联合估计异常检测方法的水处理控制.pdf

合集下载

水质监测数据异常应急处理预案

水质监测数据异常应急处理预案

水质监测数据异常应急处理预案1. 背景介绍水质监测是保障水资源安全和环境健康的重要工作,但在某些情况下,监测数据可能会出现异常。

为了及时应对水质问题,制定一个水质监测数据异常应急处理预案是必要的。

2. 预案目标本预案的目标是确保在监测数据异常情况下,能够迅速、科学地应对,保障公众用水安全,减少环境影响,并为相关部门提供决策参考。

3. 预案执行步骤3.1 监测数据异常识别监测数据异常通常表现为指标超标、波动异常或其他异常模式。

通过与历史数据比对,确定异常数据的具体类型和程度。

3.2 数据异常评估对异常数据进行评估,分析可能的原因和影响范围。

考虑因素包括水源状况、污染源排放情况、气象条件等。

3.3 风险分级将异常数据分为高、中、低风险等级,根据风险等级制定应对措施,确保资源优先投放到风险较高的区域。

3.4 应急响应根据风险等级,启动相应的应急响应措施。

包括但不限于安排专业人员进行现场调查、水源管控、相关污染源排查等。

3.5 启动危机公关措施在数据异常情况下,及时发布相关信息,向公众解释异常原因、危害程度和应对措施,保障公众的知情权和参与权。

3.6 数据分析与报告对异常数据进行进一步分析和研究,制定长期水质改善方案,并及时向相关部门报告,提供决策参考。

4. 预案执行机构本预案的执行由水质监测部门负责,包括但不限于水质监测站、环境保护部门、卫生部门等。

5. 预案测试与演练为确保预案的实施效果,进行定期的预案测试与演练。

通过模拟异常情况,检验预案的可行性和完整性,并对可能存在的问题进行修正与改进。

6. 结束语水质监测数据异常应急处理预案的制定和实施对保障水质安全具有重要意义。

各相关部门应加强合作,做好应急预案的宣传和培训工作,并加强与公众的沟通与交流,共同构筑水质安全的防线。

水库水质监测结果异常应急处理预案

水库水质监测结果异常应急处理预案

水库水质监测结果异常应急处理预案一、引言水库作为重要的水资源调节和供应基地,其水质监测结果异常可能带来严重的环境和健康问题。

为了能够高效、迅速地应对水库水质监测结果异常事件,确保人民生命财产安全和水资源的可持续利用,制定一份全面、科学的应急处理预案变得尤为重要。

二、应急处理预案的概述1. 目标本应急处理预案的目标是早期发现、快速响应和有效处理水库水质异常事件,最大限度保护公众健康和生态环境稳定。

2. 原则(1)科学性原则:依据水质监测数据和相关法规,制定科学合理的应急处理方案。

(2)及时性原则:发现水质异常后,迅速启动应急预案,及时采取措施降低影响。

(3)综合性原则:从源头控制、事前预警、事中处置、事后评估相结合,形成一系列完整有效的处理措施。

3. 责任分工(1)监测单位:负责对水库水质进行定期监测,并及时报告异常结果。

(2)应急指挥部:由相关水利、环保、卫生等部门组成,负责组织应急处理工作。

(3)协助单位:包括公安、消防、医疗等部门,提供必要的支持和协助。

三、应急处理预案的具体措施1. 事前预警(1)建立水库水质监测网络,实时监测各关键指标。

(2)制定水质异常标准和报警指标,设置自动报警系统。

(3)定期进行水库水环境评估,掌握环境变化趋势。

2. 事中处置(1)发现水质异常,立即启动应急预案,成立应急指挥部。

(2)确定异常原因和范围,采集并分析相应样品进行确诊。

(3)针对不同污染类型和程度,采取相应措施,包括停水、切断污染源、加大水处理等。

(4)通知相关单位和人员,进行疏导和转移,确保公众安全。

3. 事后评估(1)在处理完水质异常事件后,对处理效果进行评估和检测。

(2)总结经验教训,完善应急处理预案,提出改进措施。

(3)加强公众教育和宣传,提高应对水质异常事件的能力和意识。

四、应急处理预案的执行与演练1. 执行(1)应急指挥部按照预案要求及时启动应急处理工作。

(2)各责任单位按照预案规定的职责分工,配合指挥部开展各项应急工作。

风电机组健康状态预测中异常数据在线清洗

风电机组健康状态预测中异常数据在线清洗

2021年5月电工技术学报Vol.36 No. 10 第36卷第10期TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY May 2021DOI: 10.19595/ki.1000-6753.tces.200278风电机组健康状态预测中异常数据在线清洗马然1,2栗文义1,2齐咏生2(1. 内蒙古工业大学能源与动力工程学院呼和浩特 0100502. 内蒙古工业大学电力学院呼和浩特 010080)摘要风电机组数据采集与监视控制系统(SCADA)运行数据中含有大量异常数据,对风电机组健康状态预测影响严重,为此针对实测风速-功率、转速-功率数据,提出一种异常数据在线清洗方法。

由于机组性能退化过程中数据特征趋于复杂,基于经验Copula-互信息(ECMI)选择关键特征参量作为数据清洗对象,并基于Copula建立置信等效功率区间描述其非线性与不确定性。

