集成电路芯片封装技术

合集下载

集成电路芯片封装技术

集成电路芯片封装技术

集成电路芯片封装技术集成电路芯片封装技术是指将芯片封装在外部封装材料之中,以保护芯片,并为其提供供电和信号传输的功能。

封装技术是集成电路制造中的关键环节,对于集成电路芯片的可靠性、电气性能和尺寸要求都具有重要影响。

下面将介绍几种常见的集成电路芯片封装技术。

第一种是无引脚封装技术。

无引脚封装技术是指将芯片直接封装在基板上,通过使用焊嘴和焊球等来连接芯片和基板。

这种封装技术的特点是结构简单、可靠性高、成本低,适用于较小尺寸的芯片。

但由于需要直接焊接,对于芯片的布线密度有一定要求。

第二种是引脚封装技术。

引脚封装技术是指将芯片焊接在引脚上,然后将引脚与基板连接。

这种封装技术可以适应不同的尺寸和布线密度要求,适用于各种集成电路芯片。

根据引脚的形式,可以分为直插式封装和表面贴装封装。

直插式封装适用于较大尺寸的芯片,而表面贴装封装则适用于较小尺寸的芯片。

第三种是球栅阵列(BGA)封装技术。

BGA封装技术是指将芯片封装在一个带有焊球的基板上,焊球与基板之间通过焊锡球形成连接。

这种封装技术具有高密度、高可靠性和良好的电性能,因此被广泛应用于高性能计算机芯片和移动设备芯片等领域。

第四种是系统级封装技术。

系统级封装技术是指将多个芯片集成在一个封装中,形成一个完整的系统。

这种封装技术可以节省空间、降低能耗,提高芯片的可靠性和性能。

系统级封装技术适用于复杂的系统芯片,如通信芯片、传感器芯片等。

除了以上几种常见的封装技术外,还有一些其他的封装技术,如三维封装技术、系统级封装技术等。

随着技术的不断发展,集成电路芯片封装技术也在不断创新,以适应日益增长的需求。

总的来说,集成电路芯片封装技术的发展对于集成电路产业的发展起着重要的推动作用,这些技术的进步将为我们带来更加高效、可靠和多样化的集成电路产品。

集成电路的封装形式

集成电路的封装形式

QFP/PFP封装具有以下特点: 1.适用于SMD表面安装技术在PCB电路板上安装布线。
2.适合高频使用。 3.操作方便,可靠性高。 4.芯片面积与封装面积之间的比值较小
三、PGA插针网格阵列封装
(Pin Grid Array Package) 特点
插拔操作更方便,可靠性高。 可适应更高的频率
BGA球栅阵列封装 BGA封装技术又可详分为五大类:
六、MCM多芯片模块
为解决单一芯片集成度低和功能不够完善的问题, 把多个高集成度、高性能、高可靠性的芯片,
在高密度多层互联基板上用SMD技术组成 多种多样的电子模块系统,从而出现MCM(Multi Chip Model)多芯片模块系统。
MCM具有以下特点:
1.封装延迟时间缩小,易于实现模块高速化。
2.缩小整机/模块的封装尺寸和重量。
3.系统可靠性大大提高。
IC面积只比晶粒(Die)大不超过1.4倍。
CSP封装具有以下特点: 1.满足了芯片I/O引脚不断增加的需要。 2.芯片面积与封装面积之间的比值很小。
3.极大地缩短延迟时间
SOIC 封装 BGA 封装 TSOP 封装 TQFP 封装 DIP 封装 QFP 封装 SOP 封装 SSOP 封装 CLCC 封装
提高了成品率。
虽然BGA的功耗增加,但由于采用的是可控塌 陷芯片法焊接,
从而可以改善电热性能。
三.信号传输延迟小,适应频率大大提高。 组装可用共面焊接,可靠性大大提高。
五、CSP芯片尺寸封装 随着全球电子产品个性化、轻巧化的需求蔚为风潮, 封装技术已进步到CSP(Chip Size Package)。 它减小了芯片封装外形的尺寸,做到裸芯片尺寸有多大 ,封装尺寸就有多大。即封装后的IC尺寸边长不大于芯片的1.2倍,

