BO,求证:AC=BD.2.(2023•泸州)如图,点B在线段AC上,BD∥CE,AB=EC,DB=BC.求证:AD=EB.3.(2023•西藏)如图,已知AB=DE,AC=DC,CE=CB.求证:∠1=∠2.【题型4:一线三等角】【典例4】(2023•陕西)如图,在△ABC中,∠B=90°,作CD⊥AC,且使CD=AC,作DE⊥BC,交BC 的延长线于点E.求证:CE=AB.1.(2021•南充)如图,∠BAC=90°,AD是∠BAC内部一条射线,若AB=AC,BE⊥AD于点E,CF⊥A D于点F.求证:AF=BE.一.选择题(共8小题)1.下列各组图案中,不是全等形的是()A.B.C.D.2.已知图中的两个三角形全等,则∠1等于()A.50°B.58°C.60°D.72°3.如图,△ABC≌△DEC,点E在AB边上,∠B=70°,则∠ACD的度数为()A.30°B.40°C.45°D.50°4.如图,△ABD≌△ACE,若AB=6,AE=4,则CD的长度为()A.10B.6C.4D.25.如图,点B、F、C、E在一条直线上,∠A=∠D=90°,AB=DE,添加下列选项中的条件,能用HL 判定△ABC≌△DEF的是()A.AC=DF B.∠B=∠E C.∠ACB=∠DFE D.BC=EF6.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.BE=CD C.BD=CE D.AD=AE7.如图,BE⊥AC于点E,CF⊥AB于点F,若BE=CF,则Rt△BCF≌Rt△CBE的理由是()A.AAS B.HL C.SAS D.ASA8.如图所示,已知在△ABC中,∠C=90°,AD=AC,DE⊥AB交BC于点E,若∠B=28°,则∠AEC =()A.28°B.59°C.60°D.62°二.填空题(共4小题)9.如图是两个全等三角形,图中的字母表示三角形的边长,那么∠1的度数为.10.已知:如图,△ABC和△BAD中,∠C=∠D=90°,再添加一个条件就可以判断△ABC ≌△BAD.11.请仔细观察用直尺和圆规作一个角∠A'O'B'等于已知角∠AOB的示意图.请你根据所学的三角形全等的有关知识,说明画出∠A'O'B'=∠AOB的依据是.12.如图,若AC平分∠BCD,∠B+∠D=180°,AE⊥BC于点E,BC=13cm,CD=7cm,则BE=.三.解答题(共4小题)13.如图,点B、E、C、F在一条直线上,AB=DE,AC=DF,BE=CF.(1)求证:△ABC≌△DEF;(2)若∠D=45°,求∠EGC的大小.14.如图,∠ACB=90°,∠BAC=45°,AD⊥CE,BE⊥CE,垂足分别是D,E,BE=0.8,DE=1.7,求AD的长.15.如图,点A,B,C在一条直线上,△ABD、△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q.(1)求证:△ABE≌△DBC;(2)求∠DMA的度数.16.如图,AC=DC,E为AB上一点,EC=BC,并且∠1=∠2.(1)求证:△ABC≌△DEC;(2)若∠B=75°,求∠3的度数.一.选择题(共7小题)1.如图,任意画一个∠A=60°的△ABC,再分别作△ABC的两条角平分线BE和CD,BE和CD相交于点P,连接AP,有以下结论:①∠BPC=120°;②AP平分∠BAC;③AP=PC;④BD+CE=BC;⑤S△PBA:S△PCA=AB:AC,其中正确的个数是()个.A.5B.4C.3D.22.如图,在△ABC中,∠BAC=60°,BE、CD为△ABC的角平分线.BE与CD相交于点F,FG平分∠BFC,有下列四个结论:①∠BFC=120°;②BD=CE;③BC=BD+CE;④若BE⊥AC,△BDF≌△CE F.其中正确的是()A.①③B.②③④C.①③④D.①②③④3.如图,已知△ABC和△ADE都是等腰直角三角形,∠BAC=∠EAD=90°,BD,CE交于点F,连接A F,下列结论:①BD=CE②∠AEF=∠ADF③BD⊥CE④AF平分∠CAD⑤∠AFE=45°其中结论正确的序号是()A.①②③④B.①②④⑤C.①③④⑤D.①②③⑤4.如图,在Rt△AEB和Rt△AFC中,∠E=∠F=90°,BE=CF,BE与AC相交于点M,与CF相交于点D,AB与CF相交于点N,∠EAC=∠F AB.有下列结论:①∠B=∠C;②ED=FD;③AC=BE;④△ACN≌△ABM.其中正确结论的个数是()A.1个B.2个C.3个D.4个5.在直线l上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+2S2+2S3+S4=()A.6B.8C.10D.126.如图,△ABC和△CDE都是等边三角形,B,C,D三点在一条直线上,AD与BE相交于点P,AC、B E相交于点M,AD、CE相交于点N,则下列四个结论:①AD=BE;②∠BMC=∠ANC;③∠APM=60°;④CP平分∠MCN.其中,一定正确的结论的个数是()A.1B.2C.3D.47.如图,△ABC中,∠BAC=60°,∠BAC的平分线AD与边BC的垂直平分线MD相交于D,DE⊥AB 交AB的延长线于点E,DF⊥AC于点F,现有下列结论:①DE=DF;②DE+DF=AD;③MD平分∠E DF;④若AE=3,则AB+AC=6.其中正确的个数为()A.1个B.2个C.3个D.4个二.填空题(共5小题)8.如图,以△ABC的每一条边为边,在边AB的同侧作三个正三角形△ABD、△BCE和△ACF.已知这三个正三角形构成的图形中,甲、乙阴影部分的面积和等于丙、丁阴影部分的面积和.则∠FCE=°.9.如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(﹣2,0),点A的坐标为(﹣8,3),点B的坐标是.10.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,则下列结论中,正确的是(填序号).①∠AED=90°;②∠ADE=∠CDE;③DE=BE;④AD=AB+CD.11.如图,已知等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面的结论:①∠APO+∠DCO=30°;②△OPC是等边三角形;③A C=AO+AP;④S△ABC=S四边形AOCP,其中正确的是.(填序号)12.如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,点D是AB的中点,E、F在射线AC 与射线CB上运动,且满足AE=CF,则在运动过程中△DEF面积的最小值为.三.解答题(共4小题)13.如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°,求证:AD=BE;(2)如图2,若∠ACB=∠DCE=90°,CF为△DCE中DE边上的高,试猜想AE,CF,BE之间的关系,并证明你的结论.14.如图所示,等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.(1)求证:AP=AQ;(2)试判断△APQ是什么形状的三角形?并说明你的理由.15.(1)【模型启迪】如图1,在△ABC中,D为BC边的中点,连接AD并延长至点H,使DH=AD,连接BH,则AC与BH的数量关系为,位置关系为.(2)【模型探索】如图2,在△ABC中,D为BC边的中点,连接AD,E为AC边上一点,连接BE交A D于点F,且BF=AC.求证:AE=EF.16.如图1,AC=BC,CD=CE,∠ACB=∠DCE=α,AD、BE相交于点M,连接CM.(1)求证:BE=AD;(2)用含α的式子表示∠AMB的度数(直接写出结果);(3)当α=90°时,取AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图2,判断△CPQ的形状,并加以证明.1.(2023•甘孜州)如图,AB与CD相交于点O,AC∥BD,只添加一个条件,能判定△AOC≌△BOD的是()A.∠A=∠D B.AO=BO C.AC=BO D.AB=CD2.(2023•北京)如图,点A,B,C在同一条直线上,点B在点A,C之间,点D,E在直线AC同侧,AB <BC,∠A=∠C=90°,△EAB≌△BCD,连接DE.设AB=a,BC=b,DE=c,给出下面三个结论:①a+b<c;②a+b>;③(a+b)>c.上述结论中,所有正确结论的序号是()A.①②B.①③C.②③D.①②③3.(2022•黑龙江)如图,在四边形ABCD中,对角线AC,BD相交于点O,OA=OC,请你添加一个条件,使△AOB≌△COD.4.(2023•成都)如图,已知△ABC≌△DEF,点B,E,C,F依次在同一条直线上.若BC=8,CE=5,则CF的长为.5.(2023•重庆)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D为BC上一点,连接AD.过点B 作BE⊥AD于点E,过点C作CF⊥AD交AD的延长线于点F.若BE=4,CF=1,则EF的长度为3.6.(2023•南通)如图,四边形ABCD的两条对角线AC,BD互相垂直,AC=4,BD=6,则AD+BC的最小值是.7.(2023•淮安)已知:如图,点D为线段BC上一点,BD=AC,∠E=∠ABC,DE∥AC.求证:DE=B C.8.(2023•吉林)如图,点C在线段BD上,△ABC和△DEC中,∠A=∠D,AB=DE,∠B=∠E.求证:AC=DC.9.(2022•兰州)如图1是小军制作的燕子风筝,燕子风筝的骨架图如图2所示,AB=AE,AC=AD,∠B AD=∠EAC,∠C=50°,求∠D的大小.10.(2022•安顺)如图,在Rt△ABC中,∠BAC=90°,AB=AC=1,D是BC边上的一点,以AD为直角边作等腰Rt△ADE,其中∠DAE=90°,连接CE.(1)求证:△ABD≌△ACE;(2)若∠BAD=22.5°时,求BD的长.。

2022届北京市第一次普通高中高三学业水平合格性考试数学试题(解析版)

2022届北京市第一次普通高中高三学业水平合格性考试数学试题(解析版)

