2015成人高考高起点数学知识点总结

合集下载

成人高考高升专数学常用知识点及公式(良心出品必属精品)

成人高考高升专数学常用知识点及公式(良心出品必属精品)

成人高考高升专数学常用知识点及公式第1章集合和简易逻辑知识点1:交集、并集、补集1、交集:集合A与集合B的交集记作A∩B,取A、B两集合的公共元素2、并集:集合A与集合B的并集记作A∪B,取A、B两集合的全部元素,取U中所有不属于A的元素3、补集:已知全集U,集合A的补集记作ACu解析:集合的交集或并集主要以列举法或不等式的形式出现知识点2:简易逻辑概念:在一个数学命题中,往往由条件甲和结论乙两部分构成,写成“如果甲成立,那么乙成立”。

若为真命题,则甲可推出乙,记作“甲=乙”;若为假命题,则甲推不出乙,记作“甲≠乙”。

题型:判断命题甲是命题乙的什么条件,从两方面出发:①充分条件看甲是否能推出乙②必要条件看乙是否能推出甲A、若甲=乙但乙=甲,则甲是乙的充分必要条件(充要条件)B、若甲=乙但乙≠甲,则甲是乙的充分不必要条件C、若甲≠乙但乙=甲,则甲是乙的必要不充分条件D、若甲≠乙但乙≠甲,则甲不是乙的充分条件也不是乙的必要条件技巧:可先判断甲、乙命题的范围大小,再通过“大范围≠小范围,小范围=大范围”判断甲、乙相互推出情况第2章不等式和不等式组知识点1:不等式的性质1.不等式两边同加或减一个数,不等号方向不变2.不等式两边同乘或除一个正数,不等号方向不变3. 不等式两边同乘或除一个负数,不等号方向改变(“>”变“<”) 解析:不等式两边同加或同乘主要用于解一元一次不等式或一元二次不等式移项和合并同类项方面知识点2:一元一次不等式1. 定义:只有一个未知数,并且未知数的最好次数是一次的不等式,叫一元一次不等式。

2. 解法:移项、合并同类项(把含有未知数的移到左边,把常数项移到右边,移了之后符号要发生改变)。

3. 如:6x+8>9x-4,求x ? 把x 的项移到左边,把常数项移到右边,变成6x-9x>-4-8,合并同类项之后得-3x>-12,两边同除-3得x<4(记得改变符号)。

成人高考高数知识点归纳总结

成人高考高数知识点归纳总结

成人高考高数知识点归纳总结一、函数与极限1. 函数的定义与性质- 函数的定义与函数图像的特征- 函数的单调性、奇偶性和周期性- 复合函数与反函数的性质2. 极限的概念与运算- 极限的定义与性质- 极限存在的条件- 无穷大与无穷小的比较- 极限的四则运算3. 函数的连续性- 连续函数的定义与性质- 连续函数的运算性质- 间断点与间断函数二、导数与微分1. 导数的概念与运算- 导数的定义与性质- 常见函数的导数公式- 高阶导数与隐函数求导2. 微分的定义与应用- 微分的定义与微分近似计算- 函数的最值与极值点- 函数的凹凸性与拐点三、不定积分与定积分1. 不定积分的基本性质- 不定积分的定义与性质- 常见函数的不定积分公式- 简单换元法与分部积分法2. 定积分的概念与性质- 定积分的定义与几何意义- 定积分的性质与运算法则- 牛顿-莱布尼茨公式与定积分的应用四、级数与幂级数1. 数列的极限与收敛性- 数列极限的定义与性质- 收敛数列的判定方法- 极限存在的充分条件2. 级数的概念与性质- 级数收敛与发散的判定方法 - 常见级数的性质与特征- 正项级数的收敛性判定3. 幂级数的收敛范围与展开式- 幂级数的收敛半径与收敛区间 - 幂级数的基本性质与运算法则 - 常见函数的幂级数展开五、空间解析几何1. 点、向量与直线- 点的表示与特征- 向量的定义与运算- 直线的方程与性质2. 平面与曲面- 平面的方程与性质- 曲面的方程与性质- 直线与平面的位置关系六、常微分方程1. 基本概念与常见类型- 常微分方程的定义与基本形式- 一阶常微分方程与高阶常微分方程- 常见类型的微分方程2. 解的存在与唯一性- 解的存在与存在区间- 解的唯一性与连续依赖性- 利用初值问题求解微分方程以上是成人高考高数知识点的归纳总结,希望对你的学习有所帮助。

