向量数乘运算及其几何意义教案
(教案)向量的数乘运算Word版含解析

6.2.3向量的数乘运算课标解读课标要求核心素养1.通过实例分析,掌握平面向量数乘运算及运算规则.2.理解平面向量数乘运算的几何意义.(重点)3.理解两个平面向量共线的含义.(难点)1.运用向量数乘运算律进行向量运算,培养数学运算核心素养.2.通过对比实数的运算律理解向量数乘的运算律,培养类比推理的能力.3.通过共线定理的应用培养直观想象核心素养.一只兔子第1秒钟向东跑了2米,第2、3秒钟又向东各跑了2米.问题1:兔子3秒的位移一共是多少?答案设兔子第1秒的位移是向量a,则3秒的位移是向量3a.问题2:若兔子向西跑3秒,则向量是多少?答案-3a(用a表示向东跑1秒).1.向量的数乘定义实数λ与向量a的积是一个①向量记法λa长度|λa|=|λ||a|方向λ>0λa的方向与a的方向②相同λ<0λa的方向与a的方向③相反几何意义λa中的实数λ是向量a的系数λ>0λa可以看作是把向量a沿着a的方向扩大④|λ|倍得到λ<0λa可以看作是把向量a沿着a的反方向缩小|λ|倍得到特别提醒当λ=0时,λa=0.当λ≠0时,若a=0,也有λa=0.思考1:实数与向量能否进行加减运算?提示不能.2.向量的数乘运算的运算律设λ,μ为实数,那么(1)λ(μa)=(λμ)a;(2)(λ+μ)a=⑤λa +μa; (3)λ(a+b )=λa +λb.思考2:向量数乘运算律与实数乘法运算律有什么关系? 提示两种运算律类似,(2)(3)式是向量因式不同的分配律. 3.向量的线性运算(1)向量的加、减、数乘运算统称为向量的线性运算,向量线性运算的结果仍是⑥向量. (2)对于任意向量a,b 以及任意实数λ、μ1、μ2,恒有λ(μ1a ±μ2b )=λμ1a ±λμ2b. 思考3:向量的线性运算法则与实数的运算法则有什么关系? 提示在形式上类似. 4.共线向量定理向量a(a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使⑦b =λa. 思考4:λ与向量a,b 的方向有什么关系?提示若λ>0,则a 与b 同向;若λ<0,则a 与b 反向.探究一向量的线性运算例1(1)化简下列各式:①3(6a+b)-9(a +13b);②12[3a +2b -(a +12b)]-2(12a +38b); ③2(5a-4b+c)-3(a-3b+c)-7a.(2)已知向量a,b,m,n 满足a=3m+2n,b=m-3n,试用向量a,b 表示向量m,n. 解析(1)①原式=18a+3b-9a-3b=9a. ②原式=12(2a +32b)-a-34b=a+34b-a-34b=0. ③原式=10a-8b+2c-3a+9b-3c-7a=b-c. (2)a=3m+2n ①,b=m-3n ②, 则①×3+②×2得3a+2b=11m, 即m=311a+211b. ①-②×3得a-3b=11n,即n=111a-311b. 思维突破向量的线性运算的技巧向量的线性运算类似于代数多项式的运算.(1)实数运算中去括号、移项、合并同类项、提取公因式等方法在向量线性运算中也可以使用.(2)这里的“同类项”“公因式”指向量,实数看作是向量的系数. 1-1化简下列各式:(1)2(3a-2b)+3(a+5b)-5(4b-a); (2)16[2(2a+8b)-4(4a-2b)]; (3)(m+n)(a-b)-(m-n)(a+b).解析(1)原式=6a-4b+3a+15b-20b+5a=14a-9b. (2)原式=16×(4a+16b-16a+8b)=16×(-12a+24b)=-2a+4b. (3)原式=m(a-b)+n(a-b)-m(a+b)+n(a+b) =(m+n-m+n)a+(-m-n-m+n)b =2na-2mb.探究二共线向量定理及其应用例2设两个非零向量a 与b 不共线.(1)若AB ⃗⃗⃗⃗⃗ =a+b,BC ⃗⃗⃗⃗⃗ =2a+8b,CD ⃗⃗⃗⃗⃗ =3(a-b),求证:A 、B 、D 三点共线; (2)试确定实数k,使ka+b 与a+kb 共线. 解析(1)证明:∵AB ⃗⃗⃗⃗⃗ =a+b,BC ⃗⃗⃗⃗⃗ =2a+8b, CD ⃗⃗⃗⃗⃗ =3(a-b),∴BD ⃗⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ =2a+8b+3(a-b)=2a+8b+3a-3b=5(a+b)=5AB ⃗⃗⃗⃗⃗ . ∴AB ⃗⃗⃗⃗⃗ 、BD ⃗⃗⃗⃗⃗⃗ 共线, 又∵AB ⃗⃗⃗⃗⃗ 与BD⃗⃗⃗⃗⃗⃗ 有公共点B,∴A 、B 、D 三点共线. (2)∵ka+b 与a+kb 共线, ∴存在实数λ,使ka+b =λ(a+kb), 即ka+b =λa +λk b,∴(k-λ)a =(λk -1)b. ∵a 、b 是不共线的两个非零向量, ∴k-λ=λk -1=0,∴k 2-1=0,∴k=±1. 思维突破用向量法证明三点共线的关键与步骤(1)关键:能否找到一个实数λ,使得b =λa(a 、b 为这三点构成的任意两个向量). (2)步骤:先证明向量共线,然后指出两向量有公共点,从而证得三点共线.2-1如图,在平行四边形ABCD 中,点M 是AB 的中点,点N 在线段BD 上,且有BN=13BD,求证:M,N,C 三点共线.证明设AB ⃗⃗⃗⃗⃗ =a,BC ⃗⃗⃗⃗⃗ =b,则MN ⃗⃗⃗⃗⃗⃗⃗ =MB ⃗⃗⃗⃗⃗⃗ +BN ⃗⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ +13BD ⃗⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ +13(AD ⃗⃗⃗⃗⃗ -AB ⃗⃗⃗⃗⃗ )=12a+13(b-a)=16a+13b,MC ⃗⃗⃗⃗⃗⃗ =MB ⃗⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =12a+b=3×(16a +13b)=3MN ⃗⃗⃗⃗⃗⃗⃗ ,∴MC ⃗⃗⃗⃗⃗⃗ ,MN ⃗⃗⃗⃗⃗⃗⃗ 共线,又MC ⃗⃗⃗⃗⃗⃗ 与MN⃗⃗⃗⃗⃗⃗⃗ 有公共点M,∴M,N,C 三点共线.探究三向量线性运算的应用例3(易错题)已知点E,F 分别为四边形ABCD 的对角线AC,BD 的中点,设BC ⃗⃗⃗⃗⃗ =a,DA ⃗⃗⃗⃗⃗ =b,试用a,b 表示EF⃗⃗⃗⃗⃗ . 