2022届北京市第一次普通高中高三学业水平合格性考试数学试题一、单选题1.已知集合{2,1,0,2},{0,1,2}A B =--=,则A B =( ) A .{2,1}-- B .{2,0}- C .{0,1} D .{0,2}【答案】D【分析】根据集合的交集运算,可求得答案. 【详解】集合{2,1,0,2},{0,1,2}A B =--=, 故{0,2}A B ⋂=, 故选:D2.在复平面内,复数z 对应的点的坐标是(1,2)-,则z =( ) A .2i + B .2i - C .12i + D .12i -【答案】D【分析】利用复数的几何表示即得.【详解】∵复数z 对应的点的坐标是(1,2)-, ∴z =12i -. 故选:D.3.()sin 45-︒=( )A B .C .12D .12-【答案】B【分析】利用诱导公式求得正确答案.【详解】()sin 45sin 45-︒=-︒=. 故选:B4.已知函数2(),f x x x =∈R ,则( ) A .()f x 是奇函数B .()f x 是偶函数C .()f x 既是奇函数又是偶函数D .()f x 既不是奇函数也不是偶函数【答案】B【分析】由函数奇偶性的定义即可判断答案.【详解】由题意,()()()22R,x f x x x f x ∈-=-==,即函数为偶函数. 故选:B.5.sin cos θθ=( )A .1sin 22θB .1cos 22θC .sin 2θD .cos2θ【答案】A【分析】利用二倍角公式即得.【详解】由二倍角公式可得,sin cos θθ=1sin 22θ.故选:A.6.函数()y f x =的图象如图所示,则不等式()0f x >的解集为( )A .(1,0)-B .()0,1C .(1,2)D .(2,3)【答案】C【分析】结合图象确定正确选项.【详解】由图象可知,当()1,2x ∈时,()0f x >. 故选:C7.某天甲地降雨的概率为0.2,乙地降雨的概率为0.3.假定这一天甲、乙两地是否降雨相互之间没有影响,则两地都降雨的概率为( ) A .0.24 B .0.14 C .0.06 D .0.01【答案】C【分析】根据相互独立事件概率计算公式,计算出正确答案. 【详解】依题意,两地都降雨的概率为0.20.30.06⨯=. 故选:C8.下列函数中,在区间(0,)+∞上单调递减的是( ) A .()f x x = B .1()f x x=C .2()log f x x =D .()sin f x x =【答案】B【分析】根据基本初等函数的单调性即可求解.【详解】()f x x =在(0,)+∞上单调递增,故A 不符题意; 1()f x x=在(0,)+∞上单调递减,故B 符合题意;2()log f x x =在(0,)+∞上单调递增,故C 不符题意;()sin f x x =在(0,)+∞上不单调,故D 不符题意.故选:B.9.如图,在直三棱柱111ABC A B C -中,ABC 是等腰直角三角形.若14,3AB AC AA ===,则该直三棱柱的体积为( )A .6B .12C .18D .24【答案】D【分析】根据棱柱的体积计算公式,可直接求得答案.【详解】因为在直三棱柱111ABC A B C -中,ABC 是等腰直角三角形,14,3AB AC AA ===,则BAC ∠ 为直角, 故可得:11111114432422AB BC B A C A C V S AA AB AC AA -=⋅=⨯⨯⨯=⨯⨯⨯= , 故选:D10.已知向量(1,0),(1,1)a b ==,则a b ⋅=( ) A .0 B .1 C .2 D .3【答案】B【分析】由平面向量数量积的坐标运算即可求得答案. 【详解】11011a b →→⋅=⨯+⨯=. 故选:B.11.“四边形ABCD 为矩形”是“四边形ABCD 为平行四边形”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】A【分析】利用充分条件与必要条件的定义判断即可. 【详解】若四边形ABCD 是矩形,则它是平行四边形,反之,若四边形ABCD 为平行四边形,四边形ABCD 不一定是矩形,所以“四边形ABCD 为矩形”是“四边形ABCD 为平行四边形”的充分不必要条件. 故选:A.12.函数2()log (3)f x x =-的定义域为( ) A .(3,)+∞ B .(0,)+∞C .(3),-∞D .(,0)-∞【答案】A【分析】由真数大于0可得. 【详解】由30x ->,得3x >. 故选:A13.如图,已知四边形ABCD 为矩形,则AB AD +=( )A .BDB .DBC .ACD .CA【答案】C【分析】根据向量加法的平行四边形法则求得正确答案. 【详解】根据向量加法的平行四边形法则可知AB AD AC +=. 故选:C14.甲、乙两个学习小组各有5名同学,两组同学某次考试的语文、数学成绩如下图所示,其中“+”表示甲组同学,“”表示乙组同学.从这两个学习小组数学成绩高于80分的同学中任取一人,此人恰为甲组同学的概率是( ) A .0.25 B .0.3C .0.5D .0.75【答案】C【分析】利用古典概型概率计算公式,计算出所求概率. 【详解】根据图象可知,两个小组高于80分的同学各有2人,所以从中任取一人,此人恰为甲组同学的概率是21222=+. 故选:C15.设m ,n 是两条不同的直线,,αβ是两个不同的平面,则下列命题中的真命题为( )A .若,m n αα∥∥,则m n ∥B .若,m n αα⊥⊥,则m n ∥C .若,m m αβ∥∥,则αβ∥D .若,m m αβ⊂∥,则αβ∥【答案】B【分析】在正方体中取直线和平面可排除ACD ,由线面垂直的性质可得B 正确. 【详解】在正方体ABCD EFGH -中,记底面ABCD 为α,EF 为m ,EH 为n ,显然A 不正确;记底面ABCD 为α,EF 为m ,平面CDHG 为β,故排除C ;记底面ABCD 为α,EF 为m ,平面ABFE 为β,可排除D ;由线面垂直的性质可知B 正确. 故选:B16.在ABC 中,1,2,60a c B ===︒,则b =( ) A .1 B .2 C 2D 3【答案】D【分析】根据由余弦定理,可得2222cos b a c ac B =+-,代入数据即得.【详解】由余弦定理,得2222212cos 1221232b ac ac B =+-=+-⨯⨯⨯=, ∴ 3b =故选:D.17.已知a ,b 是实数,且a b >,则( ) A .a b -<- B .22a b <C .11a b> D .||||a b >【答案】A【分析】根据不等式的性质确定正确答案.【详解】由于a b >,所以a b -<-,A 选项正确.221,1,,a b a b a b ==-==,BD 选项错误.112,1,a b a b==<,C 选项错误. 故选:A18.已知0,0x y >>,且1xy =,则x y +的最小值为( ) A .1 B .2 C .3 D .4【答案】B【分析】由基本不等式即可求得答案.【详解】因为,0x y >,所以2x y +≥=,当且仅当1x y ==时取“=”. 故选:B.19.已知函数()2x f x =,[0,)x ∈+∞,则()f x ( ) A .有最大值,有最小值 B .有最大值,无最小值 C .无最大值,有最小值 D .无最大值,无最小值【答案】C【分析】根据指数函数的知识确定正确选项.【详解】()2xf x =在[)0,∞+上是增函数,所以最小值为()0f ,没有最大值. 故选:C20.对于正整数n ,记不超过n 的正奇数的个数为()K n ,如(1)1K =,则(2022)K =( ) A .2022 B .2020 C .1011 D .1010【答案】C【分析】根据题意求出正奇数的个数即可. 【详解】由题意,不超过2022的正奇数有202210112=个. 故选:C. 二、填空题21.计算:lg 2lg5+=___________. 【答案】1【详解】lg2lg5lg101+==. 故答案为122.某校举行演讲比赛,五位评委对甲、乙两位选手的评分如下:甲 8.1 7.9 8.0 7.9 8.1 乙 7.9 8.0 8.1 8.5 7.5记五位评委对甲、乙两位选手评分数据的方差分别为22,S S 甲乙,则:2S 甲______2S 乙(填“>”,“=”或“<”). 【答案】<【分析】计算出22,S S 甲乙,由此确定正确答案. 【详解】甲的得分平均值为8.17.98.07.98.18.05++++=,()2210.040.1455S =⨯=甲. 乙的得分平均值为7.98.08.18.57.58.05++++=,()22210.520.120.5255S =⨯+⨯=乙, 所以22S S <甲乙. 故答案为:<23.对于温度的计量,世界上大部分国家使用摄氏温标(℃),少数国家使用华氏温标(℉),两种温标间有如下对应关系:根据表格中数值间呈现的规律,给出下列三个推断: ①25℃对应77℉; ②20-℃对应4-℉;③存在某个温度,其摄氏温标的数值等于其华氏温标的数值. 其中所有正确推断的序号是_____________. 【答案】①②③【分析】根据条件可得 1.832y x =+,然后逐项分析即得. 【详解】设摄氏温标为x ℃,对应的华氏温标为y ℉,根据表格数据可知.,.,.,503268328632181818100200300---===---∴.32180y x -=-,即 1.832y x =+, ∴25℃x =时,77℉y =,20℃x =-时,4℉y =-,故①②正确;由.1832y x x =+=,可得40x =-,即摄氏温标40-℃对应的华氏温标为40-℉,故③正确.故答案为:①②③. 三、双空题24.已知函数()2,0,0,x x f x x <⎧⎪=≥则(1)f -=________;方程()1f x =的解为________.【答案】 -2 1【分析】根据分段函数的性质求解即可. 【详解】(1)f -=2×(-1)=-2;x <0时,f (x )<0,故f (x )=1>0时,x ≥01=,解得x =1. 故答案为:-2;1. 四、解答题25.已知函数2()1f x x mx =++(m 是常数)的图象过点(1,2). (1)求()f x 的解析式;(2)求不等式()21f x x <+的解集. 【答案】(1)2()1f x x =+; (2)(0,2).【分析】(1)把点代入解析式可得0m =,即得; (2)利用一元二次不等式的解法即得. (1)由题意,(1)22f m =+=, 所以0m =.所以()f x 的解析式为2()1f x x =+. (2)不等式()21f x x <+等价于220x x -<. 解得02x <<.所以不等式()21f x x <+的解集为(0,2).26.已知函数()sin 3f x x π⎛⎫=- ⎪⎝⎭.(1)写出()f x 的最小正周期; (2)求()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值.【答案】(1)2π (2)12【分析】(1)根据解析式写出最小正周期;(2)根据正弦函数的单调性判断函数在区间上的单调性,从而求出最值. (1)()f x 的最小正周期为:221T ππ==. (2) 因为02x π≤≤,所以336x πππ-≤-≤.当36x ππ-=,即2x π=时,()f x 取得最大值12.27.阅读下面题目及其解答过程. 如图,已知正方体1111ABCD A B C D -.(Ⅰ)求证:1AC BD ⊥;(Ⅱ)求证:直线1D D与平面1AB C 不平行.解:(Ⅰ)如图,连接11,BD B D .因为1111ABCD A B C D -为正方体,所以1D D ⊥平面ABCD .所以①___________. 因为四边形ABCD 为正方形, 所以②__________. 因为1D D BD D⋂=,所以③____________. 所以1AC BD ⊥.(Ⅱ)如图,设ACBD O =,连接1B O .假设1//D D 平面1AB C . 因为1D D ⊂平面11D DBB ,且平面1AB C平面11D DBB =④____________,所以⑤__________. 又11//D D B B,这样过点1B 有两条直线11,B O B B 都与1D D 平行,显然不可能.所以直线1D D与平面1AB C 不平行.以上题目的解答过程中,设置了①~⑤五个空格,如下的表格中为每个空格给出了两个选项,其中只有一个符合推理,请选出符合推理的选项,并填写在答题卡的指定位置(只需填写“A”或“B”). 空格序号 选项 ①A .1D D AC⊥ B .1D D BD⊥②A .AB BC ⊥ B .AC BD ⊥ ③A .1BD ⊥平面1ABC B .AC ⊥平面11D DBB④A .1B OB .1B B⑤ A .11//D D B OB .1D D与1B O为相交直线【答案】(Ⅰ)①A ②B ③B ;(Ⅱ)④A ⑤A【分析】结合线面垂直、线面平行的知识对“解答过程”进行分析,从而确定正确答案. 【详解】要证明1AC BD ⊥,可通过证明AC ⊥平面11D DBB 来证得,要证明AC ⊥平面11D DBB ,可通过证明1,D AC A BD D C ⊥⊥来证得, 所以①填A ,②填B ,③填B.平面1AB C 与平面11D DBB 的交线为1B O ,所以④填A , 由于1//D D 平面1AB C ,因为1D D ⊂平面11D DBB ,且平面1AB C 平面111D DBB B O =,根据线面平行的性质定理可知,11//D D B O ,所以⑤填A.28.给定集合(,0)(0,)D =-∞+∞,()f x 为定义在D 上的函数,当0x <时,24()4xf x x =+,且对任意x D ∈,都有___________.从条件①、条件②、条件③这三个条件中选择一个作为已知,补充在横线处,使()f x 存在且唯一确定.条件①:()()1f x f x -+=; 条件②:()()1f x f x -⋅=; 条件③:()()1f x f x --=. 解答下列问题:(1)写出(1)f -和(1)f 的值;(2)写出()f x 在(0,)+∞上的单调区间;(3)设()()()g x f x m m =-∈R ,写出()g x 的零点个数. 【答案】答案详见解析【分析】判断条件③不合题意.选择条件①②、则先求得当0x >时,()f x 的表达式,然后结合函数的解析式、单调性、零点,对(1)(2)(3)进行分析,从而确定正确答案. 【详解】依题意()f x 的定义域为(,0)(0,)D =-∞+∞, 当0x <时,24()4xf x x =+. 对于条件③,对任意x D ∈,都有()()1f x f x --=,以x -替换x ,则()()1f x f x --=,这与()()1f x f x --=矛盾,所以条件③不合题意. 若选条件①,当0x >时,0x -<,()()224411144x xf x f x x x -=--=-=+++. (1)()()44491,11145145f f --==-=+=++. (2)对于函数()()2404xh x x x =≠+, 任取120x x <<,()()()()()()221221121222221212444444444x x x x x x h x h x x x x x +-+-=-=⨯++++()()22121122221244444x x x x x x x x +--=⨯++()()()()12212122124444x x x x x x x x ---=⨯++ ()()()()122122124444x x x x xx --=⨯++,其中210x x ->,当122x x <<-时,1240x x ->,()()()()12120,h x h x h x h x ->>, 所以()h x 在(),2-∞-上递减.当1220x x -<<<时,1240x x -<,()()()()12120,h x h x h x h x -<<, 所以()h x 在()2,0-上递增.所以在区间(),0∞-,()()()20,10h h x h x -≤<-≤<.同理可证得:()h x 在()0,2上递增,在()2,+∞上递减,()()()02,01h x h h x <≤<≤. 当0x >时,()()24114xf x h x x =+=++, 由上述分析可知,()f x 在()0,2上递增,在()2,+∞上递减.且()12f x <≤. (3)()()()0,g x f x m m f x =-==,由(2)的分析可画出()f x 的大致图象如下图所示,所以,当1m <-或01m ≤≤或2m >时,()g x 的零点个数是0; 当1m =-或2m =时,()g x 的零点个数是1; 当10m -<<或12m <<时,()g x 的零点个数是2.若选条件②,当0x >时,0x -<,由()()1f x f x -⋅=得()()2144x f x f x x+==--,(1)()()441451,114544f f -+-==-==-+-. (2)对于函数()()2404xh x x x =<+, 根据上述分析可知:()h x 在(),2-∞-上递减,在()2,0-上递增, 且在区间(),0∞-,()()()20,10h h x h x -≤<-≤<. 对于()()2404x f x x x+=>-,任取120x x <<,()()2222122112122144441444x x x x f x f x x x x x ⎛⎫++++-=-=- ⎪--⎝⎭()2212121212414x x x x x x x x -+-=⋅()()12212112414x x x x x x x x ---=⋅()()122112414x x x x x x --=⋅.其中210x x ->.当1202x x <<<时,()()()()12121240,0,x x f x f x f x f x -<-<<,()f x 递增;当122x x <<时,()()()()12121240,0,x x f x f x f x f x ->->>,()f x 递减.所以()f x 的增区间为()0,2,减区间为()2,+∞.且()()21f x f ≤=-. (3)()()()0,g x f x m m f x =-==,结合上述分析画出()f x 的大致图象如下图所示,所以当0m ≥时,()g x 的零点个数是0;当0m <时,()g x 的零点个数是2.【点睛】利用函数的单调性的定义求函数的单调性,主要是计算出()()12f x f x -的符号.求解函数零点问题,可利用分离参数法,结合函数图象来进行求解.。