通过系统地学习这些知识点,相信你能够在成人高考中取得优异的成绩!。

成人高考数学知识点归纳总结

成人高考数学知识点归纳总结

成人高考数学知识点归纳总结一、代数部分。

1. 集合。

- 集合的概念:把一些确定的对象看成一个整体就形成一个集合。

集合中的元素具有确定性、互异性和无序性。

- 集合的表示方法:列举法(如A = {1,2,3})、描述法(如B={xx^2 -1=0})。

- 集合间的关系:子集(A⊆ B表示A中的元素都在B中)、真子集(A⊂neqq B表示A是B的子集且A≠ B)、相等(A = B当且仅当A⊆ B且B⊆ A)。

- 集合的运算:交集(A∩ B={xx∈ A且x∈ B})、并集(A∪ B = {xx∈A或x∈ B})、补集(设U为全集,∁_U A={xx∈ U且x∉ A})。

2. 函数。

- 函数的概念:设A,B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y = f(x),x∈ A。

- 函数的三要素:定义域、值域和对应关系。

- 函数的性质。

- 单调性:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D 内的任意两个自变量x_1,x_2,当x_1时,都有f(x_1)(或f(x_1)>f(x_2)),那么就说函数y = f(x)在区间D上是增函数(或减函数)。

- 奇偶性:设函数y = f(x)的定义域为D关于原点对称,如果对于任意x∈D,都有f(-x)=f(x),那么函数y = f(x)是偶函数;如果对于任意x∈ D,都有f(-x)= -f(x),那么函数y = f(x)是奇函数。

- 一次函数y=kx + b(k≠0):k是斜率,b是截距。

当k>0时,函数单调递增;当k < 0时,函数单调递减。

- 二次函数y=ax^2+bx + c(a≠0):对称轴为x =-(b)/(2a),当a>0时,函数开口向上,在x =-(b)/(2a)处取得最小值y=(4ac - b^2)/(4a);当a < 0时,函数开口向下,在x=-(b)/(2a)处取得最大值y=(4ac - b^2)/(4a)。

成人高考高升专数学常用知识点和公式(2015年版)

成人高考高升专数学常用知识点和公式(2015年版)

集合和简易逻辑知识点1:交集、并集、补集1、交集:集合A 与集合B 的交集记作A ∩B ,取A 、B 两集合的公共元素2、并集:集合A 与集合B 的并集记作A ∪B ,取A 、B 两集合的全部元素3、补集:已知全集U ,集合A 的补集记作A C u ,取U 中所有不属于A 的元素解析:集合的交集或并集主要以列举法或不等式的形式出现 知识点2:简易逻辑概念:在一个数学命题中,往往由条件甲和结论乙两部分构成,写成“如果甲成立,那么乙成立”。