针对置信边界外的堆积点和离群点,结合其时序特征与密度分布建立Copula数据清洗模型(Copula-TFDD),依次进行在线清洗。

最后,基于实际数据与人工模拟数据分析模型的精度、运算效率以及对机组健康状态预测的影响表明,Copula-TFDD能准确并实时地识别各类异常数据,有效提升风电机组健康状态预测的性能。

关键词:风电机组健康状态预测数据清洗特征参量互信息 Copula理论中图分类号:TK83Online Cleaning of Abnormal Data for the Prediction ofWind Turbine Health ConditionMa Ran1,2Li Wenyi1,2 Qi Yongsheng2(1. College of Energy and Power Engineering Inner Mongolia University of TechnologyHohhot 010050 China2. College of Electrical Engineering Inner Mongolia University of TechnologyHohhot 010080 China)Abstract Wind turbine (WT) supervisory control and data acquisition (SCADA) data contains a large number of abnormal data, which has a serious impact on the prediction of WT health condition.Therefore, an online cleaning method for abnormal data is proposed according to the measured wind-power and rotate speed-power data. Due to the complexity of data features in the process of WTperformance degradation, key characteristic parameters are selected as data cleaning objects based onempirical Copula-based mutual information (ECMI), and the nonlinearity and uncertainty are describedby establishing confidence equivalent power interval calculated with Copula. Accordingly, the Copula-based data cleaning model combining the time-series features and density distribution (Copula-TFDD) of abnormal points is established, and online cleaning for the stacking points and outliers outside the confidence boundary is performed in turn. Finally, through the actual data and thesimulation data, the accuracy and efficiency of Copula-TFDD are analyzed, and the influence on theprediction of WT health condition is also analyzed. The results show that Copula-TFDD can accuratelyand real-time identify various abnormal data, effectively improving the prediction performance of WT国家自然科学基金项目(61763037)、内蒙古自治区高等学校科学研究项目(NJZY21305)和内蒙古自治区科技计划项目(2019,2020GG028)资助。

水质监测结果异常应急处理预案

水质监测结果异常应急处理预案

水质监测结果异常应急处理预案一、背景介绍随着工业化和城市化的发展,水环境污染问题日益突出,水质监测成为重要的环境保护措施。

然而,尽管我们在日常监测中尽力保证水质的安全性,但仍然存在水质监测结果异常的情况。

本文将就水质监测结果异常的应急处理预案进行探讨。

二、预案目的水质监测结果异常的应急处理预案的目的在于及时、科学、有效地应对水质监测结果异常,降低对环境和人类健康的风险,维护水生态环境和社会稳定。

三、应急处理步骤1. 监测异常结果确认当水质监测结果出现异常情况时,首先需要进行结果确认。

确认异常结果是否属实,可通过对原始监测数据的再次分析和对监测点现场的再次采样检测进行比对验证。

2. 紧急通知和报告一旦确认出现水质监测结果异常,应立即通知相关单位和人员,并按照规定程序向上级主管部门以及相关环保部门进行报告,提醒他们采取相应的应对措施。

3. 制定应急处理措施根据异常情况的具体情况,制定相应的应急处理措施。

应急处理措施可能包括但不限于以下几个方面:- 暂时停止相关活动或工艺,以避免进一步加重污染。

- 寻找和修复可能的污染源,尽快消除污染源的影响。

- 强化监测频率,进行更为详细和频繁的水质监测,及时了解水质变化情况。

- 加强对受到污染影响的生态环境和水源进行治理和修复,恢复水体的自净能力。

- 及时通知公众,向公众提供相关的应对建议和防护措施,保障公众的健康和安全。

4. 应急响应和资源调配在制定应急处理措施的基础上,必要时启动应急响应机制,协调相关单位和人员,及时调配资源,如人力、物资、技术等,以保证应急处理工作能够有序进行并取得实际效果。

5. 处理结果评估和总结应急处理结束后,需要对处理结果进行评估和总结。

评估处理措施的有效性,总结经验教训,提出改进意见,为今后应对类似情况提供经验借鉴。

四、责任分工和应急机制建设1. 责任分工明确水质监测结果异常应急处理的责任主体和责任分工。

包括水质监测单位、环保部门、相关企业和社会组织等,各自承担起应急处理工作的责任。

PDF异质性的检验和处理

PDF异质性的检验和处理

2013/8/11 Sunday
hat
临床异质性(clinical heterogeneity):
试验对象的差异:纳入及排除标准; 干预方式差异:内置物不同,用药剂量; 结局指标差异:测量工具不同;
hat
方法学异质性(clinical heterogeneity):
研究设计的差异:前瞻性,回顾性,随机化; 偏倚风险:分配隐藏,盲法等; 结局完整性:随访时间等;
ealing
4. 探索异质性来源敏感性分析:方法
改变研究的纳入标准、研究对象、干预措施或终点指标 纳入或排除某些含糊不清的研究 使用某些结果不太确定的研究估计值重新分析数据 对缺失数据合理分析后重新分析数据 使用不同统计方法重新分析数据 提出治疗较差的研究后再meta分析看结果稳定程度
按不同研究特征如统计方法、研究质量、样本量是否包括未发表研究等进行分层
dentifing
统计量法之二:I2检验
2013/8/11 Sunday
dentifing
统计量法之一:Q检验
Q检验的缺陷: 1、对研究个数敏感
研究个数少——检验效能低——假阴性 研究个数多——检验效能高——假阳性 故检验水准常定为α=0.10 2、只能检验是否存在异质性,而不能检验异质性的分布。
dentifing
《系统评价/meta分析理论与实践》
6
2013/8/11 Sunday
ealing
3. 探索异质性来源之meta回归:
软件实现:
• Stata软件:“metareg”宏命令; • R软件:metafor程序包中的“rma”; • Comprehensive Meta Analysis V2、Meta-Disc1.4、