高中数学复习专题讲座(第16讲)三角函数式的化简与求值

高中数学复习专题讲座(第16讲)三角函数式的化简与求值

题目高中数学复习专题讲座三角函数式的化简与求值 高考要求三角函数式的化简和求值是高考考查的重点内容之一 通过本节的学习使考生掌握化简和求值问题的解题规律和途径,特别是要掌握化简和求值的一些常规技巧,以优化我们的解题效果,做到事半功倍 重难点归纳1 求值问题的基本类型 ①给角求值,②给值求值,③给式求值,④求函数式的最值或值域,⑤化简求值2 技巧与方法 ①要寻求角与角关系的特殊性,化非特角为特殊角,熟练准确地应用公式 ②注意切割化弦、异角化同角、异名化同名、角的变换等常规技巧的运用 ③对于条件求值问题,要认真寻找条件和结论的关系,寻找解题的突破口,很难入手的问题,可利用分析法 ④求最值问题,常用配方法、换元法来解决 快速阅读记忆:英语单词速记:/?id=330 更多资料下载:典型题例示范讲解例1不查表求sin 220°+cos 280°+3cos20°cos80°的值命题意图 本题主要考查两角和、二倍角公式及降幂求值的方法,对计算能力的要求较高知识依托 熟知三角公式并能灵活应用 错解分析 公式不熟,计算易出错技巧与方法 解法一利用三角公式进行等价变形;解法二转化为函数问题,使解法更简单更精妙,需认真体会解法一 sin 220°+cos 280°+3sin 220°cos80°=21 (1-cos40°)+21(1+cos160°)+ 3sin20°cos80° =1-21cos40°+21cos160°+3sin20°cos(60°+20°)=1-21cos40°+21(cos120°cos40°-sin120°sin40°)+3sin20°(cos60°cos20°-sin60°sin20°) =1-21cos40°-41cos40°-43sin40°+43sin40°-23sin 220°=1-43cos40°-43(1-cos40°)= 41 解法二 设x =sin 220°+cos 280°+3sin20°cos80°y =cos 220°+sin 280°-3cos20°sin80°,则 x +y =1+1-3sin60°=21, x -y =-cos40°+cos160°+3sin100° =-2sin100°sin60°+3sin100°=0 ∴x =y =41, 即x =sin 220°+cos 280°+3sin20°cos80°41 例2设关于x 的函数y =2cos 2x -2a cos x -(2a +1)的最小值为f (a ),试确定满足f (a )=21的a 值,并对此时的a 值求y 的最大值 命题意图 本题主要考查最值问题、三角函数的有界性、计算能力以及较强的逻辑思维能力知识依托 二次函数在给定区间上的最值问题错解分析 考生不易考查三角函数的有界性,对区间的分类易出错 技巧与方法 利用等价转化把问题化归为二次函数问题,还要用到配方法、数形结合、分类讲座等解 由y =2(cos x -2a )2-2242+-a a 及cos x ∈[-1,1]得f (a )=⎪⎪⎩⎪⎪⎨⎧≥-<<-----≤)2( 41)22( 122)2(12a a a a a a∵f (a )=21, ∴1-4a =21⇒a =81∉[2,+∞)或 -22a -2a -1=21,解得a =-1(2,2)∈-,此时,y =2(cos x +21)2+21, 当cos x =1时,即x =2k π,k ∈Z ,y max =5例3已知函数f (x )=2cos x sin(x +3π)-3sin 2x +sin x cos x(1)求函数f (x )的最小正周期;(2)求f (x )的最小值及取得最小值时相应的x 的值; (3)若当x ∈[12π,127π]时,f (x )的反函数为f -1(x ),求f --1(1)的值 命题意图 本题主要考查三角公式、周期、最值、反函数等知识,还考查计算变形能力,综合运用知识的能力知识依托 熟知三角函数公式以及三角函数的性质、反函数等知识错解分析 在求f --1(1)的值时易走弯路 技巧与方法 等价转化,逆向思维解 (1)f (x )=2cos x sin(x +3π)-3sin 2x +sin x cos x=2cos x (sin x cos3π+cos x sin3π)-3sin 2x +sin x cos x=2sin x cos x +3cos2x =2sin(2x +3π)∴f (x )的最小正周期T =π (2)当2x +3π=2k π-2π,即x =k π-125π(k ∈Z )时,f (x )取得最小值-2 (3)令2sin(2x +3π)=1,又x ∈[27,2ππ],∴2x +3π∈[3π,23π],∴2x +3π=65π,则x =4π,故f --1(1)=4π例4 已知2π<β<α<43π,cos(α-β)=1312,sin(α+β)=-53,求sin2α的值_________解法一 ∵2π<β<α<43π,∴0<α-β4π π<α+β<43π,∴54sin(),cos().135αβαβ-=+==- ∴sin2α=sin [(α-β)+(α+β)]=sin(α-β)cos(α+β)+cos(α-β)sin(α+β).6556)53(1312)54(135-=-⨯+-⨯=解法二 ∵sin(α-β)=135,cos(α+β)=-54,∴sin2α+sin2β=2sin(α+β)cos(α-β)=-6572sin2α-sin2β=2cos(α+β)sin(α-β)=-6540∴sin2α=56)65406572(21=--学生巩固练习1 已知方程x 2+4ax +3a +1=0(a >1)的两根均tan α、tan β,且α,β∈(-2,2ππ),则tan2βα+的值是( )A21B -2 C34 D21或-2 2 已知sin α=53,α∈(2π,π),tan(π-β)= 21,则tan(α-2β)=______3 设α∈(43,4ππ),β∈(0,4π),cos(α-4π)=53,sin(43π+β)=135,则sin(α+β)=_________4 不查表求值:.10cos 1)370tan 31(100sin 130sin 2︒+︒+︒+︒5 已知cos(4π+x )=53,(1217π<x <47π),求x x x tan 1sin 22sin 2-+的值6 已知α-β=38π,且α≠k π(k ∈Z ) 求)44(sin 42sin2csc )cos(12βπαααπ-----的最大值及最大值时的条件7 如右图,扇形OAB 的半径为1,中心角60°,四边形PQRS 是扇形的内接矩形,当其面积最大时,求点P 的位置,并求此最大面积8 已知cos α+sin β=3,sin α+cos β的取值范围是D ,x ∈D ,求函数y =10432log 21++x x 的最小值,并求取得最小值时x 的值参考答案1 解析 ∵a >1,tan α+tan β=-4a <0 tan α+tan β=3a +1>0,又α、β∈(-2π,2π)∴α、β∈(-2π,θ),则2βα+∈(-2π,0), 又tan(α+β)=342tan 12tan2)tan(,34)13(14tan tan 1tan tan 2=β+α-β+α=β+α=+--=βα-β+α又a a , 整理得2tan 222tan 32-β+α+β+α=0 解得tan 2β+α=-2 答案 B2 解析 ∵sin α=53,α∈(2π,π),∴cos α=-54 则tan α=-43,又tan(π-β)=21可得tan β=-21,2212()2tan 42tan 2.11tan 31()2βββ⨯-===---- 234()tan tan 743tan(2)341tan tan 2241()()43αβαβαβ-----===+⋅+-⨯- 答案247 3 解析 α∈(43,4ππ),α-4π∈(0, 2π),又cos(α-4π36556)sin(.655613554)1312(53)43sin()4sin()43cos()4cos()]43()4cos[(]2)43()4sin[()sin(.1312)43cos(,135)43sin().,43(43).4,0(,54)4sin(=β+α=⨯+-⨯-=β+π⋅π-α+β+π⋅π-α-=β+π+π-α-=π-β+π+π-α=β+α∴-=β+π∴=β+πππ∈β+π∴π∈β=π-α∴即答案6556 4 答案 2752853)54(257)4cos()4sin(2sin sin cos cos )cos (sin sin 2cos sin 1sin 2cos sin 2tan 1sin 22sin 54)4sin(,2435,471217.257)4(2cos 2sin ,53)4cos(:.522=-⨯=++=-+=-+=-+-=+∴<+<∴<<=+-=∴=+x x x xx xx x x x x x x x x x x x x x x x x ππππππππππ又解 2)322sin(22)21()322sin(4.32243824,3822cos 2sin 42)2sin 2(sin 2)2sin 2121(42cos 2cos 22sin 2)22cos(142sin 1)cos 1(2sin )44(sin 42sin 2csc )cos(1:.62222-π-α-=--⨯π-α=∴π-α=π-α=β-α∴π=β-α-β-αβ+α=-β+α=β--αα⋅α=β-π--α-α+α=β-π-α-αα-π-=t t 令解π≠αk (k ∈Z ),322322π-π≠π-α∴k (k ∈Z ) ∴当,22322π-π=π-αk 即34π+π=αk (k ∈Z )时,)322sin(π-α的最小值为-17 解 以OA 为x 轴 O 为原点,建立平面直角坐标系, 并设P 的坐标为(cos θ,sin θ),则|PS |=sin θ 直线OB 的方程为y =3x ,直线PQ 的方程为y =sin θ 联立解之得Q (33sin θ;sin θ),所以|PQ |=cos θ-33sin θ 于是S PQRS =sin θ(cos θ-33sin θ)=33(3sin θcos θ-sin 2θ)=33(23sin2θ-2cos 1θ-)=33(23sin2θ+21cos2θ-21)= 33sin(2θ+6π) ∵0<θ<3π,∴6π<2θ+6π<65π ∴21<sin(2θ+6π)≤1∴sin(2θ+6π)=1时,PQRS 面积最大,且最大面积是63,此时,θ=6π,点P 为 AB 的中点,P (21,23)8 解 设u =sin α+cos β 则u 2+(3)2=(sin α+cos β)2+(cos α+sin β)2=2+2sin(α+β)≤4∴u 2≤1,-1≤u ≤1 即D =[-1,1],设t =32+x ,∵-1≤x ≤1,∴1≤t x 232-t2max 0.5min 0.50.50.514248242,,8log 0,5log log log 8,821.2t M t t tt t M t y M M y t x ∴===≤=++====>∴======- 当且仅当即在时是减函数时此时 课前后备注。

2023苏州中考数学第16题

2023苏州中考数学第16题

中考数学试卷一、单项选择题(共12分)1.如图图形中是中心对称图形的为()A.B. C. D.的图象可能是()2.在同一平面直角坐标系中,函数y=x﹣1与函数y=1xA.B. C.D.3.如图,四边形ABCD是矩形,E是边BC延长线上的一点,AE与CD相交于点F,则图中的相似三角形共有()A.4对 B.3对C.2对D.1对4.一个由相同正方体堆积而成的几何体如图所示,从正面看,这个几何体的形状是()。

A.B.C.D.二、填空题(共24分)5.把一张半径为2cm,圆心角为120°的扇形纸片卷成一个圆锥的侧面,那么这个圆锥的底面积是。

(x<0)图象上的点,过点6.如图,在平面直角坐标系中,点A是函数y=kxA作y轴的垂线交y轴于点B,点C在x轴上,若△ABC的面积为1,则k的值为()。

三、解答题7.如图,D,E分别是△ABC的边AB,AC上的点,DE∥BC,AB=7,AD=5,DE=10,求BC的长.8.如图,在矩形ABCD中,AB=4,BC=6,M是BC的中点,DE⊥AM于点E。

(1)求证:△ADE∽△MAB;(2)求DE的长。

9.如图,在四边形A BCD中,A D∥BC,A B⊥BC,点E在A B上,∠DEC=90°。

求证:△ADE∽△BEC。

10.已知△ABC和△DEF中,有ABDE =BCEF=CAFD=23,且△DEF和△ABC的周长之差为15厘米,求△ABC和△DEF的周长。

11.吉万家超市今年的营业额为280万元,计划两年后的营业额为403.2万元,求平均每年增长的百分率?12.已知关于x的方程x2+kx﹣2=0的一个解与方程x+1x−1=3解相同。

(1)求k的值;(2)求方程x2+kx﹣2=0的另一个解.13.如图,在平面直角坐标系xOy中,已知△ABC,∠ABC=90°,顶点A在第一象限,B,C,在x轴的正半轴上(C在B的右侧),BC=2,AB=2根号3,△ADC与△ABC关于AC所在的直线对称。