解析如图所示,取AB 的中点P,连接EP,FP. 在△ABC 中,EP 是中位线, 所以PE⃗⃗⃗⃗⃗ =12BC ⃗⃗⃗⃗⃗ =12a. 在△ABD 中,FP 是中位线,所以PF ⃗⃗⃗⃗⃗ =12AD ⃗⃗⃗⃗⃗ =-12DA ⃗⃗⃗⃗⃗ =-12b.在△EFP 中,EF ⃗⃗⃗⃗⃗ =EP ⃗⃗⃗⃗⃗ +PF ⃗⃗⃗⃗⃗ =-PE ⃗⃗⃗⃗⃗ +PF⃗⃗⃗⃗⃗ =-12·a-12b =-12(a+b).易错点拨在根据平面几何图形进行化简、证明时,要准确应用平面几何图形的性质.应根据题意判断所给图形是不是特殊图形,不能盲目运用特殊图形的性质进行求解.3-1已知四边形ABCD 是一个梯形,AB ∥CD,且AB=2CD,M,N 分别是DC,AB 的中点,已知AB ⃗⃗⃗⃗⃗ =a,AD ⃗⃗⃗⃗⃗ =b,试用a,b 表示BC ⃗⃗⃗⃗⃗ 和MN ⃗⃗⃗⃗⃗⃗⃗ . 解析解法一:如图,连接CN, 易知AN 与DC 垂直且相等, 所以四边形ANCD 是平行四边形. CN ⃗⃗⃗⃗⃗ =-AD ⃗⃗⃗⃗⃗ =-b,又因为CN ⃗⃗⃗⃗⃗ +NB ⃗⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =0, 所以BC⃗⃗⃗⃗⃗ =-CN ⃗⃗⃗⃗⃗ -NB ⃗⃗⃗⃗⃗⃗ =b-12a, MN ⃗⃗⃗⃗⃗⃗⃗ =CN ⃗⃗⃗⃗⃗ -CM ⃗⃗⃗⃗⃗⃗ =CN ⃗⃗⃗⃗⃗ +12AN⃗⃗⃗⃗⃗⃗ =-b+14a. 解法二:因为AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ +DA ⃗⃗⃗⃗⃗ =0, 所以a+BC⃗⃗⃗⃗⃗ +(-12a)+(-b)=0, 所以BC⃗⃗⃗⃗⃗ =b-12a, 又因为在四边形ADMN 中有AD ⃗⃗⃗⃗⃗ +DM ⃗⃗⃗⃗⃗⃗ +MN ⃗⃗⃗⃗⃗⃗⃗ +NA⃗⃗⃗⃗⃗⃗ =0, 所以b+14a+MN⃗⃗⃗⃗⃗⃗⃗ +(-12a)=0, 所以MN⃗⃗⃗⃗⃗⃗⃗ =14a-b. 3-2设O 为△ABC 内任意一点,且满足OA ⃗⃗⃗⃗⃗ +2OB ⃗⃗⃗⃗⃗ +3OC ⃗⃗⃗⃗⃗ =0,若D,E 分别是BC,CA 的中点. (1)求证:D,E,O 三点共线; (2)求S△ABC S △AOC的值.解析(1)证明:如图,OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ =2OD ⃗⃗⃗⃗⃗⃗ ,OA ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ =2OE ⃗⃗⃗⃗⃗ , ∴OA ⃗⃗⃗⃗⃗ +2OB ⃗⃗⃗⃗⃗ +3OC ⃗⃗⃗⃗⃗ =(OA ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ )+2(OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ )=2(2OD ⃗⃗⃗⃗⃗⃗ +OE ⃗⃗⃗⃗⃗ )=0, ∴2OD ⃗⃗⃗⃗⃗⃗ +OE ⃗⃗⃗⃗⃗ =0,∴OD ⃗⃗⃗⃗⃗⃗ 与OE ⃗⃗⃗⃗⃗ 共线,又OD ⃗⃗⃗⃗⃗⃗ 与OE ⃗⃗⃗⃗⃗ 有公共点O, ∴D,E,O 三点共线. (2)由(1)知2|OD ⃗⃗⃗⃗⃗⃗ |=|OE ⃗⃗⃗⃗⃗ |,∴S △AOC =2S △COE =2×23S △CDE =2×23×14×S △ABC =13S △ABC ,∴S△ABC S △AOC=3.1.已知非零向量a,b 满足a=4b,则() A.|a|=|b| B.4|a|=|b| C.a,b 的方向相同 D.a,b 的方向相反答案C ∵a=4b,4>0,∴|a|=4|b|. ∵4b 与b 的方向相同, ∴a 与b 的方向相同.2.(多选题)下列向量中,a,b 一定共线的是() A.a=2e,b=-2e B.a=e 1-e 2,b=-2e 1+2e 2 C.a=4e 1-25e 2,b=e 1-110e 2 D.a=e 1+e 2,b=2e 1-2e 2答案ABCA 中,b=-a,则a,b 共线;B 中,b=-2a,则a,b 共线;C 中,a=4b,则a,b 共线;D 中,a,b 不共线.3.已知向量a=e 1+λe 2,b=2e 1,λ∈R,且λ≠0,若a ∥b,则() A.e 1=0B.e 2=0C.e 1∥e 2D.e 1∥e 2或e 1=0或e 2=0 答案D4.已知x,y 是实数,向量a,b 不共线,若(x+y-1)a+(x-y)b=0,则x=,y=. 答案12;12解析由已知得{x +y -1=0,x -y =0,解得x=y=12.5.已知两个非零向量e 1、e 2不共线,若AB ⃗⃗⃗⃗⃗ =2e 1+3e 2,BC ⃗⃗⃗⃗⃗ =6e 1+23e 2,CD ⃗⃗⃗⃗⃗ =4e 1-8e 2.求证:A 、B 、D 三点共线.证明∵AD⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ =2e 1+3e 2+6e 1+23e 2+4e 1-8e 2 =12e 1+18e 2=6(2e 1+3e 2)=6AB ⃗⃗⃗⃗⃗ , ∴AD ⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ 共线.又∵AD ⃗⃗⃗⃗⃗ 和AB ⃗⃗⃗⃗⃗ 有公共点A, ∴A 、B 、D 三点共线.数学运算——在几何图形中进行向量线性运算如图所示,已知▱ABCD 的边BC,CD 上的中点分别为K,L,且AK ⃗⃗⃗⃗⃗ =e 1,AL ⃗⃗⃗⃗⃗ =e 2,试用e 1,e 2表示BC ⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ .审:几何图形中用已知向量表示待求向量,可考虑用三角形法则或共线定理. 联:结合图形特征,把待求向量放在三角形中,进行加减运算. 解:解法一:设BC⃗⃗⃗⃗⃗ =a,则BK ⃗⃗⃗⃗⃗⃗ =①, AB ⃗⃗⃗⃗⃗ =AK ⃗⃗⃗⃗⃗ +KB ⃗⃗⃗⃗⃗⃗ =e 1-12a,DL⃗⃗⃗⃗⃗ =12e 1-14a. 