水库水质监测结果异常应急处理预案

水库水质监测结果异常应急处理预案

水库水质监测结果异常应急处理预案1. 概述为了保障水库水质安全,及时处理水质监测结果异常的情况,确保公众健康和生态环境的保护,本预案旨在建立一套完善有效的水库水质异常应急处理机制。

2. 异常水质监测结果的判定与分类2.1 水质监测结果判定对于水库的水质监测结果,将按照环境保护部颁布的《地表水环境质量标准》进行判定,根据各项指标的监测值与标准值的对比来确定水质是否异常。

2.2 异常水质监测结果的分类(1)偶发性异常:水质监测结果中出现个别指标超标或异常,不影响水库整体水质安全。

(2)临时性异常:水质监测结果中多个指标超标或异常,可能对水库水质安全产生一定影响,但暂时未达到紧急处理程度。

(3)紧急性异常:水质监测结果中多个指标明显超标或异常,存在严重的水质安全风险,需要立即采取措施。

3. 应急处理措施3.1 偶发性异常情况处理措施偶发性异常情况下,应密切关注水质变化趋势,并根据监测指标的超标情况,及时调整相关管理措施,加强对水库周边环境的监测,确保异常指标不会进一步恶化。

3.2 临时性异常情况处理措施临时性异常情况下,需要立即召集相关部门和专家组成临时应急处理工作组,对造成水质异常的原因进行深入调查和分析,制定应急处理方案,同时启动应急预警机制,通知周边居民,确保不会对人体健康产生显著影响。

3.3 紧急性异常情况处理措施紧急性异常情况下,应立即启动应急预案,并紧急召集相关部门、专家及救援队伍,采取紧急善后措施,遏制水质异常的扩散,并对周边水资源进行严密监测,以确保公众生命安全和健康。

4. 应急处理流程4.1 监测结果异常报告监测人员在发现监测结果异常后,应立即制作异常报告,并将其提交给水库管理单位。

4.2 应急预警启动水库管理单位接到异常报告后,应立即启动应急预警机制,并通知相关部门和专家。

4.3 专家调查与分析由专家组成的调查小组对水质监测结果异常的原因进行调查和分析,提出应急处理方案。

4.4 应急处理方案制定与实施在专家的指导下,制定应急处理方案,并按计划进行实施,做好应急物资准备和资源调配。

水库水质监测数据异常应急处理预案

水库水质监测数据异常应急处理预案一、背景介绍水库是一种重要的水资源调节和供应途径,水库水质监测对于确保水质安全至关重要。

然而,由于各种原因,水库监测数据可能会出现异常情况,例如异常波动、指标超标等。

为有效应对此类情况,制定水库水质监测数据异常应急处理预案是必要的。

二、应急处理预案的目的水库水质监测数据异常应急处理预案的目的在于及时发现、识别和应对异常情况,以保障水库水质的健康与安全。

预案的制定能够提供应急处理的程序和方法,充分发挥预警功能,为水库管理部门提供针对性的解决方案。

三、应急处理预案的步骤1. 监测数据异常的发现与识别- 监测点选择- 监测频次设定- 数据信息管理2. 异常情况的评估- 数据分析与对比- 异常情况的准确定义- 影响因素的判断3. 应急响应措施的制定- 紧急通报机制- 应急人员调度- 原因排查及复核4. 应急处理方案的实施- 采取临时措施进行水质调整- 引入其他测量指标以确保数据的准确性 - 加强现场巡查与监管5. 处理结果的评估与分析- 处理效果分析- 结果报告及通报- 监测频率的调整四、预案的组织与管理1. 预案的修订和完善- 定期检视与更新- 参与人员的反馈和建议- 应急演练的开展2. 预案的培训与宣传- 培训课程的制定与推广- 宣传资料的发布与宣导- 指南手册的编制与发放3. 预案的落实与监督- 责任人的明确与分工- 应急队伍的组建与培训- 监督与考核机制的建立五、案例分析以某水库为例,近期监测数据出现异常情况。

通过应急处理预案的步骤,成功识别出异常情况的原因是降雨较大导致土壤流失,造成水体浑浊并影响水质。

应急处理方案包括加强排水、降低污染源输入、调整水库出水口等措施,经过一段时间的实施与监测,水库水质逐渐恢复正常。

六、总结水库水质异常对水资源管理和人们生活产生重大影响,因此建立水库水质监测数据异常应急处理预案非常重要。

预案的制定需要结合实际情况,并进行定期修订和完善,以确保水库水质异常情况得到及时有效的处置和管理。

污水处理生化异常情况处理

污水处理生化异常情况处理标题:污水处理生化异常情况处理引言概述:污水处理是环保工作中非常重要的一环,但在实际操作中,有时会出现污水处理生化异常情况,需要及时处理以保证处理效果和环境保护。