高三数学填空题练习试题集

高三数学填空题练习试题集

高三数学填空题练习试题答案及解析1.函数的定义域为_____________.【答案】(0,1]【解析】有,可得0<x≤1【考点】函数的定义域2.设f(x)是定义在R上的奇函数,当x<0时,f(x)=x+e x(e为自然对数的底数),则f(ln 6)的值为________.【答案】ln 6-【解析】由f(x)是奇函数得f(ln 6)=-f(-ln 6)=-(-ln 6)-e-ln 6=ln 6-.3.函数的最大值为 .【答案】【解析】函数的定义域为,设,,则,所以,当时,.【考点】函数最值.4.若x,y满足约束条件,则的最大值为 .【答案】【解析】画出可行域,如图所示,将目标函数变形为,当取到最大值时,直线的纵截距最大,即将直线经过可行域,尽可能向上移动到点时,.【考点】线性规划.5.如图所示点是抛物线的焦点,点、分别在抛物线及圆的实线部分上运动,且总是平行于轴,,则的周长的取值范围是_______________.【答案】.【解析】易知圆的圆心坐标为,则圆心为抛物线的焦点,圆与抛物线在第一象限交于点,作抛物线的准线,过点作垂直于直线,垂足为点,由抛物线的定义可知,则,当点位于圆与轴的交点时,取最大值,由于点在实线上运动,因此当点与点重合时,取最小值为,此时与重合,由于、、构成三角形,因此,所以,因此的周长的取值范围是.6.设,向量且,则.【答案】【解析】因为a⊥c,b∥c,所以有2x-4=0且2y+4=0,解得x=2,y=-2,即,所以,则.7.甲、乙两地都位于长江下游,根据天气预报记录知,一年中下雨天甲市占20%,乙市占18%,假定在这段时间内两市是否降雨相互之间没有影响,则甲、乙两市同时下雨的概率为________.【答案】0.036【解析】设甲市下雨为事件A,乙市下雨为事件B,由题设知,事件A与B相互独立,且P(A)=0.2,P(B)=0.18,则P(AB)=P(A)P(B)=0.2×0.18=0.036.8.某程序框图如右图所示,则输出的结果S为.【答案】【解析】第一次运行,,不满足;第二次运行,,不满足;第三次运行,,满足,输出S为.【考点】算法与程序框图9.设x>0,y>0,a=x+y,b=·,则a与b的大小关系是.【答案】b<a【解析】当sin θ=0时,cos2θ=1,∴b=x<x+y=a即b<a,当cos θ=0时,sin2θ=1,b=y<x+y=a,即b<a,当sin θ≠0且cos θ≠0时,∵x>0,y>0,∴x<x+y,y<x+y,∴<,<,∴b=·<·==x+y=a.综上b<a.10.已知G是△ABC的重心,O是空间与G不重合的任一点,若++=λ,则λ=.【答案】3【解析】因为+=,+=,+=,且++=0,所以++=3.11.设a>0,b>0,若lga和lgb的等差中项是0,则+的最小值是.【答案】2【解析】由已知得lga+lgb=0,即ab=1,于是+==a+b≥2=2,当且仅当a=b=1时取等号,故+的最小值是2.12.若点P是曲线y=x2-ln x上任意一点,则点P到直线y=x-2的最小值为________.【答案】【解析】y′=2x-,令y′=1,得方程2x2-x-1=0,解得x=-(舍去)或x=1,故与直线y=x-2平行且与曲线y=x2-ln x相切的直线的切点坐标为(1,1),该点到直线y=x-2的距离d =即为所求13.若函数f(x)=-x2+4x-3ln x在[t,t+1]上不单调,则t的取值范围是______.【答案】(0,1)∪(2,3)【解析】对f(x)求导,得f′(x)=-x+4-=.由f′(x)=0得函数f(x)的两个极值点为1,3,则只要这两个极值点有一个在区间(t,t+1)内,函数f(x)在区间[t,t+1]上就不单调,所以t<1<t+1或t<3<t+1,解得0<t<1或2<t<3.14.在平面直角坐标系中,若中心在坐标原点上的双曲线的一条准线方程为,且它的一个顶点与抛物线的焦点重合,则该双曲线的渐进线方程为 .【答案】【解析】因为抛物线的焦点为所以又所以而双曲线的渐近线方程为即.解答本题需注意双曲线的焦点位置.【考点】双曲线的渐近线及准线,抛物线焦点.15.已知定义在上的偶函数满足:,且当时,单调递减,给出以下四个命题:①;②为函数图像的一条对称轴;③函数在单调递增;④若关于的方程在上的两根,则.以上命题中所有正确的命题的序号为_______________.【答案】①②④【解析】∵,∴当时,,∴,又∵函数是偶函数,∴,∴①正确;∵,,∴,∴,又是函数图像的对称轴,∴是函数图像的对称轴,∴②正确;∵函数的周期是4,∴在上的单调性与上的单调性相同,∴在上为减函数,∴③错误;∵是函数图像的对称轴,∴方程的两根关于对称,∴,∴④正确.【考点】1.函数的周期性;2.函数的奇偶性;3.函数的对称性;4.函数的单调性.16.已知点,过点的直线总与线段有公共点,则直线的斜率取值范围为______(用区间表示).【答案】【解析】如图,,根据斜率的定义可知,当直线逆时针转时,斜率增大,当直线顺时针转时,斜率减小,故直线的斜率取值范围为.【考点】直线斜率的计算、直线斜率的定义.17.函数的最小正周期为 .【答案】【解析】因为,,所以,函数的最小正周期为.【考点】三角函数的和差倍半公式,三角函数的性质.18.设与抛物线的准线围成的三角形区域(包含边界)为,为内的一个动点,则目标函数的最大值为 .【答案】3【解析】由题意,抛物线的准线,它和不等式共同围成的三角形区域为,目标函数为,作出可行域如下图,由图象可知当直线经过点时,直线的截距最小,此时最大,点的坐标为,此时,故答案为:3.【考点】简单线性规划.19.曲线与直线所围成的平面图形的面积为.【答案】【解析】画出图形可知,所求面积,而,,,故.【考点】定积分求面积.20.在正项等比数列中,,,则满足的最大正整数的值为 .【答案】12【解析】设正项等比数列首项为,公比为,由题意可得解得,,故其通项公式为.记,由,即化简得,,因此只须即,解得由于为正整数,因此最大为的整数部分,也就是12.故答案为12.【考点】等比数列的求和公式,一元二次不等式的解法.21.在中,分别是的对边,已知,若,则的面积等于 .【答案】【解析】因为,所以,,∴.由余弦定理得,∴.∴.【考点】1.余弦定理;2.三角形面积公式;3.平方关系.22.在处有极大值,则常数的值为________.【答案】6【解析】由题意知在处导数为零且时,,而,所以,解得,而当时,,不合题意,所以.【考点】利用导数求函数的极值、利用导数判断函数单调性.23.在展开式中的系数为,则实数的值为 .【答案】【解析】通项公式:,所以展开式中的系数为,解得:.【考点】1.二项式通项;2.二项式系数.24.设AB是椭圆的长轴,点C在上,且,若AB=4,,则的两个焦点之间的距离为________【答案】【解析】不妨设椭圆的标准方程为,于是可算得,得.【考点】考查椭圆的定义及运算,属容易题。

高三数学不等式试题答案及解析

高三数学不等式试题答案及解析

高三数学不等式试题答案及解析1.已知,则A.n<m<1B.1<n<m C.1<m<n D.m<n<1【答案】B【解析】函数是减函数,所以故选B2.现将一个质点随即投入区域中,则质点落在区域内的概率是【答案】【解析】略3.不等式的解集为或,则实数的取值范围.【答案】【解析】略4.如果实数满足条件,那么的最大值为()A.B.C.D.【答案】B【解析】解:当直线过点(0,-1)时,最大,故选B5.一元二次不等式的解集为,则的最小值为.【答案】【解析】由已知得,解得,又,则。

【考点】一元二次不等式的解法及基本不等式的应用。

6.设,则函数的最小值是()A.2B.C.D.3【答案】C【解析】因为,所以,令,则,由于,故知函数是减函数,因此;故选C.【考点】1.换元法;2.函数的最值.7.若变量x,y满足约束条件,则的最小值为.【答案】-6【解析】在坐标系中画出约束条件的可行域,得到的图形是一个平行四边形,目标函数z=x+2y,变化为,当直线沿着y轴向上移动时,z的值随着增大,当直线过A点时,z取到最小值,由与的交点得到,∴,故答案为:﹣6.【考点】简单线性规划.8.已知的大小关系是()A.a<c<b B.b<a<e C.c<a<b D.a<b<c【答案】D【解析】因为.所以,故D正确.【考点】指数函数,对数函数.9.设,则,,的大小关系是__________________.(用“<”连接)【答案】【解析】令,则,∴函数为增函数,∴,∴,∴,∴,又,∴.【考点】利用导数研究函数的单调性、作差比较大小.10.对一切实数x,不等式恒成立,则实数a的取值范围是()A.(-,-2)B.[-2,+)C.[-2,2]D.[0,+)【答案】B【解析】对一切实数x,不等式恒成立,等价于对任意实数,恒成立,因此有或,解得,故选B.【考点】不等式恒成立,二次函数的性质.【名师点晴】本题考查不等式恒成立问题,由于题中含有绝对值符号,因此解题的关键是换元思想,设,这样原来对一切实数恒成立,转化为对所有非负实数,不等式恒成立,也即二次函数在区间上的最小值大于或等于0,最终问题又转化为讨论二次函数在给定区间的最值问题,解题中始终贯彻了转化与化归的数学思想.11.设不等式组所表示的区域为,函数的图象与轴所围成的区域为,向内随机投一个点,则该点落在内的概率为.【答案】【解析】如图所示区域是及其内部.即,所以其面积为.区域是图中阴影部分,面积为.所以所求概率为.【考点】1几何概型概率;2定积分的几何意义.12.已知实数x、y满足,如果目标函数的最小值为-1,则实数m=().A.6B.5C.4D.3【答案】B【解析】将化为,作出可行域和目标函数基准直线(如图所示),当直线向左上方平移时,直线在轴上的截距增大,即变小,所以当直线过点时,取得最小值,即,解得;故选B.【考点】简单的线性规划.13.已知正数满足,则的最小值为()A.2B.0C.-2D.-4【答案】D【解析】作出题设约束条件表示的可行域,如图内部(含边界),作直线,直线的纵截距是,因此向上平移直线,当过点时,取得最小值,故选D.【考点】简单的线性规划问题.14.已知,满足约束条件若的最小值为,则()A.B.C.D.【答案】B【解析】先根据约束条件画出可行域,设,将最大值转化为轴上的截距,当直线经过点时,最小,由得:,代入直线,解得故答案选【考点】线性规划.15.选修4-5:不等式选讲已知函数.(1)当时,解不等式;(2)若时,,求实数的取值范围.【答案】(1)(2)【解析】(1)把要解的不等式等价转化为与之等价绝对值不等式,再求出此不等式的解集,即得所求(2)当时,即由此得讨论即可得到实数的取值范围试题解析:(1)当时,不等式为当时,不等式化为,不等式不成立;当时,不等式化为,解得;当时,不等式化为,不等式必成立.综上,不等式的解集为.(2)当时,即由此得当时,的最小值为7,所以的取值范围是【考点】绝对值不等式16.已知函数,其中且.(1)当时,若无解,求的范围;(2)若存在实数,(),使得时,函数的值域都也为,求的范围.【答案】(1);(2).【解析】(1)分析题意可知,不等式无解等价于恒成立,参变分离后即再进一步等价为,即可求解;(2)分析函数的单调性,可知其为单调递增函数,换元令,从而可将问题等价转化为二次方程根的分布,列得关于的不等式即可求解.试题解析:(1)∵,∴无解,等价于恒成立,即恒成立,即,求得,∴;(2)∵是单调增函数,∴,即,问题等价于关于的方程有两个不相等的解,令,则问题等价于关于的二次方程在上有两个不相等的实根,即,即,得.【考点】1.恒成立问题;2.二次方程的根的分布;3.转化的数学思想.17.选修4-5:不等式选讲已知函数(1)解不等式(2)若不等式对任意的恒成立,求实数的取值范围.【答案】(1);(2).【解析】(1)解绝对值不等式,主要是分类讨论,分类标准由绝对值的定义确定;(2)不等式对任意的恒成立,即的最小值满足,由(1)的讨论,可得.试题解析:(1),当时,由,此时无解当时,由当时,由综上,所求不等式的解集为(2)由(1)的函数解析式可以看出函数在区间上单调递减,在区间上单调递增,故在处取得最小值,最小值为,不等式,对任意的恒成立即,解得故的取值范围为.【考点】解绝对值不等式,不等式恒成立问题,函数的最值.18.若不等式组表示的平面区域为,不等式表示的平面区域为.现随机向区域内撒下一粒豆子,则豆子落在区域内的概率为.【答案】.【解析】不等式组表示的平面区域为,不等式表示的平面区域为.的面积为,其中满足的图形面积为,所以随机向区域内撒下一粒豆子,则豆子落在区域内的概率为.【方法点晴】本题属于几何概型的问题,通常在几何概型中,事件的概率计算公式为:用几何概率公式计算概率时,关键是构造出随机事件所对应的几何图形,并对几何图形进行相应的几何度量.因此本题解题思路清晰,作出图形,计算相关三角形的面积,代入上述公式便得答案.19.实数满足,则的最大值是()A.2B.4C.6D.8【答案】B【解析】试题解析:依题画出可行域如图,可见及内部区域为可行域,令,则为直线在轴上的截距,由图知在点处取最大值是4,在处最小值是-2,所以,所以的最大值是4,故选B.【考点】简单线性规划20.选修4-5:不等式选讲已知命题“,”是真命题,记的最大值为,命题“,”是假命题,其中.(Ⅰ)求的值;(Ⅱ)求的取值范围.【答案】(Ⅰ).(Ⅱ).【解析】试题解析:(Ⅰ)因为“,”是真命题,所以,恒成立,又,所以恒成立,所以,.又因为,“”成立当且仅当时.因此,,于是.(Ⅱ)由(Ⅰ)得,因为“,”是假命题,所以“,”是真命题.因为(),因此,,此时,即时.即,,由绝对值的意义可知,.【考点】不等式选讲21.已知实数满足不等式组则的最小值为______.【答案】【解析】由得,则当直线在y轴上的截距最大时取得最小值,所以当直线经过A(2,3)时,z最小,即当x=2,y=3,取得最小值-4.【考点】线性规划22.若关于的不等式组,表示的平面区域是直角三角形区域,则正数的值为()A.1B.2C.3D.4【答案】B【解析】如图,易知直线经过定点,又知道关于的不等式组,表示的平面区域是直角三角形区域,且,所以,解得,故选B.【考点】线性规划.23.已知函数,且关于的不等式的解集为R.(1)求实数的取值范围;(2)求的最小值.【答案】(1);(2)9【解析】(1)由绝对值的性质可知,由此解不等式即可求出结果;(2)由(1),根据基本不等式的性质,即可求出结果.试题解析:解:(1)依题意,(2)时,当且仅当,即时等号成立。

2023年数学高考复习真题演练(2021-2022年高考真题)16 极值与最值(含详解)

2023年数学高考复习真题演练(2021-2022年高考真题)16 极值与最值(含详解)