模拟电子技术基础知识集成电路的制造与封装技术

模拟电子技术基础知识集成电路的制造与封装技术

模拟电子技术基础知识集成电路的制造与封装技术模拟电子技术基础知识:集成电路的制造与封装技术集成电路(Integrated Circuit,简称IC)作为现代电子技术的核心组成部分,广泛应用于电子设备、通信系统、计算机等领域。

而集成电路的制造与封装技术则是实现IC产品生产的关键环节。

本文将介绍模拟电子技术基础知识之集成电路的制造与封装技术,以帮助读者更好地了解和应用这一领域的知识。

一、集成电路的制造技术集成电路的制造技术主要包括晶圆加工、薄膜制备、光刻、扩散与离子注入、接触制作、金属化、封装等过程。

1. 晶圆加工晶圆加工是集成电路制造的第一步,它是以硅为原料,通过一系列工艺步骤将硅晶圆加工成初具集成电路结构的基片。

晶圆加工主要包括晶圆切割、去除表面氧化层、清洗等过程。

2. 薄膜制备薄膜在集成电路中发挥着重要作用,用于隔离电路层与电路层之间、保护电路元件以及形成电路元件等功能。

常见的薄膜制备技术有化学气相沉积(CVD)、物理气相沉积(PVD)等。

3. 光刻光刻是一种利用光刻胶和光源对薄膜进行图案转移的技术。

通过将光刻胶覆盖在薄膜上,然后使用光刻机将光源照射在光刻胶上,再进行显影、洗涤等步骤,最终形成期望的图案结构。

4. 扩散与离子注入扩散与离子注入是实现集成电路器件电学特性控制的关键步骤。

扩散是指将某种掺杂原子通过高温热处理使其在晶体中进行扩散,形成所需的电学特性。

离子注入则是利用离子注入设备将掺杂离子注入晶圆,以实现器件性能的控制。

5. 接触制作接触制作是在薄膜表面形成金属与半导体之间的接触,以实现电流的传输。

通过光刻和金属热蒸发等技术,将所需的金属导线和接触结构形成在晶圆表面。

6. 金属化金属化是在制造过程中,将金属层覆盖在晶圆上,实现器件之间电路的连通。

金属化过程包括金属蒸发、光刻、蚀刻等步骤。

二、集成电路的封装技术集成电路的封装技术是将芯片封装到塑料或金属封装中,以保护和连接芯片,同时便于与外部电路的连接。

芯片封装技术

芯片封装技术

芯片封装技术
芯片封装技术是一项科学技术,用于将集成电路连接在一起,以实现整个系统中各部件之间的正确通信。

它可以支持电路元件在成品系统中的互连、与环境之间的界面和故障检测和维护。

芯片封装技术被广泛应用于电子行业,是低成本大规模集成电路制造的基础。

芯片封装技术包括多项技术,主要由封装表面贴装技术、封装热接技术和封装互连技术组成。

封装表面贴装技术指将封装元器件表面连接在一起,它包括直接焊接、铜布网焊接和热接技术等;封装热接技术是将封装元件和PCB进行连接,其主要技术有热封技术和半封装技术;封装互连技术是将封装元件和其他集成电路元件互连,它主要包括DSBGA、PBGA、CSP、FC-BGA等。