本文将从五个方面详细介绍污水处理生化异常情况的处理方法。

一、监测异常情况1.1 监测设备运行情况:定期检查监测设备是否正常运行,确保数据准确性。

1.2 污水处理指标监测:监测处理过程中关键指标如COD、氨氮等,发现异常情况及时处理。

1.3 水质监测:定期对处理后的水质进行监测,发现异常情况要及时调整处理工艺。

二、异常情况处理2.1 调整投药量和种类:根据监测数据调整投药量和种类,保证处理效果。

2.2 调整曝气量:根据监测数据调整曝气量,保证好氧生化过程正常进行。

2.3 增加曝气时间:针对有机负荷过高的情况,可以适当增加曝气时间,提高有机物的降解效率。

三、处理异常气味3.1 加强通风:对于污水处理站周围有异味扩散的情况,可以加强通风设施。

3.2 使用气味掩蔽剂:在处理站周围喷洒气味掩蔽剂,减少异味的扩散。

3.3 定期清理沉淀池:沉淀池中的污泥容易产生恶臭气味,定期清理可减少异味。

四、处理异常颜色4.1 调整投药量:根据颜色异常情况调整投药量,保证处理效果。

4.2 增加曝气时间:适当增加曝气时间,提高颜色物质的氧化降解效率。

4.3 使用吸附剂:对于颜色异常严重的情况,可以考虑使用吸附剂进行处理。

五、预防措施5.1 定期维护设备:定期对设备进行维护保养,减少异常情况发生的可能性。

5.2 做好记录和分析:对处理过程中的数据进行记录和分析,及时发现问题并加以解决。

5.3 做好应急预案:制定污水处理生化异常情况的应急预案,一旦发生异常能够迅速应对。

结论:污水处理生化异常情况处理是污水处理工作中至关重要的一环,只有及时发现并处理异常情况,才能保证处理效果和环境保护的有效性。

通过监测异常情况、调整处理工艺和设备、预防措施等手段,可以有效处理污水处理生化异常情况,确保污水处理工作的顺利进行。

水质监测数据异常应急处理预案

水质监测数据异常应急处理预案应急处理预案的目的是在水质监测数据出现异常时,及时采取相应措施,保障公众的生活用水安全。

本预案旨在规范水质监测数据异常的处理程序,确保数据准确性,及时发现问题和解决问题。

一、异常数据的定义异常数据是指水质监测过程中,与正常数据相比出现明显偏离、无法解释的结果。

例如,与历史数据相比,浓度超过警戒值的物质或者水质指标迅速下降或上升。

二、异常数据的处理流程1.数据异常报警与识别当水质监测数据出现异常时,监测系统会自动报警。

监测人员应及时收到报警信息,并进行数据分析,判断数据是否属于异常。

2.数据核查与验证对于报警数据,监测人员应进行数据核查与验证。

包括:- 核对数据采集设备是否正常工作;- 检查采样方法与样品保存是否有误;- 对重要参数进行再次采样,并与异常数据对比。

3.异常数据分析对于验证后的异常数据,监测人员应进行数据分析,包括:- 判断异常数据对公众健康是否构成威胁;- 分析异常数据出现的原因,如天气情况、水源变化等因素。