专题16极值与最值【考点预测】 知识点一:极值与最值 1.函数的极值函数()f x 在点0x 附近有定义,如果对0x 附近的所有点都有0()()f x f x <,则称0()f x 是函数的一个极大值,记作0()y f x =极大值.如果对0x 附近的所有点都有0()()f x f x >,则称0()f x 是函数的一个极小值,记作0()y f x =极小值.极大值与极小值统称为极值,称0x 为极值点.求可导函数()f x 极值的一般步骤 (1)先确定函数()f x 的定义域; (2)求导数()f x '; (3)求方程()0f x '=的根;(4)检验()f x '在方程()0f x '=的根的左右两侧的符号,如果在根的左侧附近为正,在右侧附近为负,那么函数()y f x =在这个根处取得极大值;如果在根的左侧附近为负,在右侧附近为正,那么函数()y f x =在这个根处取得极小值.注①可导函数()f x 在点0x 处取得极值的充要条件是:0x 是导函数的变号零点,即0()0f x '=,且在0x 左侧与右侧,()f x '的符号导号.②0()0f x '=是0x 为极值点的既不充分也不必要条件,如3()f x x =,(0)0f '=,但00x =不是极值点.另外,极值点也可以是不可导的,如函数()f x x =,在极小值点00x =是不可导的,于是有如下结论:0x 为可导函数()f x 的极值点0()0f x '⇒=;但0()0f x '=⇒0x 为()f x 的极值点.2.函数的最值函数()y f x =最大值为极大值与靠近极小值的端点之间的最大者;函数()f x 最小值为极小值与靠近极大值的端点之间的最小者.导函数为21212()()()()f x ax bx c a x x x x m x x n =++=--<<<(1)当0a >时,最大值是1()f x 与()f n 中的最大者;最小值是2()f x 与()f m 中的最小者. (2)当0a <时,最大值是2()f x 与()f m 中的最大者;最小值是1()f x 与()f n 中的最小者.一般地,设()y f x =是定义在[]m n ,上的函数,()y f x =在()m n ,内有导数,求函数()y f x =在[]m n ,上的最大值与最小值可分为两步进行:(1)求()y f x =在()m n ,内的极值(极大值或极小值); (2)将()y f x =的各极值与()f m 和()f n 比较,其中最大的一个为最大值,最小的一个为最小值. 注①函数的极值反映函数在一点附近情况,是局部函数值的比较,故极值不一定是最值;函数的最值是对函数在整个区间上函数值比较而言的,故函数的最值可能是极值,也可能是区间端点处的函数值;②函数的极值点必是开区间的点,不能是区间的端点;③函数的最值必在极值点或区间端点处取得. 【方法技巧与总结】(1)若函数()f x 在区间D 上存在最小值()min f x 和最大值()max f x ,则 不等式()f x a >在区间D 上恒成立()min f x a ⇔>; 不等式()f x a ≥在区间D 上恒成立()min f x a ⇔≥; 不等式()f x b <在区间D 上恒成立()max f x b ⇔<; 不等式()f x b ≤在区间D 上恒成立()max f x b ⇔≤;(2)若函数()f x 在区间D 上不存在最大(小)值,且值域为(),m n ,则不等式()()()f x a f x a >≥或在区间D 上恒成立m a ⇔≥.不等式()()()f x b f x b <≤或在区间D 上恒成立m b ⇔≤.(3)若函数()f x 在区间D上存在最小值()min f x 和最大值()max f x ,即()[],f x m n ∈,则对不等式有解问题有以下结论:不等式()a f x <在区间D 上有解()max a f x ⇔<; 不等式()a f x ≤在区间D 上有解()max a f x ⇔≤; 不等式()a f x >在区间D 上有解()min a f x ⇔>; 不等式()a f x ≥在区间D 上有解()min a f x ⇔≥;(4)若函数()f x 在区间D 上不存在最大(小)值,如值域为(),m n ,则对不等式有解问题有以下结论:不等式()()()a f x f x <≤或a 在区间D 上有解a n ⇔<不等式()()()b f x f x >≥或b 在区间D 上有解b m ⇔>(5)对于任意的[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212max max f x g x f x g x ≤⇔≤; (6)对于任意的[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212min min f x g x f x g x ≥⇔≥; (7)若存在[]1,x a b ∈,对于任意的[]2m,x n ∈,使得()()()()1212min min f x g x f x g x ≤⇔≤; (8)若存在[]1,x a b ∈,对于任意的[]2m,x n ∈,使得()()()()1212max max f x g x f x g x ≥⇔≥; (9)对于任意的[]1,x a b ∈,[]2m,x n ∈使得()()()()1212max min f x g x f x g x ≤⇔≤;(10)对于任意的[]1,x a b ∈,[]2m,x n ∈使得()()()()1212min max f x g x f x g x ≥⇔≥;(11)若存在[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212min max f x g x f x g x ≤⇔≤(12)若存在[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212max min f x g x f x g x ≥⇔≥. 【题型归纳目录】题型一:求函数的极值与极值点 题型二:根据极值、极值点求参数 题型三:求函数的最值(不含参) 题型四:求函数的最值(含参) 题型五:根据最值求参数题型六:函数单调性、极值、最值得综合应用 题型七:不等式恒成立与存在性问题 【典例例题】题型一:求函数的极值与极值点例1.(2022·江西·上饶市第一中学模拟预测(文))已知函数()()()1xf x a x a =--∈e R .当1a =时,求函数()y f x =的极值;例2.(2022·湖北·襄阳四中模拟预测)设()e sin x f x x =.(1)求()f x 在[],ππ-上的极值; (2)若对[]12,0,x x π∀∈,12x x ≠,都有()()1222120f x f x a x x -+>-成立,求实数a 的取值范围. 例3.(2022·天津市咸水沽第一中学模拟预测)已知函数ln()()eln (e 2.71828ax f x x x=-=……自然对数底数). (1)当e a =时,求函数f (x )的单调区间; (2)当e a >时,(i )证明:()f x 存在唯一的极值点:(ii )证明:()(1)e f x a <- 例4.(2022·江西师大附中三模(理))已知函数()sin ,()e xxf x xg x =-为()f x 的导函数. (1)判断函数()g x 在区间π0,2⎛⎫ ⎪⎝⎭上是否存在极值,若存在,请判断是极大值还是极小值;若不存在,说明理由;(2)求证:函数()f x 在区间(,π)-∞上只有两个零点.例5.(2022·江苏苏州·模拟预测)函数()sin cos f x x x x =--.(1)求函数()f x 在(),2ππ-上的极值;(2)证明:()()ln F x f x x =-有两个零点.【方法技巧与总结】1.因此,在求函数极值问题中,一定要检验方程()0f x '=根左右的符号,更要注意变号后极大值与极小值是否与已知有矛盾.2.原函数出现极值时,导函数正处于零点,归纳起来一句话:原极导零.这个零点必须穿越x 轴,否则不是极值点.判断口诀:从左往右找穿越(导函数与x 轴的交点);上坡低头找极小,下坡抬头找极大.题型二:根据极值、极值点求参数例6.(2022·四川·绵阳中学实验学校模拟预测(文))若函数()322f x x ax bx a =--+在1x =处有极值10,则a b -=( ) A .6B .15-C .6-或15D .6或15-例7.(2022·江苏南通·模拟预测)已知函数()()()e x f x x a x b =--在x a =处取极小值,且()f x 的极大值为4,则b =( ) A .-1B .2C .-3D .4例8.(2022·四川绵阳·二模(文))若2x =是函数()()2224ln f x x a x a x =+--的极大值点,则实数a 的取值范围是( ) A .(),2-∞-B .()2,-+∞C .()2,+∞D .()2,2-例9.(2022·河南·模拟预测(文))已知函数()2ln f x x ax =-的极值为12-,则=a ( )A .eB .1e 2C .12D .14例10.(2022·河南·高三阶段练习(文))若函数()()22e xx a f x x =++⋅在R 上无极值,则实数a 的取值范围( )A .()2,2-B .(-C .⎡-⎣D .[]22-,例11.(2022·四川省南充高级中学高三阶段练习(理))已知函数322()3f x x mx nx m =-++在1x =-处取得极值0,则m n +=( ) A .2B .7C .2或7D .3或9例12.(2022·全国·高三专题练习)函数()(ln )xe f x a x x x =--在(0,1)内有极值,则实数a 的取值范围是( )A .(,)e -∞B .(0,)eC .(,)e +∞D .[),e +∞例13.(2022·陕西·西北工业大学附属中学模拟预测(理))已知函数()()24143e xf x ax a x a ⎡⎤=-+++⎣⎦,若2x =是()f x 的极小值点,则实数a 的取值范围是( )A .2,3⎛⎤-∞ ⎥⎝⎦B .1,2⎛⎫+∞ ⎪⎝⎭C .(),0-∞D . ()1,-+∞例14.(2022·全国·高三专题练习)已知函数()321132f x x ax x =-+在区间1,32⎛⎫⎪⎝⎭上既有极大值又有极小值,则实数a 的取值范围是( ) A .()2,+∞B .[)2,+∞C .52,2⎛⎫ ⎪⎝⎭D .102,3⎛⎫ ⎪⎝⎭例15.(2022·全国·高三专题练习)函数()()()321112132f x x m x m x =-++-在()0,4上无极值,则m =______.例16.(2022·吉林长春·模拟预测(文))已知函数()sin f x ax x =+,()0,πx ∈.(1)当1a =时,过()0,1做函数()f x 的切线,求切线方程;(2)若函数()f x 存在极值,求极值的取值范围.例17.(2022·北京市第十二中学三模)已知函数()ln ,af x x a x=+∈R .(1)当1a =时,求函数()f x 的单调递增区间; (2)设函数()1()f x g x x-=,若()g x 在21,e ⎡⎤⎣⎦上存在极值,求a 的取值范围. 例18.(2022·天津·耀华中学二模)已知函数()ln (0)xae f x x x a x =+->.(1)若1a =,求函数()f x 的单调区间;(2)若()f x 存在两个极小值点12,x x ,求实数a 的取值范围.例19.(2022·河北·石家庄二中模拟预测)已知函数()32f x x ax bx =-++.(1)当0,1a b ==时,证明:当()1,x ∈+∞时,()ln f x x <;(2)若2b a =,函数()f x 在区间()1,2上存在极大值,求a 的取值范围.题型三:求函数的最值(不含参)例20.(2022·江苏徐州·模拟预测)函数12()||cos f x x x =-的最小值为_____________.例21.(2022·全国·高三专题练习)函数()e ln 1x x f x x x -=+的最小值为______.例22.(2022·四川·模拟预测(文))对任意a ∈R ,存在(0,)b ∈+∞,使得1eln a b +=,则b a -的最小值为_________.例23.(2022·河南郑州·三模(文))()x f x e x =-在区间[]1,1-上的最小值是( )A .11e+B .1C .1e +D .1e -例24.(2022·全国·高三专题练习)函数1(1),[3,4]x y x e x +=+∈-的最大值为( ) A .22e -B .55eC .54eD .1e --例25.(2022·全国·高三专题练习)已知函数()()1cos 0f x ax x a =-≠. (1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)求函数()f x 在0,4π⎡⎤⎢⎥⎣⎦的最小值.例26.(2022·山东·临沭县教育和体育局高二期中)已知函数32(),1f x x bx x a x =+-+=是()f x 的一个极值点.(1)求b 的值;(2)当[2,2]x ∈-时,求函数()f x 的最大值.题型四:求函数的最值(含参)例27.(2022·北京通州·高二期中)已知函数()32392f x x x x =--+.(1)求函数()f x 的单调区间;(2)求函数()f x 在区间[]0,a 上的最小值.例28.(2022·河南·高二阶段练习(理))已知函数f (x )=x -m ln x -m . (1)讨论函数f (x )的单调性;(2)若函数f (x )有最小值g (m ),证明:g (m ) 1e≤在(0)+∞,上恒成立. 例29.(2021·江苏·高二单元测试)已知函数()2ln f x x ax =-.(1)讨论()f x 的单调性;(2)当0a >时,求()f x 在区间[]1,2上的最大值.题型五:根据最值求参数例30.(2022·河北·模拟预测)已知0a >,函数()12ag x x x+=+-在[)2,+∞上的最小值为1,则=a __________. 例31.(2022·山西运城·模拟预测(理))已知函数()32112132x x f x x =+-+,若函数()f x 在()22,23a a -+上存在最小值.则实数a 的取值范围是________.例32.(2022·浙江湖州·高三期末)若函数()()2221e x f x x x a +=+++存在最小值,则实数a 的取值范围是___________.例33.(2022·陕西·模拟预测(理))若函数3()31f x x x =--在区间(2,23)a a -+上有最大值,则实数a 的取值范围是_________.题型六:函数单调性、极值、最值得综合应用例34.(2022·全国·高三专题练习(理))已知函数f (x )=e x +ax ·sin x . (1)求y =f (x )在x =0处的切线方程; (2)当a =-2时,设函数g (x )=()f x x,若x 0是g (x )在(0,π)上的一个极值点,求证:x 0是函数g (x )在(0,π)上的唯一极小值点,且e -2<g (x 0)<e .例35.(2022·四川泸州·三模(文))已知函数()313f x x ax =-+,R a ∈.(1)讨论函数()f x 的单调性;(2)若()()xg x f x e =⋅有且只有一个极值点,求a 的取值范围.例36.(2022·广东·深圳市光明区高级中学模拟预测)已知函数()e sin 1xf x ax x =-+-.(1)当2a =时,求函数()f x 的极值点; (2)当12a ≤<时,试讨论函数()f x 的零点个数.例37.(2022·北京市十一学校高三阶段练习)已知函数()()()211e 12ax f x x ax a x =--+-(1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线方程; (2)判断函数()f x 的极值点的个数,并说明理由.例38.(2022·重庆巴蜀中学高三阶段练习)已知函数2()e (3)ln xf x x x x=---. (1)求曲线()y f x =在点(1,(1))f 处的切线方程;(2)证明:()f x 存在唯一极大值点0x ,且()072e 22f x --<<-.例39.(2022·全国·模拟预测(文))已知函数()()2ln 1f x x x x =---. (1)证明:()f x 存在唯一的极值点; (2)m 为整数,()f x m >,求m 的最大值.题型七:不等式恒成立与存在性问题例40.(2022·辽宁·二模)若关于x 的不等式ln 1e x x x ax ++≤恒成立,则实数a 的取值范围为___________. 例41.(2022·北京·景山学校模拟预测)已知函数()ln 2f x x x ax =++.(1)当0a =时,求()f x 的极值;(2)若对任意的21,e x ⎡⎤∈⎣⎦,()0f x ≤恒成立,求实数a 的取值范围.例42.(2022·新疆克拉玛依·三模(文))已知函数()ln f x x x =,()()23g x x ax a R =-+-∈.(1)求函数()f x 的单调递增区间; (2)若对任意()0,x ∞∈+,不等式()()12f xg x ≥恒成立,求a 的取值范围. 例43.(2022·陕西·西北工业大学附属中学模拟预测(文))已知函数()()122211ln 2x f x x x x -+=+-++-.(1)求函数()f x 的单调区间;(2)若对1x ∀、[]20,2x ∈,使()()1212f x f x a-≤-恒成立,求a 的取值范围.