若为真命题,则甲可推出乙,记作“甲=乙”;若为假命题,则甲推不出乙,记作“甲≠乙”。

题型:判断命题甲是命题乙的什么条件,从两方面出发:①充分条件看甲是否能推出乙 ②必要条件看乙是否能推出甲A 、 若甲=乙 但 乙=甲,则甲是乙的充分必要条件(充要条件)B 、若甲=乙 但 乙≠甲,则甲是乙的充分不必要条件C 、若甲≠乙 但 乙=甲,则甲是乙的必要不充分条件D 、若甲≠乙 但 乙≠甲,则甲不是乙的充分条件也不是乙的必要条件技巧:可先判断甲、乙命题的范围大小,再通过“大范围≠小范围,小范围=大范围”判断甲、乙相互推出情况第一章 不等式和不等式组知识点1:不等式的性质1. 不等式两边同加或减一个数,不等号方向不变2. 不等式两边同乘或除一个正数,不等号方向不变3. 不等式两边同乘或除一个负数,不等号方向改变(“>”变“<”)解析:不等式两边同加或同乘主要用于解一元一次不等式或一元二次不等式移项和合并同类项方面 知识点2:一元一次不等式1. 定义:只有一个未知数,并且未知数的最好次数是一次的不等式,叫一元一次不等式。

2. 解法:移项、合并同类项(把含有未知数的移到左边,把常数项移到右边,移了之后符号要发生改变)。

3. 如:6x+8>9x-4,求x ? 把x 的项移到左边,把常数项移到右边,变成6x-9x>-4-8,合并同类项之后得-3x>-12,两边同除-3得x<4(记得改变符号)。

成人高考高起点数学基本公式与重要知识点汇总

成人高考高起点数学基本公式与重要知识点汇总

点是顶点。
若已知抛物线上两点 (x1, y)、(x2 , y) (及 y 值相同),则对称轴方程可以表示为: x x1 x2
2 4.抛物线 y ax 2 bx c 中, a,b, c 的作用 (1) a 决定开口方向及开口大小,这与 y ax 2 中的 a 完全一样.
专业.专注
性 质 全等三角形的对应边、对应角、对应的角的平分线、高及中线相等。 判 定任意三角形直角三角形
专业.专注
.
.
.
.
(1)两边及夹角对应相等。记为SAS
(1)一边一锐角对应相等
(2)两角和一边对应相等。记为ASAA或AAS
(2)两直角边对应相等。
(3)三边对应相等。记为SSS (3)斜边、直角边对应相等(HL) 内心 三角形三条内角平分线的交点,叫做三角形的内心(即内切圆的圆心)
当a 0时
开口向上
当a 0时
开口向下
对称轴
x 0 ( y 轴) x 0 ( y 轴)
xh xh x b
2a
顶点坐标 (0,0)
(0, k ) ( h ,0) (h,k ) ( b ,4ac b2 ) 2a 4a
3.求抛物线的顶点、对称轴的方法
(1)公式法: y ax 2 bx c a x
式判定:
①有两个交点 ( 0 ) 抛物线与 x 轴相交;
②有一个交点(顶点在 x 轴上) ( 0 ) 抛物线与 x 轴相切;
③没有交点 ( 0 ) 抛物线与 x 轴相离.
(3)平行于 x 轴的直线与抛物线的交点
同(2)一样可能有 0 个交点、1 个交点、2 个交点.当有 2 个交点时,两交点的纵坐标相等,

成人高考高起点数学基本公式及重要知识点

成人高考高起点数学基本公式及重要知识点

成人高考高起点数学基本公式及重要知识点【实数的分类】【自然数】表示物体个数的1、2、3、4···等都称为自然数【质数与合数】一个大于1的整数,如果除了它本身和1以外不能被其它正整数所整除,那么这个数称为质数。

一个大于1的数,如果除了它本身和1以外还能被其它正整数所整除,那么这个数知名人士为合数,1既不是质数又不是合数。

【相反数】只有符号不同的两个实数,其中一个叫做另一个的相反数。

零的相反数是零。

【绝对值】一个正数的绝对值是它本身,一个负数绝对值是它的相反数,零的绝对值为零。

从数轴上看,一个实数的绝对值是表示这个数的点离开原点距离。

【倒数】1除以一个非零实数的商叫这个实数的倒数。

零没有倒数。

【完全平方数】如果一个有理数a的平方等于有理数b,那么这个有理数b叫做完全平方数。

【方根】如果一个数的n次方(n是大于1的整数)等于a,这个数叫做a的n次方根。

【开方】求一数的方根的运算叫做开方。

【算术根】正数a的正的n次方根叫做a的n次算术根,零的算术根是零,负数没有算术根。

【代数式】用有限次运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结所得的式子,叫做代数式。

【代数式的值】用数值代替代数式里的字母,计算后所得的结果,叫做当这个字母取这个数值时的代数式的值。

【代数式的分类】【有理式】只含有加、减、乘、除和乘方运算的代数式叫有理式【无理式】根号下含有字母的代数式叫做无理式【整式】没有除法运算或者虽有除法运算而除式中不含字母的有理式叫整式直线:(不定义)直线向两方无限延伸,它无端点。