4.确定应急处理措施根据异常数据的危害程度和原因分析结果,确定相应的应急处理措施。

包括:- 针对污染源,采取封堵、隔离等措施;- 启动备用水源,确保公众供水;- 发布紧急通知,提醒居民注意用水安全。

5.应急处理措施执行对于确定的应急处理措施,相关部门应立即执行,确保公众饮水安全。

包括:- 按照预案指示,切实执行相应措施;- 加强数据监测与信息共享,及时了解应急处理情况;- 提供公众教育,告知居民应急处理措施,避免不必要的恐慌。

6.异常数据追溯与分析完成应急处理后,应对异常数据进行追溯与分析。

包括:- 回顾异常数据出现的原因,确定监测与防控措施的不足之处;- 完善数据记录与存档,为未来异常数据处理提供参考经验。

三、预案的应用与改进1.预案的应用本预案适用于各级水质监测部门,以及相关水源单位。

监测人员应熟悉预案内容,并按照预案处理异常数据。

2.预案的改进本预案的实施过程应定期评估,及时总结经验教训,针对性地进行改进。

水质监测异常导致停供应急处理预案

水质监测异常导致停供应急处理预案随着城市化进程的加快和人口的增加,水资源供应安全成为各地政府和社会各界关注的焦点。

水质问题直接关系到公众的健康和生活质量,一旦出现水质监测异常,就需要及时采取应急处理措施,以保障供水的安全和稳定。

为此,制定一份水质监测异常导致停供应急处理预案至关重要,下文将详细介绍该预案的制定内容及操作流程。

1. 应急预案背景和目的水质监测异常导致停供应急处理预案的制定背景是为了应对水质监测异常和突发事件对供水系统的冲击。

其目的是通过明确操作流程、责任分工和资源调配,提高对水质监测异常事件的应对能力,确保供水系统安全稳定运行,最大限度减少对公众的影响。

2. 预案组织与职责分工为了有效应对水质监测异常,需成立应急预案组织机构,并明确各成员的职责分工。

组织机构一般包括指挥部、联络组、信息组、采购组等,各组之间协作紧密,共同推进应急处理工作。

- 指挥部:负责协调决策、指导应急处理工作,由相关政府部门主要负责人担任。

- 联络组:负责与相关部门、企事业单位及公众的沟通和协调工作。

- 信息组:收集、分析、传递水质监测异常相关信息,提供决策依据。

- 采购组:根据需要组织采购应急物资和设备,确保供水系统快速恢复正常运行。

3. 事件预警和响应机制为了及时应对水质监测异常事件,需建立完善的事件预警和响应机制。

包括但不限于以下几个方面:- 异常监测报警:建立监测异常报警系统,确保及时发现和报警;- 信息快速传递:建立高效的信息传递机制,确保各级组织和人员能够迅速获取到相关信息;- 应急人员调集:及时调集相应的应急人员和专业人员,进行紧急处理和调查;- 资源调配和协同合作:调动相关资源,与相关部门和单位进行协同合作,共同应对水质监测异常事件。