例44.(2022·内蒙古赤峰·三模(文))已知函数()()ln 1f x x x =+. (1)求()f x 的最小值;(2)若()()212f x x m x -++-恒成立,求实数m 的取值范围.【方法技巧与总结】在不等式恒成立或不等式有解条件下求参数的取值范围,一般利用等价转化的思想其转化为函数的最值或值域问题加以求解,可采用分离参数或不分离参数法直接移项构造辅助函数.【过关测试】 一、单选题1.(2022·全国·哈师大附中模拟预测(文))已知0x 是函数()12sin cos 3f x x x x =-的一个极值点,则20tan x 的值是( ) A .1B .12C .37D .572.(2022·宁夏·吴忠中学三模(理))下列函数中,既是奇函数又存在极值的是( ) A .y x =B .()ln y x =-C .e x y x =+D .4y x x=+3.(2022·河南新乡·二模(文))已知0a >,函数()2313f x a x x =-的极小值为43-,则=a ( )AB .1C D4.(2022·内蒙古包头·一模(理))设0m ≠ ,若x m =为函数()()()2f x m x m x n =--的极小值点,则( ) A .m n >B .m n <C .1nm< D .1n m> 5.(2022·河南·模拟预测(文))当x m =时,函数()3232ln f x x x x x =-+-取得最小值,则m =( )A .23B .1C .32D .26.(2022·四川凉山·三模(理))函数()2sin 2a f x x x =-,若()f x 在(0,)2π上有最小值,则实数a 的取值范围是( ) A .()0,∞+B .()0,1C .(),0∞-D .()1,0-7.(2016·天津市红桥区教师发展中心高三学业考试)已知函数2()(4)()f x x x a =--,a 为实数,(1)0f '-=,则()f x 在[]22-,上的最大值是( ) A .92B .1C .35D .5027-8.(2022·宁夏·高三阶段练习(文))若函数()22e xx x af x +-=在区间(,1)a a +上存在最小值,则实数a 的取值范围为( ) A .(),1-∞-B .()2,1--C .⎛-∞ ⎝⎭D .1⎫-⎪⎪⎝⎭二、多选题9.(2022·重庆·三模)已知函数()21e xx x f x ++=(e 为自然对数的底数,e 2.72≈),则关于函数()f x ,下列结论正确的是( ) A .有2个零点B .有2个极值点C .在()0,1单调递增D .最小值为110.(2022·湖北·宜城市第一中学高三阶段练习)已知()e xx f x =.则下列说法正确的有( )A .函数()y f x =有唯一零点0x =B .函数()y f x =的单调递减区间为()(),01,-∞⋃+∞C .函数()y f x =有极大值1eD .若关于x 的方程()f x a =有三个不同的根.则实数a 的取值范围是10,e ⎛⎫⎪⎝⎭11.(2022·福建省德化第一中学模拟预测)设函数()f x 的定义域为R ,()000x x ≠是()f x 的极大值点,以下结论一定正确的是( ) A .x R ∀∈,()()0f x f x ≥ B .0x -是()f x -的极大值点 C .0x -是()f x -的极小值点D .0x -是()f x --的极小值点12.(2022·全国·模拟预测)已知函数()()e e e x xf x a x x -=-+的图象关于直线12x =对称,则下列说法正确的是( ) A .e a = B .()f x 在1,2⎛⎫+∞ ⎪⎝⎭上单调递增C .12x =为()f x 的极小值点 D .()f x 仅有两个零点三、填空题13.(2022·全国·高三专题练习)函数()()()321112132f x x m x m x =-++-在()0,4上无极值,则m =______.14.(2022·天津河西·二模)若函数32()9f x x ax x =+--在1x =-处取得极值,则()2f =____________. 15.(2022·湖南·长郡中学高三阶段练习)函数()1ln f x x x=+的极值点为___________. 16.(2022·全国·高三专题练习)已知函数()3,,43,,x x a f x x x x a ≥⎧=⎨-<⎩则下列命题正确的有:___________.①若()f x 有两个极值点,则0a =或112a <<②若()f x 有极小值点,则12a >③若()f x 有极大值点,则12a >-④使()f x 连续的a 有3个取值四、解答题17.(2021·四川省叙永第一中学校高三阶段练习(文))已知函数32()f x x ax bx c =+++在1x =与23x =-时,都取得极值.(1)求a ,b 的值;(2)若3(1)2f -=,求()f x 的单调增区间和极值. 18.(2022·河南郑州·高三阶段练习(文))已知函数()21xf x x a-=+. (1)若0a =,求曲线()y f x =在点()()1,1f 处的切线方程;(2)若()f x 在1x =-处取得极值,求()f x 的单调区间及其最大值与最小值. 19.(2022·陕西·武功县普集高级中学高三期末(文))已知函数()ln a f x x x=-.(1)若3a =-,求函数()f x 的极值;(2)若函数()f x 在3,e e ⎡⎤⎣⎦上单调递增,求a 的取值范围.20.(2022·全国·高三专题练习)已知函数()32213f x x x ax =+++在()1,0-上有两个极值点,12,x x ,且12x x <. (1)求实数a 的取值范围;(2)证明:当102x -<<时,()1112f x >.21.(2022·北京·人大附中三模)设函数()()24143e xf x ax a x a ⎡⎤=-+++⎣⎦.(1)若曲线()y f x =在点()()1,1f 处的切线与x 轴平行,求a ; (2)若()f x 在2x =处取得极大值,求a 的取值范围.22.(2022·浙江嘉兴·模拟预测)已知函数2()e e,x f x ax a =+-∈R .(注:e 2.71828=是自然对数的底数)(1)当1a =时,求曲线()y f x =在点(1,(1))f 处的切线方程; (2)若()f x 只有一个极值点,求实数a 的取值范围;(3)若存在b ∈R ,对与任意的x ∈R ,使得()f x b≥恒成立,求-a b 的最小值.专题16极值与最值【考点预测】 知识点一:极值与最值 1.函数的极值函数()f x 在点0x 附近有定义,如果对0x 附近的所有点都有0()()f x f x <,则称0()f x 是函数的一个极大值,记作0()y f x =极大值.如果对0x 附近的所有点都有0()()f x f x >,则称0()f x 是函数的一个极小值,记作0()y f x =极小值.极大值与极小值统称为极值,称0x 为极值点.求可导函数()f x 极值的一般步骤 (1)先确定函数()f x 的定义域; (2)求导数()f x '; (3)求方程()0f x '=的根;(4)检验()f x '在方程()0f x '=的根的左右两侧的符号,如果在根的左侧附近为正,在右侧附近为负,那么函数()y f x =在这个根处取得极大值;如果在根的左侧附近为负,在右侧附近为正,那么函数()y f x =在这个根处取得极小值.注①可导函数()f x 在点0x 处取得极值的充要条件是:0x 是导函数的变号零点,即0()0f x '=,且在0x 左侧与右侧,()f x '的符号导号.②0()0f x '=是0x 为极值点的既不充分也不必要条件,如3()f x x =,(0)0f '=,但00x =不是极值点.另外,极值点也可以是不可导的,如函数()f x x =,在极小值点00x =是不可导的,于是有如下结论:0x 为可导函数()f x 的极值点0()0f x '⇒=;但0()0f x '=⇒0x 为()f x 的极值点.2.函数的最值函数()y f x =最大值为极大值与靠近极小值的端点之间的最大者;函数()f x 最小值为极小值与靠近极大值的端点之间的最小者.导函数为21212()()()()f x ax bx c a x x x x m x x n =++=--<<<(1)当0a >时,最大值是1()f x 与()f n 中的最大者;最小值是2()f x 与()f m 中的最小者. (2)当0a <时,最大值是2()f x 与()f m 中的最大者;最小值是1()f x 与()f n 中的最小者.一般地,设()y f x =是定义在[]m n ,上的函数,()y f x =在()m n ,内有导数,求函数()y f x =在[]m n ,上的最大值与最小值可分为两步进行:(1)求()y f x =在()m n ,内的极值(极大值或极小值); (2)将()y f x =的各极值与()f m 和()f n 比较,其中最大的一个为最大值,最小的一个为最小值. 注①函数的极值反映函数在一点附近情况,是局部函数值的比较,故极值不一定是最值;函数的最值是对函数在整个区间上函数值比较而言的,故函数的最值可能是极值,也可能是区间端点处的函数值;②函数的极值点必是开区间的点,不能是区间的端点;③函数的最值必在极值点或区间端点处取得. 【方法技巧与总结】(1)若函数()f x 在区间D 上存在最小值()min f x 和最大值()max f x ,则 不等式()f x a >在区间D 上恒成立()min f x a ⇔>; 不等式()f x a ≥在区间D 上恒成立()min f x a ⇔≥; 不等式()f x b <在区间D 上恒成立()max f x b ⇔<; 不等式()f x b ≤在区间D 上恒成立()max f x b ⇔≤;(2)若函数()f x 在区间D 上不存在最大(小)值,且值域为(),m n ,则不等式()()()f x a f x a >≥或在区间D 上恒成立m a ⇔≥.不等式()()()f x b f x b <≤或在区间D 上恒成立m b ⇔≤.(3)若函数()f x 在区间D上存在最小值()min f x 和最大值()max f x ,即()[],f x m n ∈,则对不等式有解问题有以下结论:不等式()a f x <在区间D 上有解()max a f x ⇔<; 不等式()a f x ≤在区间D 上有解()max a f x ⇔≤; 不等式()a f x >在区间D 上有解()min a f x ⇔>; 不等式()a f x ≥在区间D 上有解()min a f x ⇔≥;(4)若函数()f x 在区间D 上不存在最大(小)值,如值域为(),m n ,则对不等式有解问题有以下结论:不等式()()()a f x f x <≤或a 在区间D 上有解a n ⇔<不等式()()()b f x f x >≥或b 在区间D 上有解b m ⇔>(5)对于任意的[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212max max f x g x f x g x ≤⇔≤; (6)对于任意的[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212min min f x g x f x g x ≥⇔≥; (7)若存在[]1,x a b ∈,对于任意的[]2m,x n ∈,使得()()()()1212min min f x g x f x g x ≤⇔≤; (8)若存在[]1,x a b ∈,对于任意的[]2m,x n ∈,使得()()()()1212max max f x g x f x g x ≥⇔≥; (9)对于任意的[]1,x a b ∈,[]2m,x n ∈使得()()()()1212max min f x g x f x g x ≤⇔≤;(10)对于任意的[]1,x a b ∈,[]2m,x n ∈使得()()()()1212min max f x g x f x g x ≥⇔≥;(11)若存在[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212min max f x g x f x g x ≤⇔≤(12)若存在[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212max min f x g x f x g x ≥⇔≥. 【题型归纳目录】题型一:求函数的极值与极值点 题型二:根据极值、极值点求参数 题型三:求函数的最值(不含参) 题型四:求函数的最值(含参) 题型五:根据最值求参数题型六:函数单调性、极值、最值得综合应用 题型七:不等式恒成立与存在性问题 【典例例题】题型一:求函数的极值与极值点例1.(2022·江西·上饶市第一中学模拟预测(文))已知函数()()()1xf x a x a =--∈e R .当1a =时,求函数()y f x =的极值; 【解析】由题知,当1a =时,()e (1)x f x x =--,x ∈R∴()e 1xf x '=-,令()0f x '=,0x =. ∴(),0x ∈-∞时,()0f x '<,()f x 单调递减;()0,x ∈+∞时,()0f x '>,()f x 单调递增.∴0x =是()f x 的极小值点,∴()f x 的极小值为()02f =,无极大值.例2.(2022·湖北·襄阳四中模拟预测)设()e sin xf x x =.(1)求()f x 在[],ππ-上的极值; (2)若对[]12,0,x x π∀∈,12x x ≠,都有()()1222120f x f x a x x -+>-成立,求实数a 的取值范围. 【答案】(1)极小值为42eπ34π (2)e ,2ππ⎡⎫+∞⎪⎢⎣⎭ 【解析】 【分析】(1)直接求导计算即可.(2)将问题转化为()()222211f x ax f x ax +>+,构造新函数()()2g x f x ax =+在[]0,π上单调递增即可,然后参变分离或者分类讨论都可以. (1)由()()e sin cos 0xf x x x '=+≤,[],x ππ∈-得()f x 的单调减区间是,4ππ⎡⎤--⎢⎥⎣⎦,3,4ππ⎡⎤⎢⎥⎣⎦,同理,()f x 的单调增区间是3,44ππ⎡⎤-⎢⎥⎣⎦.故()f x 的极小值为442e f ππ⎛⎫-= ⎪⎝⎭343e 42f ππ⎛⎫=⎪⎝⎭. (2)由对称性,不妨设120x x π≤<≤, 则()()1222120f x f x a x x -+>-即为()()222211f x ax f x ax +>+. 设()()2g x f x ax =+,则()g x 在[]0,π上单调递增,故()()e sin cos 20xg x x x ax '=++≥在[]0,π上恒成立. 方法一:(含参讨论)设()()()e sin cos 20xh x g x x x ax '==++≥,则()010h =>,()e 20h a πππ=-+≥,解得e 2a ππ≥. ()()2e cos xh x x a '=+,()()0210h a '=+>,()()2e h a ππ'=-.①当e a π≥时,()()2e cos sin x h x x x ''=-⎡⎤⎣⎦,故,当0,4x π⎡⎤∈⎢⎥⎣⎦时,()()2e cos sin 0x h x x x ''=-≥⎡⎤⎣⎦,()h x '递增; 当,4x ππ⎡⎤∈⎢⎥⎣⎦时,()()2e cos sin 0x h x x x ''=-≤⎡⎤⎣⎦,()h x '递减; 此时,()()(){}()()min 0,20h x h h h a e πππ''''≥==-≥,()()h x g x '=在[]0,π上单调递增,故()()()010h x g x g ''=≥=>,符合条件.②当e e 2a πππ≤<时,同①,当0,4x π⎡⎤∈⎢⎥⎣⎦时,()h x '递增;当,4x ππ⎡⎤∈⎢⎥⎣⎦时,()h x '递减;∵()()02104h h a π⎛⎫''>=+> ⎪⎝⎭,()()2e 0h a ππ'=-<,∴由连续函数零点存在性定理及单调性知,0,4x ππ⎛⎫∃∈ ⎪⎝⎭,()00h x '=.于是,当[)00,x x ∈时,()0h x '>,()()h x g x '=单调递增;当(]0,x x π∈时,()0h x '<,()()h x g x '=单调递减.∵()010h =>,()e 20h a πππ=-+≥,∴()()()(){}min 0,0g x h x h h π'=≥≥,符合条件.综上,实数a 的取值范围是e ,2ππ⎡⎫+∞⎪⎢⎣⎭.方法二:(参变分离)由对称性,不妨设120x x π≤<≤,则()()1222120f x f x a x x -+>-即为()()222211f x ax f x ax +>+. 设()()2g x f x ax =+,则()g x 在[]0,π上单调递增, 故()()e sin cos 20xg x x x ax '=++≥在[]0,π上恒成立.∵()010g '=>,∴()(),e sin cos 20xg x x x ax '=++≥在[]0,π上恒成立()e sin cos 2x x x a x+⇔-≤,(]0,x π∀∈.设()()e sin cos x x x h x x+=,(]0,x π∈,则()()2e 2cos sin cos x x x x x h x x --'=,(]0,x π∈.设()2tan 1x x x ϕ=--,0,,22x πππ⎛⎫⎛⎤∈⋃ ⎪ ⎥⎝⎭⎝⎦,则()212cos x x ϕ'=-,0,,22x πππ⎛⎫⎛⎤∈⋃ ⎪ ⎥⎝⎭⎝⎦.