射线:在直线上某一点旁的部分。

射线只有一个端点。

线段:直线上两点间的部分。

它有两个端点。

垂线:如果两条直线相交成直角,那么称这两条直线互相垂直。

其中一条叫另一条的垂线,它们的交点叫垂足。

斜线:如果两条直线不相交成直角时,其中一条直线叫另一条直线的斜线。

点到直线的距离:从直线外一点到这条直线的垂线段的长度,叫做点到直线距离。

成人高考高升专数学常用知识点及公式(打印版)精编版

成人高考高升专数学常用知识点及公式第1章 集合和简易逻辑知识点1:交集、并集、补集1、交集:集合A 与集合B 的交集记作A ∩B ,取A 、B 两集合的公共元素2、并集:集合A 与集合B 的并集记作A ∪B ,取A 、B 两集合的全部元素3、补集:已知全集U ,集合A 的补集记作A C u ,取U 中所有不属于A 的元素解析:集合的交集或并集主要以列举法或不等式的形式出现 知识点2:简易逻辑概念:在一个数学命题中,往往由条件甲和结论乙两部分构成,写成“如果甲成立,那么乙成立”。

若为真命题,则甲可推出乙,记作“甲=乙”;若为假命题,则甲推不出乙,记作“甲≠乙”。

题型:判断命题甲是命题乙的什么条件,从两方面出发:①充分条件看甲是否能推出乙 ②必要条件看乙是否能推出甲A 、 若甲=乙 但 乙=甲,则甲是乙的充分必要条件(充要条件)B 、若甲=乙 但 乙≠甲,则甲是乙的充分不必要条件C 、若甲≠乙 但 乙=甲,则甲是乙的必要不充分条件D 、若甲≠乙 但 乙≠甲,则甲不是乙的充分条件也不是乙的必要条件技巧:可先判断甲、乙命题的范围大小,再通过“大范围≠小范围,小范围=大范围”判断甲、乙相互推出情况第2章 不等式和不等式组知识点1:不等式的性质1. 不等式两边同加或减一个数,不等号方向不变2. 不等式两边同乘或除一个正数,不等号方向不变3. 不等式两边同乘或除一个负数,不等号方向改变(“>”变“<”)解析:不等式两边同加或同乘主要用于解一元一次不等式或一元二次不等式移项和合并同类项方面 知识点2:一元一次不等式1. 定义:只有一个未知数,并且未知数的最好次数是一次的不等式,叫一元一次不等式。

2. 解法:移项、合并同类项(把含有未知数的移到左边,把常数项移到右边,移了之后符号要发生改变)。

3. 如:6x+8>9x-4,求x ? 把x 的项移到左边,把常数项移到右边,变成6x-9x>-4-8,合并同类项之后得-3x>-12,两边同除-3得x<4(记得改变符号)。