4. 应急处理措施在出现水质监测异常导致停供情况时,需采取一系列应急处理措施,保障供水系统的安全和稳定运行。

具体措施如下:- 第一步:停止供水,并立即向相关部门报告;- 第二步:迅速组织专业人员进行现场勘察和调查,确定异常原因;- 第三步:制订应急处理方案,明确处理流程和责任分工;- 第四步:调配所需的应急物资和设备,并迅速展开修复工作;- 第五步:监测和评估修复效果,确保供水系统完全恢复正常;- 第六步:及时向公众发布信息,解释情况,保持沟通。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Environmental Modeling and Assessment 6:77–82, 2001.2001 Kluwer Academic Publishers. Printed in the Netherlands.Water treatment control using the jointestimation outlier detection methodChristine Wright a,∗and David BoothbaDepartment of Management, Western Carolina University, Cullowhee, NC 28723, USAE-mail: cwright@bAdministrative Sciences Department, Kent State University, Kent, OH 44242, USAThe loss of contaminated wastewater into the environment by leakage or other means is a serious problem. This problem is essentially the same as true of the loss of chemical reagents from a chemical production or purification process.The present article shows how the joint estimation method, an outlier detection method for time series analysis, can be used by a facility manager to deal with these problems.Keywords: joint estimation, outlier detection, process control, wastewater control1. IntroductionIn many industries, it is important to determine when the process is out-of-control, (i.e., when significant adverse process changes occur). The idea is to discover these ad-verse process changes while they are still relatively minor, before substandard product or significant pollution is pro-duced. One example of an important chemical process con-trol problem is wastewater treatment. This paper discusses the use of a process control method for the purpose of monitoring wastewater data. The objective of the research was to determine if the out-of-control observations (i.e., abnormal states) could be detected by JE in the period when they first occurred. The process control method reported herein can be used for any compound for which an analytical chemical detection method exists. The method that we consider, Joint Estimation (JE), has the potential to be extremely important to both general pollution control and statistical process con-trol.2. BackgroundIt has been previously shown that pollution producing situations may be recognized through the detection of statistical outliers [1–14]. An outlier is any point that deviates significantly from the underlying process model or time series pattern, indicating a change in the process and thus an out-of-control situation with respect to the process model. Points outside of three standard deviations of the targeted process mean are usually considered to be outliers. Such a point can be identified using statistical methods.If such exist, the process is said to be “out of control” (i.e., there is a significant adverse process change due to an assignable cause which is a cause that can be identified).Otherwise the process is said to be “in control” (i.e., only random variations of output exist within certain control limits).Traditional statistical process control charts as well as most of the other methods currently used are based upon the assumption that the observations in the process time series are independent and identically distributed (IID) about the targeted process mean or targeted value at any time t and that the distribution is normal when the process is in statistical control. Independence implies that there is no particular pattern in the data.Unfortunately, much of the data used in statistical process control is non-IID [15]. Alwan and Radson [15] also note that because of the efforts of G.E.P. Box, the chemical industry has recognized for many years that autocorrelation (i.e., relationships across time) exist in their processes. Bax-ley [16], Berthouex et al. [17], Emer et al. [18], Harris and Ross [19], and Hunter [20] have noted that continuous process industries, such as wastewater plants, often have autocorrelated process data.3.Approaches to SPC when standard methods are not appropriateProcess measures over time are often interdependent (i.e., the observations are autocorrelated). Further, many process time series exhibit a characteristically repetitive pattern, which can be mathematically modeled by an Autoregressive Moving Average [ARMA(p, q)] model. For example, ARMA(1, 1) and other time series models have been empirically found in some cases to be appropriate for modeling a process time series [21]. Under such conditions, traditional SPC procedures may be ineffective and inappropriate for monitoring and controlling the process, perhaps even erroneously indicating an out-of-control situation when the criteria of the traditional control chart are applied [15]. In other words, they are not as effective as they should be in detecting, for example, the escape of pollutants into the environment. Thus, if the process being controlled is one that produces pollutants, these compounds may be introduced into the environment without the producer’s knowledge. Use of time series based process control methods, rather than standard statistical process control methods, is appropriate when data is non-IID or when outlying observations may exist in the data, such as when the materials are particularly valuable or involve critical safety concerns.4. Joint estimation methodThe method considered is successful in handling the problems of general statistical process and pollution con-trol [12,14]. Joint Estimation (JE), a time series procedure, developed by Chen and Liu [22] has been applied to other environmental pollution situations [12]. This method is superior to the one used earlier by Prasad [23] in that (a) outliers are obtained iteratively, based on the adjusted residuals and observations, (b) the procedure does not require intervention models to be estimated to accommodate the outliers,(c) the identification and location of outliers are based on robust parameter estimates, (d) the outlier effects are jointly estimated using multiple regression, and (e) the procedure differentiates between and accommodates for four forms of outliers: Innovational Outliers (IO), Additive Outliers (AO), Level Shifts(LS), and Temporary Changes (TC). These four types of outliers range between the extremes of a one-time change (AO), a permanent shift in the level of a process (LS) and two decaying patterns after the initial impact (IO and TC). This method is proprietary; the details of its algorithms are limited. The JE subroutine is availableon the XUTS Software from Scientific Computing Associates (SCA), Oak Brook, IL.The method is described in appendix. In addition, figure 1 depicts all four types for an ARMA(1, 0) model.The information provided by the JE method with regard to the location of the outlier can increase the effectiveness of detecting the loss of pollutants into the environment. This method was tested by Prasad et al. and found to be very successful with nuclear inventory data as well as general SPC data [2,3]. Wright [14] and Wright et al. [24] show that this method can effectively locate outliers in a time series with as few as 9 observations where the outlier is the last observation in the time series. All outliers are identified as AO when they first occur, this can be seen in figure 1. Furthermore, this method has considerably fewer false alarms than the Exponentially Weighted Moving Average (EWMA) model [12,14,24].Figure 1. AO, TC, LS and IO for an ARMA(1, 0) model.5. Research methodWe utilize the joint estimation (JE) outlier detection method of Chen and Liu [22] to detect outliers (i.e., out-of-control observations) in wastewater treatment data. This data consists of 527 daily measurements of 38 different sensor readings (variables). These variables are shown in table 1. The wastewater