芯片封装技术有助于工程师和研究人员更好地设计集成电路,改善准确性、效率和可靠性。

除了上述技术外,芯片封装技术还包括封装结构、有源和无源材料、封装工艺路线、封装设备和测试等技术。

它们能够满足集成电路的多样化需求,为电子产品的开发和制作提供技术支持。

集成电路封装技术

集成电路封装技术

集成电路封装技术一、概述集成电路封装技术是指将芯片封装成实际可用的器件的过程,其重要性不言而喻。

封装技术不仅仅是保护芯片,还可以通过封装形式的不同来满足不同应用领域的需求。

本文将介绍集成电路封装技术的基本概念、发展历程、主要封装类型以及未来发展趋势等内容。

二、发展历程集成电路封装技术随着集成电路行业的发展逐渐成熟。

最早的集成电路封装形式是引脚直插式封装,随着技术的不断进步,出现了芯片级、无尘室级封装技术。

如今,随着3D封装、CSP、SiP等新技术的出现,集成电路封装技术正朝着更加高密度、高性能、多功能的方向发展。

三、主要封装类型1.BGA封装:球栅阵列封装,是一种常见的封装形式,具有焊接可靠性高、散热性好等优点。

2.QFN封装:裸露焊盘封装,具有体积小、重量轻、成本低等优点,适用于尺寸要求严格的应用场合。

3.CSP封装:芯片级封装,在尺寸更小、功耗更低的应用场合有着广泛的应用。

4.3D封装:通过将多个芯片垂直堆叠,实现更高的集成度和性能。

5.SiP封装:系统级封装,将多个不同功能的芯片封装在一起,实现更复杂的功能。

四、未来发展趋势随着物联网、人工智能等领域的兴起,集成电路封装技术也将迎来新的挑战和机遇。

未来,集成电路封装技术将朝着更高密度、更低功耗、更可靠、更环保的方向发展。

同时,新材料、新工艺和新技术的应用将为集成电路封装技术带来更多可能性。

五、结语集成电路封装技术是集成电路产业链中至关重要的一环,其发展水平直接关系到整个集成电路的性能和应用范围。

随着技术的不断进步,集成电路封装技术也在不断演进,为各个领域的技术发展提供了强有力的支撑。

希望本文能够帮助读者更好地了解集成电路封装技术的基本概念和发展趋势,为相关领域的研究和应用提供一定的参考价值。

集成电路封装技术封装工艺流程介绍

集成电路封装技术封装工艺流程介绍

集成电路封装技术封装工艺流程介绍集成电路封装技术是指将芯片封装在塑料或陶瓷封装体内,以保护芯片不受外界环境的影响,并且方便与外部电路连接的一种技术。

封装工艺流程是集成电路封装技术的核心内容之一,其质量和工艺水平直接影响着集成电路产品的性能和可靠性。

下面将对集成电路封装技术封装工艺流程进行介绍。

1. 芯片测试首先,芯片在封装之前需要进行测试,以确保其性能符合要求。

常见的测试包括电性能测试、温度测试、湿度测试等。

只有通过测试的芯片才能进行封装。

2. 芯片准备在封装之前,需要对芯片进行准备工作,包括将芯片固定在封装底座上,并进行金线连接。

金线连接是将芯片的引脚与封装底座上的引脚连接起来,以实现与外部电路的连接。

3. 封装材料准备封装材料通常为塑料或陶瓷,其选择取决于芯片的性能要求和封装的环境条件。

在封装之前,需要将封装材料进行预处理,以确保其表面光滑、清洁,并且具有良好的粘附性。

4. 封装封装是整个封装工艺流程的核心环节。

在封装过程中,首先将芯片放置在封装底座上,然后将封装材料覆盖在芯片上,并通过加热和压力的方式将封装材料与封装底座紧密结合。

在封装过程中,需要控制封装温度、压力和时间,以确保封装材料与芯片、封装底座之间的结合质量。

5. 封装测试封装完成后,需要对封装产品进行测试,以确保其性能和可靠性符合要求。

常见的封装测试包括外观检查、尺寸测量、焊接质量检查、封装材料密封性测试等。

6. 封装成品通过封装测试合格的产品即为封装成品,可以进行包装、贴标签、入库等后续工作。

封装成品可以直接用于电子产品的生产和应用。