成人高考高起专数学知识点归纳总结

成人高考高起专数学知识点归纳总结一、集合论与逻辑1. 集合与元素:集合是指具有相同特性的对象的总体,元素是构成集合的个体。

2. 集合的表示方法:列举法、描述法、特殊集合。

3. 集合的运算:并集、交集、差集、补集。

4. 集合的关系:包含关系、相等关系、互斥关系、无交关系。

5. 命题与命题的逻辑运算:合取、析取、否定、蕴含、等价。

6. 命题的真值表与真值运算:真、假、可满足、不可满足。

二、数与代数1. 数的性质:自然数、整数、有理数、实数、无理数。

2. 数的基本运算:加法、减法、乘法、除法。

3. 数的性质与运算规律:交换律、结合律、分配律、对称律。

4. 代数式与多项式:代数式的定义、多项式的定义、单项式与多项式。

5. 多项式的运算:多项式的加法、减法、乘法。

6. 因式分解与整式的乘法公式:公因式提取法、公式法、分组分解法、特殊公式。

7. 一元一次方程与不等式:方程与方程的解、不等式与不等式的解、绝对值不等式。

8. 二元一次方程组:方程组与方程组的解、二元一次方程组的解法。

三、函数与方程1. 函数的概念与性质:函数的定义、定义域、值域、单调性、奇偶性。

2. 基本初等函数:常数函数、幂函数、指数函数、对数函数、三角函数。

3. 函数的运算:函数的加法、减法、乘法、除法、复合运算。

4. 反函数与二次函数:反函数的性质、二次函数的定义、顶点、对称轴、图像。

5. 一次函数与一次函数方程:一次函数的定义、斜率、截距、图像、一次函数方程的解法。

6. 一元二次方程:二次方程的定义、根与系数的关系、求解二次方程的方法。

7. 二元二次方程组:二元二次方程组的定义、解法。

四、几何与三角1. 几何图形的性质:点、线、面、角、线段、圆。

2. 几何图形的分类与性质:直线与曲线、多边形、圆的性质。

3. 点、线、面的位置关系:相交、平行、垂直、重合。

4. 相似与全等:相似的定义、判定与性质、全等的定义、判定与性质。

5. 三角形的性质与判定:角的性质、三角形的分类、判定三角形的方法。

完整版)成人高考数学知识点总结

完整版)成人高考数学知识点总结成人高考数学考前辅导:数学知识点与题一、集合重点是集合的并与交的运算。

第1题和第2题是最典型的试题,要很好掌握。

关于补集的运算,元素与集合的关系,子集合的内容也要知道,做些准备。

3、4两题在以往考试中很少出现。

1.设集合M={1,2,3,4,5},集合N={2,4,6,8,10},则M∩N=2,M∪N=2.设集合M={x|x≤-1},N={x|x≥-2},则M∩N=,M∪N=3.全集U={1,2,3,4,5,6,7},集合A={1,3,5,7},集合B={3,5},则Cu(A∩B)=,Cu(A∪B)=4.下列式子正确的是(A)⊆N(B){}∈N(C)∉N(D){}⊆N二、简要逻辑几乎每年都有一道这个内容的选择题。

记住:要想证明由甲可以推出乙必须根据定义定理公式;要想证明由甲不能推出乙,除了根据定义定理公式,还可以举出反例。

题目内容会涉及代数、三角或几何知识。

1.设命题甲:|a|=|b|;命题乙:a=b,则(A)甲是乙的充分条件但不是乙的必要条件(B)甲是乙的必要条件但不是乙的充分条件(C)甲不是乙的充分条件也不是乙的必要条件(D)甲是乙的充分必要条件2.设命题甲:x=1;命题乙:x-x=,则(A)甲是乙的充分条件但不是乙的必要条件(B)甲是乙的必要条件但不是乙的充分条件(C)甲不是乙的充分条件也不是乙的必要条件(D)甲是乙的充分必要条件3.设x、y是实数,则x=y的充分必要条件是(A)x=y (B)x=-y(C)x3=y3(D)|x|=|y|三、不等式的性质判断不等式是否成立,在试题中也常出现。

一定要明白不等式性质中的条件是什么结论是什么;此外用作差比较法可解决一些问题;最后还可根据函数单调性判断某些不等式能否成立(见指数函数对数函数)。

1.若ab(B)a-b>1/a(C)|a|>|b|(D)a>b22.设x、y是实数且x>y,则下列不等式中,一定成立的是(A)x>y(B)xc>yc(c≠0)(C)x-y>0(D)x/y>1四、解一元一次不等式和不等式组一般没有直接作为试题出现,但是必须掌握这些基础知识并提高运算能力。