又AD⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ =a,由AD ⃗⃗⃗⃗⃗ +DL ⃗⃗⃗⃗⃗ =AL ⃗⃗⃗⃗⃗ ,得a+12e 1-14a=e 2, 解得a=②.由CD ⃗⃗⃗⃗⃗ =-AB ⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ =e 1-12a,得CD ⃗⃗⃗⃗⃗ =③.解法二:设BC ⃗⃗⃗⃗⃗ =m,CD ⃗⃗⃗⃗⃗ =n,则BK⃗⃗⃗⃗⃗⃗ =12m,DL ⃗⃗⃗⃗⃗ =-12n. 由AB ⃗⃗⃗⃗⃗ +BK ⃗⃗⃗⃗⃗⃗ =AK ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ +DL ⃗⃗⃗⃗⃗ =AL ⃗⃗⃗⃗⃗ , 得④,得m=23(2e 2-e 1),n=⑤,即BC ⃗⃗⃗⃗⃗ =43e 2-23e 1,CD ⃗⃗⃗⃗⃗ =-43e 1+23e 2. 解法三:如图所示,BC 的延长线与AL 的延长线交于点E,则△DLA ≌△CLE.从而AE ⃗⃗⃗⃗⃗ =2AL ⃗⃗⃗⃗⃗ ,CE ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ ,KE ⃗⃗⃗⃗⃗ =32BC⃗⃗⃗⃗⃗ , 由KE ⃗⃗⃗⃗⃗ =AE ⃗⃗⃗⃗⃗ -AK ⃗⃗⃗⃗⃗ ,得32BC⃗⃗⃗⃗⃗ =2e 2-e 1, 即BC⃗⃗⃗⃗⃗ =⑥. 同理可得CD ⃗⃗⃗⃗⃗ =⑦.思:解决此类问题的一般思路是将所表示向量置于某一个三角形内,用加减法进行运算,然后逐步用已知向量表示待求向量,过程中体现数学运算核心素养.答案①12a ②43e 2-23e 1,即BC ⃗⃗⃗⃗⃗ =43e 2-23e 1 ③-43e 1+23e 2④{-n +12m =e 1m -12n =e 2⑤23(-2e 1+e 2)⑥43e 2-23e 1⑦-43e 1+23e 2如图所示,四边形OADB 是以向量OA ⃗⃗⃗⃗⃗ =a,OB⃗⃗⃗⃗⃗ =b 为邻边的平行四边形,又BM=13BC,CN=13CD,试用a,b 表示OM ⃗⃗⃗⃗⃗⃗ 、ON ⃗⃗⃗⃗⃗⃗ 、MN⃗⃗⃗⃗⃗⃗⃗ . 解析BM⃗⃗⃗⃗⃗⃗ =13BC ⃗⃗⃗⃗⃗ =16BA ⃗⃗⃗⃗⃗ =16(OA ⃗⃗⃗⃗⃗ -OB ⃗⃗⃗⃗⃗ )=16(a-b)=16a-16b, ∴OM ⃗⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ +BM ⃗⃗⃗⃗⃗⃗ =b+16a-16b=16a+56b. ∵CN ⃗⃗⃗⃗⃗ =13CD ⃗⃗⃗⃗⃗ =16OD⃗⃗⃗⃗⃗⃗ , ∴ON ⃗⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ +CN ⃗⃗⃗⃗⃗ =12OD ⃗⃗⃗⃗⃗⃗ +16OD ⃗⃗⃗⃗⃗⃗ =23OD ⃗⃗⃗⃗⃗⃗ =23(OA ⃗⃗⃗⃗⃗ +OB⃗⃗⃗⃗⃗ )=23a+23b, MN ⃗⃗⃗⃗⃗⃗⃗ =ON ⃗⃗⃗⃗⃗⃗ -OM ⃗⃗⃗⃗⃗⃗ =23a+23b-16a-56b=12a-16b.1.将112[2(2a+8b)-4(4a-2b)]化简成最简形式为() A.2a-bB.2b-a C.a-bD.b-a答案B2.在△ABC 中,如果AD,BE 分别为BC,AC 上的中线,且AD ⃗⃗⃗⃗⃗ =a,BE ⃗⃗⃗⃗⃗ =b,那么BC ⃗⃗⃗⃗⃗ =() A.23a+43bB.23a-23b C.23a-43bD.-23a+43b 答案A3.已知AB ⃗⃗⃗⃗⃗ =a+4b,BC ⃗⃗⃗⃗⃗ =2b-a,CD ⃗⃗⃗⃗⃗ =2(a+b),则() A.A 、B 、C 三点共线B.A 、B 、D 三点共线 C.A 、C 、D 三点共线D.B 、C 、D 三点共线 答案B4.在△ABC 中,已知D 是AB 边上一点,若AD ⃗⃗⃗⃗⃗ =2DB ⃗⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ =13CA ⃗⃗⃗⃗⃗ +λCB ⃗⃗⃗⃗⃗ ,则λ等于() A.23B.13C.-13D.-23答案A 解法一:由AD ⃗⃗⃗⃗⃗ =2DB⃗⃗⃗⃗⃗⃗ , 可得CD ⃗⃗⃗⃗⃗ -CA ⃗⃗⃗⃗⃗ =2(CB ⃗⃗⃗⃗⃗ -CD ⃗⃗⃗⃗⃗ )⇒CD ⃗⃗⃗⃗⃗ =13CA⃗⃗⃗⃗⃗ +23CB ⃗⃗⃗⃗⃗ ,所以λ=23. 解法二:CD ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ +23AB ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ +23(CB ⃗⃗⃗⃗⃗ -CA ⃗⃗⃗⃗⃗ )=13CA⃗⃗⃗⃗⃗ +23CB ⃗⃗⃗⃗⃗ ,所以λ=23. 5.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A 、C),则AP ⃗⃗⃗⃗⃗ =() A.λ(AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ ),λ∈(0,1) B.λ(AB ⃗⃗⃗⃗⃗ +BC⃗⃗⃗⃗⃗ ),λ∈(0,√22) C.λ(AB⃗⃗⃗⃗⃗ -BC ⃗⃗⃗⃗⃗ ),λ∈(0,1) D.λ(AB ⃗⃗⃗⃗⃗ -BC⃗⃗⃗⃗⃗ ),λ∈(0,√22) 答案A 因为P 是对角线AC 上的一点(不包括端点A 、C),所以存在λ∈(0,1),使得AP ⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ ,于是AP ⃗⃗⃗⃗⃗ =λ(AB ⃗⃗⃗⃗⃗ +BC⃗⃗⃗⃗⃗ ),λ∈(0,1). 6.已知向量a,b 不共线,实数x,y 满足向量等式5xa+(8-y)b=4xb+3(y+9)a,则x=,y=. 答案3;-4解析因为a 与b 不共线,所以{5x =3y +27,8-y =4x,解得{x =3,y =-4.7.若|a|=3,|b|=2,b 与a 反向,则a=b. 答案-32解析因为b 与a 反向,所以a =λb ,λ<0.又|a|=3,|b|=2,所以|a|∶|b |=|λ|, 所以λ=-32,所以a=-32b.8.