plant manager identified 13 different states of performance; these are shown in table 2 and include such conditions as normal operations, storms, solids overload, etc. Of these states, only states 1, 5, 9 and 11 are normal. The objective of the research was to determine if the out-of-control observations (i.e., abnormal states) could be detected by JE in the period when they first occurred. It is of considerable importance to determine that an out-of-control situation exists on the day when it first occurs rather than several days later. Clearly the environmental and health risks involved necessitate early detection, perhaps even at the cost of som e false alarms.The joint estimation method is appealing because it performs well over a wide variety of both seasonal and non-seasonal ARIMA models. The user must specify the model type for the series prior to using the JE routine. This method is proprietary, the details of its algorithms are limited. The JE subroutine is available on the XUTS Software from Scientific Computing Associates (SCA), Oak Brook, IL. In addition, it is possible to use the JE method as an online process control technique through a communication protocoldeveloped between the online data collection unit and the SCA system. Wright et al. [24] describe the method in detail. A brief summary of the method is included here.The joint estimation method involves three stages. The first stage obtains maximum likelihood estimates of parameters and residuals. Then, outliers are sought and their effects are removed from the residuals. After all outliers have been detected, model parameter estimates are revised. In the second stage, multiple regression is utilized to jointly estimate the effect of the outliers and model parameters. Then the estimated t-values are compared with the critical value, C. If the t-value of a suspected outlier is smaller than C, the outlier is deemed not significant. Next, an adjusted series is obtained by removing significant outlier effects. Maximum likelihood estimates of model parameters are found based on the adjusted series. In the third stage, outliers are sought based on final parameter estimates found in stage two. Residuals are computed using these estimates. These residuals are used as the procedure iterates through the first two stages.Chen and Liu [22] have shown that the JE method is extremely effective for detecting outliers in autocorrelated time series data with a large number of observations. They did not, however investigate the ability of the method to identify outliers when they are the last observation in a time series. Wright et al.[24], through a simulation experiment, show that the JE method is very effective for identifying outliers when they are the last observation in short autocorrelated times series.C. Wright,D. Booth / Water treatment control 79Table 1Waste water treatment process variables.Variable Category Description of variable1 Influent to plant Flow to plant2 Influent to plant Zinc to plant3 Influent to plant pH to plant4 Influent to plant Biological demand of oxygen to plant5 Influent to plant Chemical demand of oxygen to plant6 Influent to plant Suspended solids to plant7 Influent to plant Volatile suspended solids to plant8 Influent to plant Sediments to plant9 Influent to plant Conductivity to plant10 Input to primary treatment pH to primary settler11 Input to primary treatment Biological demand of oxygen to primary settler12 Input to primary treatment Suspended solids to primary settler13 Input to primary treatment Volatile suspended solids to primary settler14 Input to primary treatment Sediments to primary settler15 Input to primary treatment Conductivity to primary settler16 Input to secondary treatment pH to secondary settler17 Input to secondary treatment BOD to secondary settler18 Input to secondary treatment Chemical demand of oxygen to secondary settler19 Input to secondary treatment Suspended solids to secondary settler20 Input to secondary treatment Volatile suspended solids to secondary settler21 Input to secondary treatment Sediments to secondary settler22 Input to secondary treatment Conductivity to secondary settler23 Effluent from pHplant24 Effluent fromplantBiological demand ofoxygen25 Effluent fromplantChemical demand ofoxygen26 Effluent fromplant Suspended solids27 Effluent fromplantVolatile suspendedsolids28 Effluent fromplant Sediments29 Effluent fromplant Conductivity30 Performance Input BOD in primary settler31 Performance Input suspended solids to primary settler32 Performance Input sediments to primary settler33 Performance Input BOD to secondary settler34 Performance Input COD to secondary settler35 Globalperformance Input biological demand of oxygen36 Globalperformance Input chemical demand of oxygen37 GlobalperformanceInput suspendedsolids38Globalperformance Input sedimentsTable 2Wastewater treatment process conditions.Condition Status Condition Number of daysnumber in this state1 Normal Normal operations 1 2752 Abnormal Secondary settler problems 1 13 Abnormal Secondary settler problems 2 14 Abnormal Secondary settler problems 3 45 Normal Normal operations, above mean 1166 Abnormal Solidsoverload 1 37 Abnormal Secondary settler problems 4 18 Abnormal Storm conditions 1 19 Normal Normal operations with lowinfluent 6910 Abnormal Storm conditions 2 111 Normal Normal operations 2 5312 Abnormal Storm conditions 3 113 Abnormal Solidsoverload 2 1When using JE, the critical value, C, is specified by the user. The critical value is compared with the t-value of a suspected outlier. The outliers ranged from day 60 to day 467.This implies that the time series studied ranged from 60 observations to 467 observations. A critical value of C=4.0 was utilized because Chen and Liu [22] recommend C of 3.0 for series between 101 and 200 observations; C > 3.0 for series greater than 200 observations. The wastewater data contains 14 outliers. The locations of these outliers are days 60, 61, 62, 98, 128, 186, 213, 244, 421, 424, 427, 465, 466 and 467.6. ResultsJE is not a multivariate method. Therefore, the concern was to seek outliers for a ll 38 sensor readings. If at least one outlier was detected within the day’s 38 readings, that day was determined to be out-of-control. JE was utilized to consider each of the 38 sensor readings in such a manner that days 60, 61, 62, 98, 128, . . . were the last day in the time series under consideration. This replicates the results that would be available to the user on the particular days when out-of-control situations occurred. Table 3 summarizes the results of the JE method in detecting the outlier when it was known to be the last observation in the time series. All abnormal days were detected except day 467.The JE method was also tested to determine the false alarm rate. Of specific concern was whether the method would identify the last observation as an outlier when it was known to be not an outlier. Thirty days were randomly chosen to determine, if they were the last day in the time series, would they be misidentified as outliers? For example, the 51st day is known to be a normal (state 1) day. The JE method was used to analyze the data up to and including day 51, where day 51 data was the last observation in the time series. The JE method reported, as shown in table 4, that day 51 is not out-of-control (not an outlier). The results for all thirty randomly selected days are shown in table 4 along with their states and the variables determined to be outliers. The false alarm rate seems a bit high. However, when weighed against the cost of loss of human life or environmental damage, the false alarm rate is of less importance than the high outlier detection rate of 