高起专《数学》重点公式及考点总结

成人高考高起专《数学》复习资料考试注意要点1)考试采用闭卷笔试形式。

全卷满分为150分,考试时间为120分钟2)考试中可以使用计算器3)考试要求分为三个等级:了解、掌握、灵活运用一、集合和简易逻辑1.集合的概念(灵活运用)子集:对于集合A和集合B,如果A中的所有元素都能在B中找到,则集合A就叫做B的子集,记作:A包含于B,A⊆B并集:由所有属于集合A或属于集合B的元素所组成的集合,记作A∪B交集:由属于A且属于B的相同元素组成的集合,记作A∩B补集:绝对补集。

一般来说,设U是一个集合,A是U的一个子集,则U中所有不属于A的元素称为A在U中的补集2.简易逻辑(灵活运用)判断真假的语句叫命题。

命题真值只能取两个值:真或假。

真对应判断正确,假对应判断错误。

如:真命题:三角形的三角之和为180度如:假命题:人会飞充分条件:如果A能推出B,B不一定能推出A,那么A就是B的充分条件。

如:A为B的子集,即属于A的一定属于B,则有元素x属于A,就一定能推出x属于B必要条件:如果B能推出A,A不一定能推出B,则B为A的必要条件充分必要条件:A能推出B,B也能推出A,则A是B的充分必要条件二、不等式和不等式组1.不等式性质一(灵活运用)1)不等式两边同加或同减一个数,不等号方向不变,若a>b,则a±c>b±c2)不等式两边同乘或同除以一个正数,方向不变3)不等式两边同乘或同除以一个负数,方向改变2.不等式的性质二(掌握)1)如果a>b>0,c>d>0,那么ac>bd2)如果a>b,ab>0,则1/a<1/b3)如果a>b>0,那么a n>b n(n>1)4)|a+b|≤|a|+|b|三、函数1.函数定义域和值域(掌握)Y=f(x)中,x的取值范围即为函数的定义域,y对应x的取值范围为值域2.函数奇偶性(掌握)偶函数:若对于定义域内的任意一个x,都有f(-x)=f(x),那么f(x)称为偶函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年成人高考高起点《数学》备考
(一)数列
(二)三角函数公式
(三)导数与微分公式
( 四) 不定积分
(五)函数图像
(六)常见公式
备考难点
难点一:集合思想及应用
集合是高中数学的基本知识,为历年必考内容之一,主要考查对集合基本概念的认识和理解,以及作为工具,考查集合语言和集合思想的运用。

本节主要是帮助考生运用集合的观点,不断加深对集合概念、集合语言、集合思想的理解与应用。

1、难点磁场
已知集合A={(x,y)|x2+mx-y+2=0},B={(x,y)|x-y+1=0,且0≤x≤2},如果A∩B≠,求实数m的取值范围。

难点二:充要条件的判定
充分条件、必要条件和充要条件是重要的数学概念,主要用来区分命题的条件p和结论q之间的关系。

本节主要是通过不同的知识点来剖析充分必要条件的意义,让考生能准确判定给定的两个命题的充要关系。

2、难点磁场
已知关于x的实系数二次方程x2+ax+b=0有两个实数根α、β,证明:|α|<2且|β|<2是2|a|<4+b且|b|<4的充要条件
难点三:运用向量法解题
平面向量是新教材改革增加的内容之一,近几年的全国使用新教材的高考试题逐渐加大了对这部分内容的考查力度,本节内容主要是帮助考生运用向量法来分析,解决一些相关问题。

3、难点磁场
三角形ABC中,A(5,-1)、B(-1,7)、C(1,2),求:(1)BC边上的中线AM的长;(2)∠CAB的平分线AD的长;(3)cosABC的值。