如图,在四边形ABCD 中,E,F,G,H 分别为BD,AB,AC,CD 的中点,求证:四边形EFGH 为平行四边形.证明∵F,G 分别是AB,AC 的中点, ∴FG ⃗⃗⃗⃗⃗ =12BC ⃗⃗⃗⃗⃗ .同理,EH⃗⃗⃗⃗⃗⃗ =12BC ⃗⃗⃗⃗⃗ . ∴FG ⃗⃗⃗⃗⃗ =EH ⃗⃗⃗⃗⃗⃗ . ∴FG=EH,FG ∥EH,∴四边形EFGH 为平行四边形.9.已知△ABC 和点M 满足MA ⃗⃗⃗⃗⃗⃗ +MB ⃗⃗⃗⃗⃗⃗ +MC ⃗⃗⃗⃗⃗⃗ =0.若存在实数m 使得AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =m AM ⃗⃗⃗⃗⃗⃗ 成立,则m=() A.2B.3C.4D.5答案B 由MA ⃗⃗⃗⃗⃗⃗ +MB ⃗⃗⃗⃗⃗⃗ +MC ⃗⃗⃗⃗⃗⃗ =0可知,M 为△ABC 的重心,故AM ⃗⃗⃗⃗⃗⃗ =23×12(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )=13(AB ⃗⃗⃗⃗⃗ +AC⃗⃗⃗⃗⃗ ),所以AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =3AM ⃗⃗⃗⃗⃗⃗ ,即m=3.10.(多选题)在△ABC 中,点D 在线段BC 的延长线上,且BC ⃗⃗⃗⃗⃗ =3CD ⃗⃗⃗⃗⃗ ,点O 在线段CD 上(与点C 、D 不重合),若AO ⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗⃗ +(1-x)AC ⃗⃗⃗⃗⃗ ,则x 可以是() A.-13B.-14C.0D.-√26答案BD 当点O 与点C 重合时,AC ⃗⃗⃗⃗⃗ =0AB ⃗⃗⃗⃗⃗ +(1-0)·AC ⃗⃗⃗⃗⃗ ,此时x=0;当点O 与点D 重合时,AD ⃗⃗⃗⃗⃗ =-13AB ⃗⃗⃗⃗⃗ +43AC ⃗⃗⃗⃗⃗ , 此时x=-13.因为点O 在线段CD 上(与点C 、D 不重合),所以-13<x<0.故x 可以是-14,-√26.故选BD. 11.若对于△ABC 内部的一点O,存在实数λ使得OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ =λ(OA ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ )成立,则△OBC 与△ABC 的面积比为. 答案1∶2解析如图所示,设D,E 分别是AB,AC 的中点,连接OA,OB,OC,以OA,OB 为邻边作平行四边形OAGB,以OA,OC 为邻边作平行四边形OAFC,连接OG,OF.则OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ =OG ⃗⃗⃗⃗⃗ =2OD ⃗⃗⃗⃗⃗⃗ ,OA ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ =OF ⃗⃗⃗⃗⃗ =2OE ⃗⃗⃗⃗⃗ ,因为OA⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ =λ(OA ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ ),所以OD ⃗⃗⃗⃗⃗⃗ =λOE ⃗⃗⃗⃗⃗ , 所以点O 在线段DE 上.又因为D,E 分别是AB,AC 的中点,所以△OBC 与△ABC 的面积比是1∶2.12.如图,四边形ABCD 是一个梯形,AB ⃗⃗⃗⃗⃗ ∥CD ⃗⃗⃗⃗⃗ 且|AB ⃗⃗⃗⃗⃗ |=2|CD ⃗⃗⃗⃗⃗ |,M,N 分别是DC,AB 的中点,已知AB ⃗⃗⃗⃗⃗ =e 1,AD ⃗⃗⃗⃗⃗ =e 2,试用e 1,e 2表示下列向量:AC ⃗⃗⃗⃗⃗ =;MN⃗⃗⃗⃗⃗⃗⃗ =. 答案e 2+12e 1;14e 1-e 2解析因为AB ⃗⃗⃗⃗⃗ ∥CD ⃗⃗⃗⃗⃗ ,|AB ⃗⃗⃗⃗⃗ |=2|CD ⃗⃗⃗⃗⃗ |,所以AB ⃗⃗⃗⃗⃗ =2DC ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ .所以AC ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ +DC ⃗⃗⃗⃗⃗ =e 2+12e 1.MN ⃗⃗⃗⃗⃗⃗⃗ =MD ⃗⃗⃗⃗⃗⃗ +DA ⃗⃗⃗⃗⃗ +AN ⃗⃗⃗⃗⃗⃗ =-12DC ⃗⃗⃗⃗⃗ -AD ⃗⃗⃗⃗⃗ +12AB ⃗⃗⃗⃗⃗ =-14e 1-e 2+12e 1=14e 1-e 2. 13.已知O,A,M,B 为平面上四点,且OM ⃗⃗⃗⃗⃗⃗ =λOB ⃗⃗⃗⃗⃗ +(1-λ)OA ⃗⃗⃗⃗⃗ (λ∈R ,λ≠1,λ≠0).(1)求证:A,B,M 三点共线;(2)若点B 在线段AM 上,求实数λ的取值范围.解析(1)证明:因为OM ⃗⃗⃗⃗⃗⃗ =λOB ⃗⃗⃗⃗⃗ +(1-λ)OA ⃗⃗⃗⃗⃗ ,所以OM ⃗⃗⃗⃗⃗⃗ =λOB ⃗⃗⃗⃗⃗ +OA ⃗⃗⃗⃗⃗ -λOA ⃗⃗⃗⃗⃗ ,OM ⃗⃗⃗⃗⃗⃗ -OA ⃗⃗⃗⃗⃗ =λOB ⃗⃗⃗⃗⃗ -λOA ⃗⃗⃗⃗⃗ ,即AM ⃗⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ ,又λ∈R ,λ≠1,λ≠0,且AM ⃗⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ 有公共点A,所以A,B,M 三点共线.(2)由(1)知AM ⃗⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ ,若点B 在线段AM 上,则AM ⃗⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ 同向且|AM ⃗⃗⃗⃗⃗⃗ |>|AB ⃗⃗⃗⃗⃗ |(如图所示),所以λ>1.14.平面内有一个△ABC 和一点O(如图),线段OA,OB,OC 的中点分别为E,F,G,线段BC,CA,AB 的中点分别为L,M,N,设OA ⃗⃗⃗⃗⃗ =a,OB⃗⃗⃗⃗⃗ =b,OC ⃗⃗⃗⃗⃗ =c. (1)试用a,b,c 表示向量EL⃗⃗⃗⃗⃗ ,FM ⃗⃗⃗⃗⃗⃗ ,GN ⃗⃗⃗⃗⃗⃗ ; (2)证明:线段EL,FM,GN 交于一点且互相平分.解析(1)因为OE ⃗⃗⃗⃗⃗ =12a,OL ⃗⃗⃗⃗⃗ =12(b+c),所以EL ⃗⃗⃗⃗⃗ =OL ⃗⃗⃗⃗⃗ -OE ⃗⃗⃗⃗⃗ =12(b+c-a). 同理可得FM ⃗⃗⃗⃗⃗⃗ =12(a+c-b), GN ⃗⃗⃗⃗⃗⃗ =12(a+b-c). (2)证明:设线段EL 的中点为P 1,则OP 1⃗⃗⃗⃗⃗⃗⃗ =12(OE ⃗⃗⃗⃗⃗ +OL ⃗⃗⃗⃗⃗ )=14(a+b+c). 设FM,GN 的中点分别为P 2,P 3,同理可求得OP 2⃗⃗⃗⃗⃗⃗⃗ =14(a+b+c),OP 3⃗⃗⃗⃗⃗⃗⃗ =14(a+b+c),所以OP 1⃗⃗⃗⃗⃗⃗⃗ =OP 2⃗⃗⃗⃗⃗⃗⃗ =OP 3⃗⃗⃗⃗⃗⃗⃗ , 即线段EL,FM,GN 交于一点且互相平分.。