由()0x ϕ'>,0,,22x πππ⎛⎫⎛⎤∈⋃ ⎪ ⎥⎝⎭⎝⎦,得()x ϕ在0,4π⎛⎫ ⎪⎝⎭,3,4ππ⎛⎤⎥⎝⎦上单调递增;由()0x ϕ'<,0,,22x πππ⎛⎫⎛⎤∈⋃ ⎪ ⎥⎝⎭⎝⎦,得()x ϕ在,42ππ⎛⎫ ⎪⎝⎭,3,24ππ⎛⎤⎥⎝⎦上单调递减.故0,2x π⎛⎫∈ ⎪⎝⎭时()2042x ππϕϕ⎛⎫≤=-< ⎪⎝⎭;,2x π⎛⎤∈π ⎥⎝⎦时()33042x ππϕϕ⎛⎫≥=> ⎪⎝⎭. 从而,()cos 2cos sin cos 0x x x x x x ϕ=--<,0,,22x πππ⎛⎫⎛⎤∈⋃ ⎪ ⎥⎝⎭⎝⎦,又2x π=时,2cos sin cos 10x x x x --=-<,故()()2e 2cos sin cos 0x x x x x h x x --'=<,(]0,x π∈,()()e sin cos x x x h x x+=,(]0,x π∈单调递减,()()min e h x h πππ==-,(]0,x π∈. 于是,e e 22a a ππππ-≤-⇔≥.综上,实数a 的取值范围是e ,2ππ⎡⎫+∞⎪⎢⎣⎭. 例3.(2022·天津市咸水沽第一中学模拟预测)已知函数ln()()eln (e 2.71828ax f x x x=-=……自然对数底数). (1)当e a =时,求函数f (x )的单调区间;(2)当e a >时,(i )证明:()f x 存在唯一的极值点: (ii )证明:()(1)e f x a <-【答案】(1)函数()f x 的单调递增区间为10,e ⎛⎫ ⎪⎝⎭,单调递减区间为1,e ⎛⎫+∞ ⎪⎝⎭(2)证明见详解 【解析】 【分析】(1)求导,利用导数判断函数单调性;(2)利用导数判断单调性,利用零点存在性定理判断零点,进而确定极值点,利用零点代换结合函数最值处理极值的范围. (1)21ln()e ()ax x f x x--'=,构建()1ln()e x ax x ϕ=-- 当e a =时,则()1ln(e )e x x x ϕ=--在()0,∞+上单调递减,且1()0eϕ=当10,e ⎛⎫∈ ⎪⎝⎭x 时,()0x ϕ>,当1,e x ⎛⎫∈+∞ ⎪⎝⎭时,()0x ϕ<则函数()f x 的单调递增区间为10,e ⎛⎫ ⎪⎝⎭,单调递减区间为1,e ⎛⎫+∞ ⎪⎝⎭(2)(i )由(1)可知:当e a >时,()ϕx 在()0,∞+上单调递减11e ()1ln 0,()10e a a a ϕϕ=-<=->∴()ϕx 在()0,∞+内存在唯一的零点011,e x a ⎛⎫∈ ⎪⎝⎭当()00,x x ∈时,()0x ϕ>,当()0,x x ∈+∞时,()0x ϕ<则函数()f x 的单调递增区间为()00,x ,单调递减区间为()0,x +∞ ∴()f x 存在唯一的极值点0x(ii )由(i )可知:0000ln(())el (n )x f x f x x x a -≤=∵001ln()e 0ax x --=,即001e ln()x ax -=000000ln()e 1)e (ln eln x f x x x x x a ==---,且011,e x a ⎛⎫∈ ⎪⎝⎭∵()el e 1n g x x x --=在11,e a ⎛⎫⎪⎝⎭单调递减则()1eln e g x g a a a ⎛⎫<=+- ⎪⎝⎭构建()()()e 1eln e x h x x x =-->,则()()e 1e 0x xh x -'-=>当e x >时恒成立则()h x 在()e,+∞上单调递增,则()()()e e 20e h x h ≥=->则()()e 1eln e e x x x x ->+->,即()1e eln e a a a ->+- ∴()(1)e f x a <-例4.(2022·江西师大附中三模(理))已知函数()sin ,()ex xf x xg x =-为()f x 的导函数. (1)判断函数()g x 在区间π0,2⎛⎫ ⎪⎝⎭上是否存在极值,若存在,请判断是极大值还是极小值;若不存在,说明理由;(2)求证:函数()f x 在区间(,π)-∞上只有两个零点. 【答案】(1)存在;极小值 (2)证明见解析 【解析】 【分析】(1)转化为判断导函数是否存在变号零点,对()g x '求导后,判断()g x '的单调性,结合零点存在性定理可得结果;(2)当0x <时,利用单调性得()0f x <恒成立,此时()f x 无零点;当0x =时,()0f x =;当0πx <<时,利用导数得到单调性,结合零点存在性定理可得()f x 在(0,π)上只有一个零点.由此可证结论正确. (1)由()sin e x xf x x =-,可得2e e 1()cos cos (e )e x x x x x xg x x x --=-=-, 则2e (1)e 2π()sin sin ,0,(e )e 2x x x x x x g x x x x ----⎛⎫'=+=+∈ ⎪⎝⎭, 令2()sin e x x h x x -=+,其中π0,2x ⎛⎫∈ ⎪⎝⎭,可得2e (2)e 3()cos cos 0(e )e x x x x x x h x x x ---'=+=+>, 所以()h x 在π0,2⎛⎫ ⎪⎝⎭上单调递增,即()g x '在π0,2⎛⎫ ⎪⎝⎭上单调递增,因为π2π2π2(0)20,102e g g -⎛⎫''=-<=+> ⎪⎝⎭,所以存在0π0,2x ⎛⎫∈ ⎪⎝⎭,使得()00g x '=,当()00,x x ∈时,()0,()g x g x '<单调递减;当0,2x x π⎛⎫∈ ⎪⎝⎭时,()0,()g x g x '>单调递增,所以当0x x =时,函数()g x 取得极小值. (2)由e ()sin x x f x x =-,当0x <时,11e x x ->,所以()()f x g x '==1cos ex xx --0>,所以()f x 在(,0)-∞上为增函数,所以()(0)0f x f <=,此时函数()f x 在(,0)-∞上没有零点;当0x =时,可得00(0)sin 00e f =-=,所以0x =是函数()f x 的一个零点;当0πx <<时,由()1()sin e sin e exx x x f x x x x =-=- ,令()e sin ,(0,π)xm x x x x =-∈,可得()1e (sin cos )x m x x x '=-+,令()ϕx 1e (sin cos )x x x =-+ 则()e (sin cos )e (cos sin )2e cos x x x x x x x x x ϕ'=-+--=-,当π0,2x ⎛⎫∈ ⎪⎝⎭,可得()2e cos 0x x x ϕ'=-<;当π,π2x ⎛⎫∈ ⎪⎝⎭,可得()2e cos 0x x x ϕ'=->,即()m x '在π0,2⎛⎫⎪⎝⎭上单调递减,在π,π2⎛⎫ ⎪⎝⎭上单调递增,又因为ππ2π1e 0,(π)1e 02m m ⎛⎫''=-<=+> ⎪⎝⎭,所以存在1π,π2⎛⎫∈ ⎪⎝⎭x 使得()10m x '=,当()10,x x ∈时,()0m x '<;当()1,πx x ∈时,()0m x '>,又因为()1(0)0,(π)π0m x m m <==>,所以存在()21,πx x ∈使得()20m x =,即2x 是函数()f x 的一个零点. 综上可得,函数()f x 在(,π)-∞上有且仅有两个零点. 【点睛】关键点点睛:第二问中,分段讨论并利用导数和零点存在性定理求解是解题关键. 例5.(2022·江苏苏州·模拟预测)函数()sin cos f x x x x =--.(1)求函数()f x 在(),2ππ-上的极值;(2)证明:()()ln F x f x x =-有两个零点.【答案】(1)极大值,12π-;极小值,1-;(2)详见解析. 【解析】 【分析】(1)由题可得()14f x x π⎛⎫'=- ⎪⎝⎭,进而可得;(2)当30,4x π⎛⎫∈ ⎪⎝⎭时,利用导数可得函数的最小值,进而可得函数有两个零点,当37[,)44x ππ∈,7[,)4x π∈+∞时,利用导数可得()0F x >,即得. (1)∵()sin cos f x x x x =--,∴()1cos sin 14f x x x x π⎛⎫=-+=+' ⎪⎝⎭,,2x ππ⎛⎫∈- ⎪⎝⎭,由()0f x '=,可得2x π=-,或0x =,∴,2x ππ⎛⎫∈-- ⎪⎝⎭,()()0,f x f x '>单调递增,,02x π⎛⎫∈- ⎪⎝⎭,()()0,f x f x '<单调递减,0,2x π⎛⎫∈ ⎪⎝⎭,()()0,f x f x '>单调递增,∴2x π=-时,函数()f x 有极大值()122f ππ-=-,0x =时,函数()f x 有极小值(0)1f =-;(2)∵()()ln sin cos ln ,0F x f x x x x x x x =-=--->,∴()1()1cos sin ,0h x F x x x x x'==-+->,∴()2211sin cos 4h x x x x x x π⎛⎫'=++=++ ⎪⎝⎭,当30,4x π⎛⎫∈ ⎪⎝⎭时,()()0,h x h x '>单调递增,即()F x '单调递增,又42()10,()2042F F ππππ''=-<=->,故存在0,42x ππ⎛⎫∈ ⎪⎝⎭,0()0F x '=,所以()()()00,,0,x x F x F x '∈<单调递减,()()()03,,0,4x x F x F xπ'∈<单调递增, ∴30,4x π⎛⎫∈ ⎪⎝⎭时,函数()()()0min 11sin1cos10F x F x F =<=--<,2222(e )e sin e cos e 20F ----=--+>,333()ln 0444F πππ=->, 故30,4x π⎛⎫∈ ⎪⎝⎭时,()()ln F x f x x =-有两个零点,当37[,)44x ππ∈0,()sin cos ln ln ln 44x F x x x x x x x x x x ππ⎛⎫⎛⎫+≤=---=+-≥- ⎪ ⎪⎝⎭⎝⎭,对于函数()ln x x x ϕ=-,则()1110x x x xϕ-'=-=>,又()10ϕ=, ∴37[,)44x ππ∈,()()10x ϕϕ>=,即()0F x >,此时函数()()ln F x f x x =-没有零点,当7[,)4x π∈+∞时,()sin cos ln ln ln 4F x x x x x x x x x x π⎛⎫=---=+-≥ ⎪⎝⎭,由上可知77()ln 044F x ππ≥>,故当7[,)4x π∈+∞时,函数()()ln F x f x x =-没有零点, 综上,函数()()ln F x f x x =-有两个零点. 【点睛】利用导数研究零点问题:(1)确定零点的个数问题:可利用数形结合的办法判断交点个数,如果函数较为复杂,可用导数知识确定极值点和单调区间从而确定其大致图象;(2)方程的有解问题就是判断是否存在零点的问题,可参变分离,转化为求函数的值域问题处理.可以通过构造函数的方法,把问题转化为研究构造的函数的零点问题;(3)利用导数硏究函数零点或方程根,通常有三种思路:①利用最值或极值研究;②利用数形结合思想研究;③构造辅助函数硏究.【方法技巧与总结】1.因此,在求函数极值问题中,一定要检验方程()0f x '=根左右的符号,更要注意变号后极大值与极小值是否与已知有矛盾.2.原函数出现极值时,导函数正处于零点,归纳起来一句话:原极导零.这个零点必须穿越x 轴,否则不是极值点.判断口诀:从左往右找穿越(导函数与x 轴的交点);上坡低头找极小,下坡抬头找极大.题型二:根据极值、极值点求参数例6.(2022·四川·绵阳中学实验学校模拟预测(文))若函数()322f x x ax bx a =--+在1x =处有极值10,则a b -=( ) A .6 B .15- C .6-或15 D .6或15- 【答案】B【解析】 【分析】先求出函数的导函数()'f x ,然后根据在1x = 时()f x 有极值10,得到232010a b a b a --=⎧⎨--+=⎩,求出满足条件的,a b ,然后验证在1x = 时()f x 是否有极值,即可求出-a b 【详解】()322f x x ax bx a =--+,2()32f x x ax b '∴=--又1x = 时()f x 有极值10∴ 232010a b a b a --=⎧⎨--+=⎩,解得411a b =-⎧⎨=⎩ 或33a b =⎧⎨=-⎩当3,3a b ==- 时,22()3633(1)0f x x x x '=-+=-≥ 此时()f x 在1x = 处无极值,不符合题意 经检验,4,11a b =-= 时满足题意 15a b ∴-=-故选:B例7.(2022·江苏南通·模拟预测)已知函数()()()e xf x x a x b =--在x a =处取极小值,且()f x 的极大值为4,则b =( ) A .-1 B .2 C .-3 D .4 【答案】B 【解析】 【分析】对()f x 求导,由函数()()()e xf x x a x b =--在x a =处取极小值,所以0f a,所以a b =,()()2e xf x x a ∴=-,对()f x 求导,求单调区间及极大值,由()f x 的极大值为4,列方程得解.【详解】解:()()()e xf x x a x b =--()2e x x ax bx ab =--+,所以()()()22e ex x f x x a b x ax bx ab '=--+--+()2e 2x x a b x ab a b ⎡⎤=+--+--⎣⎦因为函数()()()e xf x x a x b =--在x a =处取极小值,所以()()()2e 2e 0a af a a a b a ab a b a b '⎡⎤=+--+--=-=⎣⎦,所以a b =,()()2e xf x x a ∴=-,()()()()22e 222=e 2x xf x x a x a a x a x a '⎡⎤=+-+----⎡⎤⎣⎦⎣⎦, 令()0f x '=,得=x a 或=2x a -,当()2x a ∈-∞-,时,()0f x '>,所以()f x 在()2a -∞-,单调递增,当()2x a a ∈-,时,()0f x '<,所以()f x 在()2a a -,单调递增,当()x a ∈∞,+时,()0f x '>,所以()f x 在()a ∞+,单调递增,所以()f x 在=2x a -处有极大值为()22e ==44a f a --,解得=2a ,所以=2b .故选:B 例8.(2022·四川绵阳·二模(文))若2x =是函数()()2224ln f x x a x a x =+--的极大值点,则实数a 的取值范围是( ) A .(),2-∞-B .()2,-+∞C .()2,+∞D .()2,2-【答案】A 【解析】 【分析】求出()f x ',分0a ≥,2a <-,20a -<<,2a =-分别讨论出函数的单调区间,从而可得其极值情况,从而得出答案. 【详解】()()()()()22224224222x a x a x x a a f x x a x x x+---+'=+--==,()0x > 若0a ≥时,当2x >时,()0f x '>;当02x <<时,()0f x '<; 则()f x 在()0,2上单调递减;在()2,+∞上单调递增.所以当2x =时,()f x 取得极小值,与条件不符合,故满足题意.当2a <-时,由()0f x '>可得02x <<或x a >-;由()0f x '<可得2x a <<- 所以在()0,2上单调递增;在()2,a -上单调递减,在(),a -+∞上单调递增. 所以当2x =时,()f x 取得极大值,满足条件.当20a -<<时,由()0f x '>可得0x a <<-或2x >;由()0f x '<可得2a x -<< 所以在()0,a -上单调递增;在(),2a -上单调递减,在()2,+∞上单调递增. 所以当2x =时,()f x 取得极小值,不满足条件.当2a =-时,()0f x '≥在()0,∞+上恒成立,即()f x 在()0,∞+上单调递增. 此时()f x 无极值.综上所述:2a <-满足条件 故选:A例9.(2022·河南·模拟预测(文))已知函数()2ln f x x ax =-的极值为12-,则=a ( )A .eB .1e 2C .12 D .14【答案】C 【解析】 【分析】求导得到导函数,考虑0a ≤和0a >两种情况,根据函数的单调性得到极值,计算得到答案. 【详解】函数()f x 的定义域为()0,∞+,()21122ax f x ax x x-'=-=,当0a ≤时,()0f x '>,所以()f x 在()0,∞+上单调递增,()f x 无极值,不符合题意;当0a >时,()2122a x a f x x⎛⎫- ⎪⎝⎭'=-,当x ⎛∈ ⎝时,()0f x '>,当x ⎫∈+∞⎪⎪⎭时,()0f x '<, 所以()f x在⎛ ⎝上单调递增,在⎫+∞⎪⎪⎭上单调递减,则()()111ln 2222f x f a ==--=-极大值,解得12a =.故选:C.例10.(2022·河南·高三阶段练习(文))若函数()()22e xx a f x x =++⋅在R 上无极值,则实数a 的取值范围( ) A .()2,2-B.(-C.⎡-⎣ D .[]22-, 【答案】D 【解析】 【分析】求()()222e x x a f x x a ⎡⎤++++⋅⎣⎦'=,由分析可得()2220y x a x a =++++≥恒成立,利用0∆≤即可求得实数a 的取值范围. 【详解】由()()22e xx a f x x =++⋅可得。