难点四:三个“二次”及关系
三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具。

高考试题中近一半的试题与这三个“二次”问题有关。

本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法。

4、难点磁场
已知对于x的所有实数值,二次函数f(x)=x2-4ax+2a+12(a∈R)的值都是非负的,求关于x的方程 =|a-1|+2的根的取值范围。

难点五:求解函数解析式
求解函数解析式是高考重点考查内容之一,需引起重视。

本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力。

5、难点磁场
已知f(2-cosx)=cos2x+cosx,求f(x-1)。

案例探究
[例1](1)已知函数f(x)满足f(logax)= (其中a>0,a≠1,x>0),求f(x)的表达式。

(2)已知二次函数f(x)=ax2+bx+c满足|f(1)|=|f(-1)|=|f(0)|=1,求f(x)的表达式。

难点六:函数值域及求法
函数的值域及其求法是近几年高考考查的重点内容之一。

本节主要帮助考生灵活掌握求值域的各种方法,并会用函数的值域解决实际应用问题。

6、难点磁场
设m是实数,记M={m|m>1},f(x)=log3(x2-4mx+4m2+m)。

(1)证明:当m∈M时,f(x)对所有实数都有意义;反之,若f(x)对所有实数x都有意义,则m∈M.
(2)当m∈M时,求函数f(x)的最小值。

(3)求证:对每个m∈M,函数f(x)的最小值都不小于1.
难点七:奇偶性与单调性(一)
函数的单调性、奇偶性是高考的重点内容之一,考查内容灵活多样。

本节主要帮助考生深刻理解奇偶性、单调性的定义,掌握判定方法,正确认识单调函数与奇偶函数的图象。

7、难点磁场
设a>0,f(x)= 是R上的偶函数,(1)求a的值;(2)证明: f(x)在(0,+∞)上是增函数。

难点八:奇偶性与单调性(二)
函数的单调性、奇偶性是高考的重点和热点内容之一,特别是两性质的应用更加突出。

本节主要帮助考生学会怎样利用两性质解题,掌握基本方法,形成应用意识。

8、难点磁场
已知偶函数f(x)在(0,+∞)上为增函数,且f(2)=0,解不等式f[log2(x2+5x+4)]≥0.
案例探究
[例1]已知奇函数f(x)是定义在(-3,3)上的减函数,且满足不等式f(x-3)+f(x2-3)<0,设不等式解集为A,B=A∪{x|1≤x≤ },求函数g(x)=-3x2+3x-4(x∈B)的最大值。

难点九:指数函数、对数函数问题
指数函数、对数函数是高考考查的重点内容之一,本节主要帮助考生掌握两种函数的概念、图象和性质并会用它们去解决某些简单的实际问题。

9、难点磁场
设f(x)=log2 ,F(x)= f(x)。

(1)试判断函数f(x)的单调性,并用函数单调性定义,给出证明;
难点十:函数图象与图象变换
函数的图象与性质是高考考查的重点内容之一,它是研究和记忆函数性质的直观工具,利用它的直观性解题,可以起到化繁为简、化难为易的作用。

因此,考生要掌握绘制函数图象的一般方法,掌握函数图象变化的一般规律,能利用函数的图象研究函数的性质。

10、难点磁场
已知函数f(x)=ax3+bx2+cx+d的图象如图,求b的范围。

难点十一:函数中的综合问题
函数综合问题是历年高考的热点和重点内容之一,一般难度较大,考查内容和形式灵活多样。

本节课主要帮助考生在掌握有关函数知识的基础上进一步深化综合运用知识的能力,掌握基本解题技巧和方法,并培养考生的思维和创新能力。

11、难点磁场
设函数f(x)的定义域为R,对任意实数x、y都有f(x+y)=f(x)+f(y),当x>0时f(x)<0且f(3)=-4.
(1)求证:f(x)为奇函数;
(2)在区间[-9,9]上,求f(x)的最值。

(2)若f(x)的反函数为f-1(x),证明:对任意的自然数n(n≥3),都有f-1(n)>0 ;
(3)若F(x)的反函数F-1(x),证明:方程F-1(x)=0有惟一解。

相关文档
最新文档