高中数学数乘向量教案

高中数学数乘向量教案
教学目标:
1. 理解数乘向量的概念。
2. 掌握数乘向量的运算法则。
3. 能够应用数乘向量解决实际问题。
教学重点:
1. 数乘向量的定义和性质。
2. 数乘向量的运算法则。
教学难点:
1. 能够熟练地进行数乘向量的运算。
2. 能够灵活运用数乘向量解决实际问题。
教学准备:
1. 教学资料:教材、讲义、习题集等。
2. 教学工具:黑板、彩色粉笔、投影仪等。
教学步骤:
一、导入(5分钟)
教师通过引入向量的概念,引出数乘向量的定义,并提出学习数乘向量的目的和意义。
二、讲解(15分钟)
1. 数乘向量的定义和性质。
2. 数乘向量的运算法则。
三、示范(10分钟)
教师通过示范例题,演示如何进行数乘向量的运算,并让学生跟着一起做练习。
四、练习(15分钟)
学生进行课堂练习,巩固数乘向量的运算方法,解决相关问题。
五、拓展(10分钟)
教师通过拓展练习,帮助学生深入理解数乘向量的应用,并激发学生的学习兴趣。
六、总结(5分钟)
教师对本节课的重点内容进行总结,并强调数乘向量的重要性和实际应用。
七、作业布置(5分钟)
布置相应作业,激发学生的学习兴趣,巩固今天所学知识。
教学反思:通过这节课的教学,学生能够初步掌握数乘向量的概念和运算法则,并能够灵
活运用解决问题。
同时,通过拓展练习,能够启发学生的思维,提高他们的数学应用能力。
向量数乘运算及几何意义学案1

必修4 2.2.3 向量数乘运算及其几何意义【学习目标】1.能举例说明实数与向量积的定义及几何意义,能准确确定数乘后的向量的模及方向;2.掌握向量数乘的运算律,并会用它进行计算;3.理解两个向量共线的等价条件,能够运用共线条件判定两向量是否平行.【学习重点】实数与向量的积的定义、运算律.【难点提示】向量的数乘的定义、运算律的理解与运用.【学法提示】1.请同学们课前将学案与教材8792P -结合进行自主学习(对教材中的文字、图象、表格、符号、观察、思考、说明与注释、例题、阅读与思考、小结等都要仔细阅读)、小组组织讨论,积极思考提出更多、更好、更深刻的问题,为课堂学习做好充分的准备;2.在学习过程中用好“十二字学习法”即:“读”、“挖”、“举”、“联”、“用”、“悟”、“听”、“问”、“通”、“总”、“研”、“会”,请在课堂上敢于提问、敢于质疑、敢于讲解与表达.【学习过程】 一、学习准备前面我们学习了向量有关知识,请对照上面知识网络,回顾其中知识内容,请对不熟悉的知识点进行复习,并填写在空白或横线处,同时思考下列问题:1.向量与实数(标量)的区别 ,向量与实数能进行加减运算吗?2.向量加法的运算法则 、 ,运算律 、 ;3.请同学们作出a a +;若2a =,则____a a +=;那么向量a a +能写成2a 吗?4.向量的减法 ,它是借用 来定义的?5.向量a 的相反向量是 ,其相反向量与原向量的本质关系是 ,向量b 的相反向量-b 实质就是向量b 乘以-1吗?3b 有怎样的意义吗?这就是本节课我们要探究的!二、学习探究 1.向量的数乘的定义:由上面“学习准备”中,我们知道向量b 的相反向量-b 实质就是向量b 乘以-1,3b 就是三个b 向量的和,0a a -=实质就是0a a a -=,a a +就是2a ,即2a a a +=,还有a a a a ----就是4a -等.若已知任意向量a ,请作出向量2a 、4a -,并观察它们与向量a 的长度、方向有何关系?并将你观察的结果发散思维,推广到一般情况!归纳概括 向量的数乘定义:一般地,实数λ与向量a 的积是 ,这种运算叫做向量的数乘,记作_____ _,它的长度和方向规定如下: (1)|λa |= |a |; (2)当0>λ时,_________________ ;当0<λ时,__________________;当0=λ时,_________________ . 2.向量的数乘满足的运算律已知任意向量a 、b ,请作出向量2(3)a 、(23)a ⋅、2()22a b a b ++、,2()22a b a b --、并观察它们有怎样的关系?并将你观察的结果发散思维推广到一般情况!归纳概括 设λ,μ为任意实数,a 、b 为任意向量,则: (1)结合律:________________________(链接1)(2)分配律:①________________________;②______________________ __ 快乐体验 教材P90页练习1、2、3请作在书上.挖掘拓展 1.向量的数乘与实数的乘法的异同点在哪里?(链接1)2.向量的数乘运算的结果是 ,运算法则与 类似,其几何意义是?(链接2)3.向量本身具有“形” 和“数”的双重特点,在实数与向量的积的运算中,既要考虑模的大小,又要考虑方向,这就是向量线性运算数的 、也是数学的 思想的体现.(链接3)三、典例赏析例1.教材P88页的例5,请同学们先独立完成后在看教材的解答. 解:解后反思 该题的题型怎样?你的求解与教材一致吗?有易错点吗? 变式练习 1.计算下列各式:(1)5(a+b)-4(a-b)-3a ;(2)2(2a+6b-3c)-3(-3a+4b-2c)2.若3m+2n=a,m-3n=b,其中a,b是已知向量,求m,n.解:例2. 如图2.2.3-1, 凸四边形ABCD 的边AD 、BC的中点分别为E 、F ,求证EF =21(AB +DC ).解:解后反思 该题的题型怎样?求解时运用了哪些知识与思想方法?你对该题还有什么感悟没有?