三年级(下册)数学100分综合练习卷(16)--(22)

三年级(下册)数学100分综合练习卷(16)--(22)

三年级(下册)数学100分综合练习卷(16)--(22)三年级(下册)数学100分综合练习卷(16) 班别姓名座号比赛时间:40分钟满分:100分挑战计算极限,争当计算明星!加油!3×10=80×40=18×5=40×60=30÷10=13×4=25×20=160×4=300÷5=720÷9=16×6=720÷0=180÷20=0÷90=10×40=12×50=85÷5=57÷3= 0+8=32×30=70÷5=25×4=15×6=630÷9=450÷5=12×40=240÷6=16×60=84÷42=600-50=500×3=0×930=27×30=84÷12=420÷3=910÷3=91-59=11×70= 1000÷5=75÷15=320-180=30×40= 40+580=560÷4= 95÷1=480+90=510÷7=200÷4=72÷4=8000÷2=102+20=4000÷50=125-25×2=50×0×8=75+25÷5=32÷47×12=45+55÷5=70×(40-32)=90÷5×3=10÷10×30=6×(103-98)=7+3×0=51-4×6=420÷2×8= 750-(70+80)=300÷2÷5=三年级(下册)数学100分综合练习卷(17) 班别姓名座号二、笔算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A.- 6
C. D.
(数学4必修)第二章平面向量
[提高训练c组]
一、选择题
1.若三点A(2,3),B(3,d),C(4,b)共线,则有( )
A. a = 3,b = —5 B・a-b-¥\ =0 C. 2a- b = 3 D. a-2b = 0
2.设O<0 <27c ,己知两个向量OR = (cos&, sin。

),
亦=(2 + sinO,2-cos&),则向量屈长度的最大值是( )
A. 72
B. V3
C. 3^2
D. 2^3
3.卜列命题正确的是( )
A •单位向量都相等
B・若2与乙是共线向量,与:是共线向量,贝叮与7是共线向量( )
C. \a + b\=\ a-b I,贝^\a-b = 0
D・若°o与%是单位向量,则&0厨=1
4.已知万,方均为单位向量,它们的夹角为60。

,那么a^b =( )
A. V7
B. Vio
C. V13
D. 4
5.已知向量d ,乙满足”1 = 1" =4,且Q.乙=2 ,则G与乙的夹角为
6.若平面向量乙与向量:=(2,1)平行,且1^1= 2^5,贝叮=(
A. (4,2) B・(一4,一2) C. (6,-3) D. (4,2)或(-4,-2)
二、填空题
1.已知向量a = (cos 0, sin ff),向量b =(73,-1) , WJ 2a-b的最大值是
2 若4(l,2),B(2,3),C(-2,5),试判断则厶ABC 的形状 ________________ .
3.若5 = (2,-2),则与2垂直的单位向量的坐标为______________ .
4.若向量G 1=1,1力=2,G—力=2,贝山方+力二____ .
5.平面向量a,方屮,已知a = (4,-3) , b =1, JEa b = 5 ,则向量方= __________ .
三、解答题
1.已知是三个向量,试判断下列各命题的真假.
(1)若乳5 =乳0且方工0,贝iJ5 = e
(2)向量万在方的方向上的投影是-•模等寸-同cos& (&是N与方的夹
角),方向与Q在方相同或相反的一个向量・
2.证明:对于任意的a,b,c,d G R ,怛有不等式(ac+bd)2 < (a2 +/?2)(c2+d2)
3・平而向量5 = (V3,-1)J = 若存在不同时为0的实数£和r, 使
丘二万+(尸_3)方了二_転+厉,且丘丄歹,试求函数关系工弋£二.fa)・
4.如图,在直角AABC中,已知BC = a,若长为2d的线段PQ以点A 为中
点,问甩与荒
的夹角&取何值时丽•页的值最大?并求出这个方c
A D
数学4(必修)第二章平面向量[提高训练C组]
参考答案
一、选择题
1. C 殛=(1卫一3),疋=(2』一3),而〃紀"一3 = 20-6,2。

一/? = 3
2. C P}P2 =(2 + si n&-cos &,2-cos&-sin&),
胴=j2(2-cos&)2+2sinS = J10-8cos&<718=3^2
3. C 单位向量仅仅长度相等而已,方向也许不同;当10时,7与7可以为任意向量;
G+庆i=G-亦,即对角线相等,此时为矩形,邻边垂直;还要
考虑夹角
4. C 0 + 3习二J矿+6厅方+ 9戸=Jl + 6cos600+9=V^
5. C cos0 = -^- = - = -,0 = -
砌 | 4 2 3
6 ・ D 设 b = ka = (2k,k\, 而\b\= 2^5 , 则屈
7 = 2 厉,k = ±,方二(4,2),或(一4, -2)
二、填空题
1. 4 2刁一7 = (2cos&—的,2sin& + l), 2a-h =^8 + 8sin(^-|) < V16 =4
2 直角三角形AB = (1,1), AC = (-3,3),AB AC = O,AB 丄犹
V2 V2 r V2 V2
(*亍或(-亍盲)
设所求的向量为(x,y\2x-2y = 0, x2 + y2
4.V6由平行四边形屮对角线的平方和等于四边的平方和得
a+h2 + a-h =2 犷+ 2b => 万 + b =2 茁+2b -a-b =2 + 2x4 —4 = 6
5. (f,一£)= (x,y\4x-3y = 5,x2 4-y2 = = = -|
三、解答题
1.解:(1 )若a-b =a-c且万北0,贝ljb=0,这是一个假命题
因为a^b=ac,a\b-c) = O9仅得Q 丄0-c)
(2)向量刁在丘的方向上的投影是一模等于同cos& (&是刁与方的夹角),方向与万在5相同或相反的一个向量.这是一个假命题因为向量刁在方的方向上的投影是个数量,而非向量.
3. a =2, b = \
4. 解:•・•而丄 AC y
.\ABAC = 0. -AP = -AQ,~BP = AP-AB y CQ = AQ-AC,
.\~BPCQ =(AP-AB)(AQ-AC) = APAQ-APAC-ABAQ + ABAC
= -tz 2-AP AC + AB AP
=-a 2-AP (AB-^C)
2. 证明:设x = (a,b),y = (c,d) , WO x y = ac + bd,\x = yla 2 +/??, y = >Jc~ +cl 而丘 y
= |j||y|cos 3,\x y = x y|cos^ < x y
即 \x y < |^||.y| » 得 |ac + bd| 5 J a? +/?2 Jc? +c 厂
・・・(ac + bd)2 <(a 2 +/?2)(c 2 +d?)
i R
解:由 a = ^-l).b =(-,-)得 [a + (f 2 一3)b] (-ka +tb) = 0-ka 2+td b-k (r 2 -3)ab+t(t 2-3)b 2 = 0 _4R + F _ 3/ = 0,R =丄(r 3-3f ),/(/) = - (? 一 3r) 4 4
= -a 2 +-PQBC = -a 2 +-PQBC
— —a 1 + a 2 cos 0.
故当cos 。

= 1,即& = ()(P0与向相同)时,BP • C0最大.其最大值为0. Q H。

相关文档
最新文档