总的来说,集成电路封装技术封装工艺流程是一个复杂的过程,需要精密的设备和严格的工艺控制。

只有通过合理的工艺流程和严格的质量控制,才能生产出性能优良、可靠性高的集成电路产品。

随着科技的不断进步,集成电路封装技术也在不断创新和发展,以满足不断变化的市场需求。

相信随着技术的不断进步,集成电路封装技术将会迎来更加美好的发展前景。

集成电路芯片封装的概念

集成电路芯片封装的概念

集成电路芯片封装的概念集成电路芯片封装的概念1. 引言集成电路芯片封装是现代电子技术中非常重要的一环。

它是将微小的芯片封装在保护性外壳中,以便保护芯片免受损坏,并提供电气连接和散热功能。

本文将深入探讨集成电路芯片封装的概念,从封装形式、封装材料、封装技术以及封装的发展趋势等多个方面展开,帮助读者更全面、深刻地了解这一关键电子技术。

2. 集成电路芯片封装的形式集成电路芯片封装有多种形式,每种形式都有不同的特点和适用范围。

常见的封装形式包括:2.1 芯片级封装(Chip-scale Package,CSP):CSP封装将芯片直接封装在微小的外壳中,尺寸比传统封装更小。

它适用于高密度集成电路和轻薄移动设备等应用。

2.2 简单封装(Dual in-line Package,DIP):DIP封装是最早的一种封装形式。

芯片被封装在具有导脚的塑料外壳中,易于插拔和焊接。

但该封装形式占用空间较大,适用于较低密度的应用。

2.3 小型封装(Small Outline Package,SOP):SOP封装是一种相对较小的封装形式,兼具DIP封装的插拔性和CSP封装的高密度特点。

2.4 超薄封装(Thin Small Outline Package,TSOP):TSOP封装比SOP封装更薄,适用于具有高密度布局的应用。

2.5 高温封装(High-Temperature Package,HTP):HTP封装在高温环境下依然能够保持电性能,适用于高温工作环境中的电子设备。

3. 集成电路芯片封装的材料3.1 塑料封装材料塑料封装材料是集成电路芯片封装中最常见的材料之一。

它具有廉价、轻便、隔热、防潮的特点,适用于大规模生产。

常见的塑料封装材料有聚酰亚胺(Polyimides)、环氧树脂(Epoxy Resin)等。

3.2 陶瓷封装材料陶瓷封装材料的热导率较高,能够较好地散热,适用于高性能和高功率的集成电路芯片。

常见的陶瓷封装材料有氧化铝(Alumina)和氮化铝(Aluminium Nitrite)等。

集成电路芯片封装技术第1章

集成电路芯片封装技术第1章
(20~80)%
(50~90)%
封装效率
封装效率
=2-7%(1970-) =10-30%(1980-)
封装效率
=20-80%(1990-)
封装效率
=50-90%(1993-)
封装效率的改进
35
表2.封装厚度的变化
封装形式
封装厚度
(mm)
PQFP/PDIP TQFP/TSOP UTQFP/UTSOP
解决途径:
1、降低芯片功耗:双极型-PMOS-CMOS-???
2、增加材料的热导率:成本
微电子技术发展对封装的要求
三、集成度提高 适应大芯片要求
热膨胀系数(CTE)失配—热应力和热变形
解决途径:
1、采用低应力贴片材料:使大尺寸IC采用CTE接近
Si的陶瓷材料,但目前环氧树脂封装仍为主流
2、采用应力低传递模压树脂 消除封装过程中的热应
目的
使各种元器件、功能部件相组合形成功能电路
难易程度
依据电路结构、性能要求、封装类型而异
需考虑的问题
ห้องสมุดไป่ตู้保护
苛刻的工程条件(温度、湿度、振动、冲击、放射性等)
超高要求
超高性能 (3D IC)
超薄型、超小型
超多端子连接
超高功率(采用热冷、金属陶瓷复合基板等)
电子封装实现的四种功能
① 信号分配:
② 电源分配:
何将聚集的热量散出的问