若把“凸四边形”的条件改为“梯形”或“三角形”呢?变式练习 已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0,那么( )A.AO OD = ;B.2AO OD =;C.3AO OD =;D.2AO OD =. 例3. 教材P89页例7,请同学们先独立完成后在看教材的解答. 解:解后反思 该题的题型怎样?你的求解与教材一致吗?求解时运用了哪些知识 与思想方法?求解的关键在哪里?有易错点吗?变式练习 如图2.2.3-3,在△ABC 中,=a , =bAD 为边BC 的中线,G 为ABC ∆的重心,试用a ,b 向量表 示出向量. 解:四、学习反思1.本节课我们学习了哪些数学知识、数学思想方法,你的任务完成了吗?你讲的怎样? 你提问了吗?我们的学习目标达到了吗?如:实数与向量的积的定义,实数与向量的积的运算律都掌握了吗?2.通过本节课的学习与课前的预习比较有哪些收获?有哪些要改进和加强的呢?3.本节课见到那些题型,都能求解了吗?你对本节课你还有独特的见解吗?本节课的数学知识与生活有怎样的联系?感受到本节课数学知识与课堂美在哪里吗?五、学习评价1.下列各式中不表示向量的是 ( )CAFA . 0·aB .a+3bC .|3a |D .yx -1e ()y x R y x ≠∈且,, 2.在ABC ∆中,E 、F 分别是AB 、AC 的中点,若=a ,=b ,则= ( ) A .21(a+b) B . 21(a-b) C . 21(b-a) D . 21-(a+b)3.以下等式中正确的是 ( )A . a-a =0B . 0·a=0C . m-n=-(n-m)D . |λm |=λ|m | 4.若|a |3=,b 与a 的方向相反,且|b|=5,则a = b 5.在ABC ∆中,E 为AC 上一点,=BC a ,=BA b ,EC AE 21=,若有向量a 、b 表示,则=6.如图2.2.3-4,已知向量a ,b ,c , 求作向量c b a 2123+-. 解:7.计算:(1)3(5a-3b)-2(6a+b);(2)4(a-3b+5c )-2(-3a-6b+8c ) (3)已知向量a ,b ,且3(x+a)+2(x-2a)-4(x-a+b)=0求x 解:8.教材P91页A 组6、10、11、12、13.选做题:如图2.2.3-5平面内有三个向量OA OB OC 、 、,其中OA 与O B 的夹角为120, OA 与OC 的夹角为30,且23OC ==1OA OB =若OC OA OB λμλμ=+∈ (,R),则___λμ+=【学习链接】链接1.实数与向量的积的运算律:(1)()()a a λμλμ=(结合律);(2)()a a a λμλμ+=+(第一分配律);(3)a b λλλ+(a+b )=(第二分配律).链接2. 向量的数乘与实数的乘法的相同点:这两种运算都满足结合律和分配律; 不同点:实数的乘法的结果(积)是一个实数,而向量的数乘的结果是一个向量. 链接3. 运算结果是一个向量、与多项式的运算类似、几何意义在于向量的“形”. 链接4.几何意义、数形结合.图。
“向量数乘运算及其几何意义”的教学设计

“向量数乘运算及其几何意义”的教学设计一、教材分析1.教学内容:《高中数学必修4》中第二章“向量数乘运算及其几何意义”这一节,在新课标中主要内容有三方面:①向量数乘运算及其几何意义的含义;②数乘运算的运算律;③平面向量共线定理。
2.地位与作用:向量数乘运算是学习向量其他运算以及空间向量的基础,也是解决平面解几、立几、三角、复数的重要工具。
因此,本节课的教学活动将对后续课程起着桥梁作用。
教材通过复习引入新课,并通过三个探究活动,完成本节课的教学活动。
二、三维目标根据新课标要求并结合学生具体实际,设计以下三维目标:1.知识与技能⑴掌握向量数乘运算及其几何意义,数乘运算的运算律,并能熟练运用定义、运算律进行简单的计算。
⑵理解向量共线定理及其推导过程,会应用向量共线定理判断或证明两个向量共线、三点共线及两直线平行等简单问题。
2.过程与方法通过对两个向量共线充要条件的探究与推导,让学生对平面向量共线定理有更深刻的理解。
为了帮助学生消化和巩固相应的知识,本节课设置了三个例题及其变式引申;指导学生探究发现,并得出结论,培养学生自主探究能力和创新思维能力。
3.情感、态度与价值观通过向量数乘运算的学习和探究,有助于激发学生学习兴趣和积极性,还有助于培养类比、分析、归纳、抽象思维能力以及逻辑推理能力。
三、重点、难点与疑点1.重点:向量数乘运算的几何意义、运算律,向量共线定理;〖解决办法〗为了突出重点,让学生在创设问题链的驱动下合作探究,得出结论,发展学生的认知结构。
2.难点与疑点:向量共线定理的探究过程及其应用。
〖解决办法〗为了突破难点与疑点,按照学生的认知规律、由浅入深地变式讨论,达到全面理解。
四、学情分析与对策学生已明确向量是有大小和方向的量,且已学过向量的加、减法,对于这种有方向的量能否与实数进行乘法运算有些疑问,且“相乘后方向如何判断呢?”:这也就是本节课知识产生的背景。
通过熟知的实数乘法作类比,探究向量数乘的含义,让学生在此过程中,体验数学知识的产生、发展、成熟和应用的过程。
数学导学案:向量数乘运算及其几何意义

2。
2。
3 向量数乘运算及其几何意义1.理解并掌握向量数乘的定义及几何意义,会作向量m a+n b。
2.熟练掌握和运用向量数乘的运算律,会化简向量关系式,并能用已知向量表示未知向量.3.掌握向量共线定理,会判定或证明两向量共线.1.向量的数乘①实数与向量可以进行数乘运算,其结果是一个向量,不是实数;但实数与向量不能进行加减运算,如λ+a,λ-a是错误的.②对任意非零向量a,则向量a|a|是与向量a同向的单位向量.③λa的几何意义就是把向量a沿着a的方向或反方向扩大或缩小|λ|倍.【做一做1】已知非零向量a,b满足a=4b,则( )A.|a|=|b| B.4|a|=|b|C.a与b的方向相同D.a与b的方向相反2.向量数乘的运算律向量的数乘运算满足下列运算律:设λ,μ为实数,则(1)λ(μa)=________;(2)(λ+μ)a=________;(3)λ(a+b)=________(分配律).特别地,我们有(-λ)a=______=______,λ(a-b)=______.在△ABC中,D是BC的中点,则有错误!=错误!(错误!+错误!).【做一做2】3(2a-4b)等于( )A.5a+7b B.5a-7b C.6a+12bD.6a-12b3.共线向量定理向量a(a≠0)与b共线,当且仅当有唯一一个实数λ,使______.(1)向量共线的条件:当向量a=0时,a与任一向量b共线;当向量a≠0时,对于向量b,如果有一个实数λ,使b=λa,那么由实数与向量的积的定义知b与a共线.反之,已知向量b与a(a≠0)共线且向量b的长度是向量a长度的λ倍,即|b|=λ|a|,那么当b与a同方向时b=λa,当b与a反方向时b=-λa.(2)如果向量a与b不共线,且λa=μb,那么λ=μ=0。