92.86%. In addition, our count of false alarms in table 4 may be overly pessimistic. If, for example, a surge of increased solids en-Table 3Detection results of JE for days known to be out-of-control.Day State Number of OOC variablesvariables OOC60 2 9 24,25,26,28,33,35,3 6,37,3861 3 4 24,26,37,3862 4 4 25,28,35,38 98 7 3 28,32,38 128 6 4 6,8,12,14 186 10 3 19,20,32 213 8 1 29244 12 5 6,7,12,13,31 421 13 3 6,7,13424 6 4 6,8,12,14 427 6 2 6,12465 4 7 2,25,26,33,35,36,3 7466 4 1 29467 5 0 Nonetered the system, we might obtain more out of control observations than actuallyexist. Further, one of the reviewers suggests that if the false alarm observationsare linked in the treatment process then they may be counted more than once. Ineither case, our counts for false alarms would be definitely conservative.The results reported in table 4 may also be viewed in another light. Chen and Liu [22] and Wright et al. [24] show false alarm rates of 1% or less for simulated time series. Wright et al. [24] simulated time series and knew with certainty where the outliers were and were not located. Their false alarm rate for ARMA(1, 0) time series ranged from 0.79 to 0.10% and for ARMA(0, 1) ranged from 1.27 to 0.27%. The data used in this research is ARMA(1, 0) data. Given the results found by Wright et al.[24], one might wonder about the absolute classification of some days as “normal” or incontrol. The plant manager of the plant where this data originated categorized the wastewater data when it was recorded. These categories or operating conditions are, therefore, assigned based on the judgment of the plant manager (i.e., the 13 conditions mean something to the plant manager but would mean nothing to other plant managers elsewhere). This leads to the question, given the low false alarm rates in previous research with this method, is the false alarm rate as high as reported in table 4, or weremany days were out-of-control on at least one variable and this condi-tion was not recognized by the plant manager?Table 4False alarm results of JE for days known to be not out-of-control.Day State Number of OOCvariables OOC variables51 1 0 –65 1 0 –71 1 0 –90 1 0 –104 5 5 6,11,12,17,33117 5 0 –122 5 0 –139 5 0 –144 1 0 –153 1 0 –180 5 1 22 209 5 0 –234 9 0 –269 1 1 2 285 11 0 –306 11 0 –318 11 1 28 331 1 0 –351 5 2 6,21 362 11 0 –374 1 0 –380 1 0 –390 1 0 –415 1 0 –422 9 0 –432 1 0 –435 1 0 –497 9 1 35504 5 0 –521 1 0 –Wright et al. [24] considered twenty-two real industrial time series that were not necessarily normally distributed; the simulated time series were normally distributed (0,1). Even when the normal distribution was not assumed, false alarm rates using JE were 8.52% for ARMA(1, 0) and 4.98% for ARMA(0, 1). Thus we might conclude, given that the wastewater data may not be normally distributed, that it is unlikely that this particular data would yield such a large false alarm rate when compared with all previous research using this method. Because all classifications of “normal” data were made somewhat judgmentally, this leads to the conclusion that this method may help wastewater plant op-erators identify out-of-control days when they first occur and require less need to classify days by various judgmental titles of normal or abnormal.7. ConclusionsAcknowledgementsThe authors would like to thank David West, Ph.D., East Carolina University and Paul Mangiameli, Ph.D., University of Rhode Island, for their assistance in securing and under-standing the wastewater treatment data.Appendix: A description of the joint estimation methodThe escape of pollution into the environment by leakage or misidentification presents a serious problem, as it does for any chemical production process. Clearly, this method may be useful in monitoring and identifying out-of-control situations in various environmental data.The results reported in table 3 indicate that, at least for this data, some variables were more helpful for detecting outlying days than others. Table 3 shows that only twenty-one of the thirty-eight variables were useful in determining which days were out-of-control; these variables were 2, 6, 7, 8, 12, 13, 14, 19, 20, 24, 25, 26, 28, 29, 32, 33, 35, 36, 37 and 38.In summary, this research has combined manufacturing, chemical, and statistical methods in order to improve our ability to detect pollutants before they become a serious problem. Further, as indicated in the introduction, the importance of these techniques to decision and policy makers cannot be overemphasized.The requirement of their use by decision makers and policy makers will allow polluting facilities to be detected more quickly, thus decreasing the total amount of pollution to the environment.8. Policy relevanceIn addition to making the pollution control methods along with the associated safeguards systems more powerful, and thus being able to detect a polluting facility sooner, this method has decision making and policy implications. There are two special groups for which the results of this research are targeted. First, appropriate managers in charge of the potentially polluting facility. These decision makers need t o know as soon as possible that a problem exists so that they can decide whether a quick fix is possible or whether the fa-cility needs to be shut down for more extensive repairs to stop any potential pollution of the environment. Of course, the sooner such a decision is made the less pollution to theenvironment results. The second target group is policy mak-ers. As new methods for pollution detection are developed, policy makers can take advantage of them by requiring their use by potential polluters and regulatory agency investiga-tors. Thus, as indicated previously, the amount of pollution can be minimized. It should be noted however that policy makers must keep up to date on current methods so that the best possible pollution detection methods are being required for use.A.1. Joint estimation – stage oneThe first stage involves estimation of parameters and de-tection of outliers. First, the method obtains the maximum likelihood estimates of the parameters and the residuals. Then, the procedure searches for an outlier. If it discovers an outlier, the procedure removes the effect of the outlier from the residual. Then the method seeks additional outliers. Af-ter the procedure finds all outliers, it revises the estimates of the model parameters. If no outliers are found, the procedure stops.A.2. Joint estimation – stage twoThe procedure jointly estimates the effect of the outliers and the parameters of the model. First, it jointly estimates the outlier effects, w j’s, using multiple regression for j=1, . . . , meˆt=w jπ(B)L j (B)I t (t j ) + a t ,where eˆt is the output variable, w j indicates the magni-tude of the outlier and L j(B)I t(t j)are the input variables. When the outlier is an IO, L j(B)=θ (B)/{φ(B)α(B)},L j (B) =1 for AO, L j (B) =1/(1− B) for LS, L j (B) =1/(1 −δB) for TC at t=t j [22]. Lastly, a t is a sequence of random errors that are iid and are from a normal distribution with mean of zero and variance independent of time [25]. Next, the procedure computes the estimated t-values of the estimated weights (t j=w j/(std(w j)), j= 1, . . . , m). The t-values are compared with the critical value,C. If the t-value of a suspected outlier is less than or equal to C, the outlier is determined to be not significant and is removed from the set of identified outliers. The procedure contin-ues to jointly estimate the weights using multiple regression and compare the t-values with the critical value until there are no remaining outliers. Next, the procedure obtains the adjusted series by removing significant outlier effects.。

相关文档
最新文档