封装保护
芯片封装可为芯片和其他连
接部件提供牢固可靠的机械
支撑,并能适应各种工作环
境和条件的变化
确定封装要求的影响因素
成本
电路在最佳
性能指标下
的最低价格
外形与结构
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概述
微电子制造工程概述
芯片制造与封装工艺流程
[1] 前道工序 该过程包括: (1) 将粗糙的硅矿石转变成高纯度的单晶硅。 (2) 在wafer 上制造各种IC 元件。 (3) 测试wafer 上的IC 芯片。 [2] 后道工序 该过程包括: (1) 对wafer 划片(进行切割) (2) 对IC 芯片进行封装和测试
<16> 修正和定型(分离和铸型) 把芯片和FRAME 导线分离,使芯 片外部的导线形成一定的形状。
后道生产流程:(11)老化测试
<17> 老化(温度电压)测试 在提高环境温度和芯片工作电压的情 况下模拟芯片的老化过程,以去除发 生早期故障的产品
后道生产流程:(12)电性能测试
<18> 成品检测及可靠性测试 进行电气特性检测以去除不合格的芯片 成品检测: 电气特性检测及外观检查 可靠性检测: 实际工作环境中的测试、长期工作的寿 命测试
<9> 磨平(CMP) 将WAFER 表面磨平。
前道生产流程:(5)测试
<10> 形成电极 把铝注入WAFER 表面的相应位置, 形成电极。
<11>WAFER 测试 对WAFER 进行测 试,把不合格的芯片 标记出来。
后道生产流程:(6)芯片切割
<12> 切割WAFER 把芯片从WAFER 上切割下来。
电子封装层次
电子封装分类
按封装中芯片数量: 1) 单芯片封装 2) 多芯片封装,如MCM
按材料分类: 1) 陶瓷封装——高可靠性 2) 塑料封装——低成本(与陶瓷封装相比),
更通用
电子封装分类
按组装方法: 1) 通孔组装技术THP 2) 表面组装技术SMT 3) 特殊的组装技术
后道生产流程:(7)芯片的粘贴
<13> 固定芯片 把芯片安置在特定的FRAME 上
后道生产流程:(8)芯片互连
<14> 连接管脚 用25 微米的纯金线将芯片和FRAME 上的引脚连接起来。
后道生产流程:(9)芯片封装
<15> 封装 用陶瓷或树脂对芯片进行封装。
后道生产流程:(10)切筋打码成型
前道生产流程:(3)芯片制造
<5> 覆上光刻胶 通过旋转离心力,均匀地在WAFER 表面覆上一层光刻胶。
<6> 在WAFER 表面形成图案
通过光学掩模板和曝光技术在 WAFER 表面形成图案。
前道生产流程:(4)芯片制造
<7> 蚀刻 使用蚀刻来移除相应的氧化层。
<8> 氧化、扩散、CVD 和注入离子 对WAFER 注入离子(磷、硼),然 后进行高温扩散,形成各种集成器件。
后道生产流程:(13)打码
<19> 标记 在芯片上用激光打上产品名。
课程主要内容
一、封装概述 二、封装的工艺流程(重点) 三、塑料封装 四、气密性封装 五、封装可靠性工程 六、新型封装技术
电子封装的作用
电子封装的四个功能:
为IC芯片提供机械支撑和环境保护(circuit support and protection); 接通半导体芯片的电流通路(power distribution); 提供信号的输入和输出通路 (signal distribution); 提供热通路,散逸半导体芯片产生的热(heat dissipation) 。
80年代,表面安装技术
封装技术的历史
90年代,集成电路发展到超大规模阶段,要求电子封装的 管脚数越来越多,管脚节距越来越小,从而电子封装从四 边引线型(如QFP等)向平面阵列型(PGA)发展。
90年代初发明了球栅阵列封Байду номын сангаас(BGA).目前正处于爆炸 发展阶段。是电子封装领域的又一场革命。
目前研究的热点为3D封装技术。
电子封装直接影响着:
电子产品的电、热、光和机械性能 电子产品的可靠性和成本 电子产品与系统的小型化。
电子封装的层次
封装与组装可分为: 零级封装(晶片级的连接) 一级封装(单晶片或多个晶片组件或元件) 二级封装(印制电路板级的封装) 三级封装(整机的组装) 零级和一级封装称为电子封装(技术) 把二级和三级封装称为电子组装(技术)
电子组装
通孔组装技术
电子组装
表面贴装技术、表面组装技术
典型封装器件
见新教材!
封装技术的历史
1947年世界发明第一只半导体晶体管,同时也就开始了电子封 装的历史。
1958年发明第一块集成电路,它推动了多引线外壳的发展,工 艺仍以金属-玻璃封接工艺为主。
60年代发明了DIP外壳,即双列直插引线外壳。在70年代成为系列 主导产品。
前道生产流程:(1)单晶制备
<1> 硅棒的拉伸 将多晶硅熔解在石英炉中,然后依靠 一根石英棒慢慢的拉出纯净的单晶硅 棒。
<2> 切割单晶硅棒 用金刚石刀把单晶硅棒切成一定的厚度 形成WAFER。
前道生产流程:(2)WAFER制造
<3> 抛光WAFER WAFER 的表面被抛光成镜面。
<4> 氧化WAFER 表面 WAFER 放在900 度——1100 度的氧化 炉中,并通入纯净的氧气,在WAFER 表面 形成氧化硅。
相关文档
最新文档