已知三点A,B,C共线,O是平面内任意一点,则有错误!=λ错误!+m错误!,其中λ+m=1.【做一做3】已知P是线段MN的中点,则有()A。
向量数乘运算及其几何意义

a
B
a
C
Q
P
OC OA AB BC a a a 记作3 a
PN PQ QM MN
(a ) (a ) (a )记作-3 a
思考:1. 相同向量相加以后,和的长度和方向
有什么变化?
2. 这些变化与哪些因素有关?
例题: 例5
解:()原式 3 4)a 12a 1 ( (2)原式 3a 3b 2a 2b a 5b (3)原式 2a 3b c 3a 2b c a 5b 2c
a 2b (a b ) b AC OC OA a 3b (a b ) 2b
∴A、B、C三点共线.
推广:任意向量a、b, 以及任意实数 、1、2, 恒有
1a (( 1a 22b ) 11a 2bb . a 2 .
a x y a 2 ya a 3 3x xy y x y a 2 ya
1 1 1 11 1 1 1 1 1 11 2 a 2b 3a 2b a b a b 2 3 a 2b 4 3a 2b 2 a b 12 a 3 b 3 4 2 12 3
邹城市实验中学:聂瑞明
重点难点 教学目标
教学重点 1.掌握向量数乘运算的定义以及几何意义;
2.掌握向量数乘运算的运算律,会利用向 1.向量数乘运算的定义,向量数乘运 量数乘运算律进行有关计算; 算的运算律; 3.理解两个向量共线的含义,会根据条件 2.向量共线定理. 判断两个向量是否共线; 教学难点 4.培养学生的观察、分析、归纳、抽象的 向量共线定理及其应用. 思维能力.
向量数乘运算及其几何意义
2.2.3向量数乘运算及其几何意义学习目标 1.了解向量数乘的概念,并理解这种运算的几何意义.2.理解并掌握向量数乘的运算律,会运用向量数乘运算律进行向量运算.3.理解并掌握两向量共线的性质及其判定方法,并能熟练地运用这些知识处理有关共线向量问题.知识点一向量数乘的定义思考1向量3a,-3a与a从长度和方向上分析具有怎样的关系?答3a的长度是a的长度的3倍,它的方向与向量a的方向相同.-3a的长度是a的长度的3倍,它的方向与向量a的方向相反.思考2一般地,我们规定:实数λ与向量a的积是一个向量,这种运算叫做向量的数乘.记作λa,该向量的长度与方向与向量a有什么关系?答一般地,实数λ与向量a的积是一个向量,记作λa,它的长度和方向规定如下:(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当a=0时,λa=0;当λ=0时,λa=0.(3)λa几何意义就是将表示向量a的有向线段伸长或压缩.当|λ|>1时,表示a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的|λ|倍.知识点二向量数乘的运算律思考类比实数的运算律,向量数乘有怎样的运算律?答结合律,分配律.(1)λ(μa)=(λμ)a;(2)(λ+μ)a=λa+μa;(3)λ(a+b)=λa+λb.知识点三向量共线定理思考若b=2a,b与a共线吗?答根据共线向量及向量数乘的意义可知,b与a共线.如果有一个实数λ,使b=λa(a≠0),那么b与a是共线向量;反之,如果b与a(a≠0)是共线向量,那么有且只有一个实数λ,使得b=λa.类型一 向量数乘的基本运算例1 (1)化简23⎣⎡⎦⎤(4a -3b )+13b -14(6a -7b ); 解 原式=23⎝⎛⎭⎫4a -3b +13b -32a +74b =23⎣⎡⎦⎤⎝⎛⎭⎫4-32a +⎝⎛⎭⎫-3+13+74b =23⎝⎛⎭⎫52a -1112b =53a -1118b . (2)已知向量为a ,b ,未知向量为x ,y ,向量a ,b ,x ,y 满足关系式3x -2y =a ,-4x +3y =b ,求向量x ,y .解 ⎩⎪⎨⎪⎧3x -2y =a ①,-4x +3y =b ②,由①×3+②×2得,x =3a +2b ,代入①得3×(3a +2b )-2y =a ,所以x =3a +2b ,y =4a +3b .反思与感悟 1.向量的数乘运算类似于代数多项式的运算,例如实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在数与向量的乘积中同样适用,但是在这里的“同类项”、“公因式”指向量,实数看作是向量的系数.2.向量也可以通过列方程和方程组求解,同时在运算过程中多注意观察,恰当的运用运算律,简化运算.跟踪训练1 计算: (1)(a +b )-3(a -b )-8a ;解 (a +b )-3(a -b )-8a =(a -3a )+(b +3b )-8a =-2a +4b -8a =-10a +4b .(2)若2⎝⎛⎭⎫y -13a -13(c +b -3y )+b =0,其中a ,b ,c 为已知向量,则未知向量y =________. 答案 29a -29b +19c解析 2⎝⎛⎭⎫y -13a -13(c +b -3y )+b =0, 3y -23a +23b -13c =0,所以y =29a -29b +19c .类型二 向量的表示例2 (1)如图,在△ABC 中,D ,E 为边AB 的两个三等分点,CA →=3a ,CB →=2b ,求CD →,CE →.解 ∵CA →=3a ,CB →=2b , ∴AB →=CB →-CA →=2b -3a , 又D ,E 为边AB 的两个三等分点, 所以AD →=13AB →=23b -a ,所以CD →=CA →+AD →=3a +23b -a =2a +23b ,CE →=CA →+AE →=3a +23AB →=3a +23(2b -3a )=a +43b .(2)在平行四边形ABCD 中,M ,N 分别是DC ,BC 的中点,已知AM →=c ,AN →=d ,试用c ,d 表示AB →和AD →.解 如图,设AB →=a ,AD →=b .∵M ,N 分别是DC ,BC 的中点, ∴BN →=12b ,DM →=12a .∵在△ADM 和△ABN 中,⎩⎪⎨⎪⎧AD →+DM →=AM →,AB →+BN →=AN →,即⎩⎨⎧b +12a =c , ①a +12b =d . ②①×2-②,得b =23(2c -d ).②×2-①,得a =23(2d -c ).∴AB →=43d -23c ,AD →=43c -23d .反思与感悟 用已知向量表示未知向量的求解思路:(1)先结合图形的特征,把待求向量放在三角形或平行四边形中;(2)然后结合向量的三角形法则或平行四边形法则及向量共线定理用已知向量表示未知向量. (3)当直接表示比较困难时,可以利用三角形法则和平行四边形法则建立关于所求向量和已知向量的等量关系,然后解关于所求向量的方程.跟踪训练2 如图,在△OAB 中,延长BA 到C ,使AC =BA ,在OB 上取点D ,使DB =13OB ,DC 与OA 交点为E ,设OA →=a ,OB →=b ,用a ,b 表示向量OC →,DC →.解 ∵AC =BA , ∴A 是BC 的中点, ∴OA →=12(OB →+OC →),∴OC →=2OA →-OB →=2a -b . ∴DC →=OC →-OD →=OC →-23OB →=2a -b -23b =2a -53b .类型三 共线问题例3 (1)已知非零向量e 1,e 2不共线,如果AB →=e 1+2e 2,BC →=-5e 1+6e 2,CD →=7e 1-2e 2,则共线的三个点是________.(2)已知A ,B ,P 三点共线,O 为直线外任意一点,若OP →=xOA →+yOB →,则x +y =________. 答案 (1)A ,B ,D (2)1解析 (1)∵AB →=e 1+2e 2,BD →=BC →+CD →=-5e 1+6e 2+7e 1-2e 2=2(e 1+2e 2)=2AB →. ∴AB →,BD →共线,且有公共点B ,∴A ,B ,D 三点共线.(2)由于A ,B ,P 三点共线,则AB →,AP →在同一直线上,由共线向量定理可知,必存在实数λ使得AP →=λAB →即OP →-OA →=λ(OB →-OA →),∴OP →=(1-λ)OA →+λOB →. ∴x =1-λ,y =λ,则x +y =1.反思与感悟 (1)有关三点共线,通常转化为三点构成的其中两个向量共线,向量共线定理是解决向量共线问题的依据.(2)已知O ,A ,B 是不共线的三点,且OP →=mOA →+nOB →(m ,n ∈R ),A ,P ,B 三点共线⇔m +n =1.跟踪训练3 (1)设e 1,e 2是两个不共线的向量,已知AB →=2e 1+k e 2,CB →=e 1+3e 2,CD →=2e 1-e 2,若A ,B ,D 三点共线,求k 的值. 解 BD →=CD →-CB →=(2e 1-e 2)-(e 1+3e 2)=e 1-4e 2.因为A ,B ,D 三点共线,故存在实数λ,使得AB →=λBD →,即2e 1+k e 2=λ(e 1-4e 2)=λe 1-4λe 2.由向量相等的条件得⎩⎪⎨⎪⎧λ=2,k =-4λ,所以k =-8.(2)已知O 为平面ABC 内任意一点,若存在α,β∈R ,使OC →=αOA →+βOB →,α+β=1,那么A ,B ,C 三点是否共线?解 共线,因为存在α,β∈R ,使OC →=αOA →+βOB →, 且α+β=1.∴β=1-α,∴OC →=αOA →+(1-α)OB →, ∴OC →=αOA →+OB →-αOB →, ∴OC →-OB →=α(OA →-OB →), ∴BC →=αBA →,∴A ,B ,C 三点共线.1.设e 1,e 2是两个不共线的向量,若向量m =-e 1+k e 2 (k ∈R )与向量n =e 2-2e 1共线,则( ) A.k =0 B.k =1 C.k =2D.k =12答案 D解析 当k =12时,m =-e 1+12e 2,n =-2e 1+e 2.∴n =2m ,此时,m ,n 共线. 2.下列各式计算正确的有( )①(-7)6a =-42a ;②7(a +b )-8b =7a +15b ; ③a -2b +a +2b =2a ;④4(2a +b )=8a +4b . A.1个 B.2个 C.3个 D.4个 答案 C3.已知△ABC 的三个顶点A ,B ,C 及平面内一点P ,且P A →+PB →+PC →=AB →,则( ) A.P 在△ABC 内部 B.P 在△ABC 外部C.P 在AB 边上或其延长线上D.P 在AC 边上 答案 D解析 P A →+PB →+PC →=PB →-P A →, ∴PC →=-2P A →,∴P 在AC 边上.4.若|a |=5,b 与a 方向相反,且|b |=7,则a =________b . 答案 -57解析 ∵|a |=57|b |,且a 与b 方向相反,∴a =-57b .5.如图所示,已知AP →=43AB →,用OA →,OB →表示OP →.解 OP →=OA →+AP →=OA →+43AB →=OA →+43(OB →-OA →)=-13OA →+43OB →.1.实数与向量可以进行数乘运算,但不能进行加减运算,例如λ+a ,λ-a 是没有意义的.2.λa 的几何意义就是把向量a 沿着a 的方向或反方向扩大或缩小为原来的|λ|倍.向量a|a |表示与向量a 同向的单位向量.3.共线向量定理是证明三点共线的重要工具.即三点共线问题通常转化为向量共线问题.一、选择题1.在△ABC 中,如果AD ,BE 分别为BC ,AC 上的中线,且AD →=a ,BE →=b ,那么BC →为( ) A.23a +43b B.23a -23b C.23a -43bD.-23a +43b答案 A解析 由题意,得BC →=BE →+EC →=b +12AC →=b +12(AD →+DC →)=b +12a +14BC →,即BC →=b +12a +14BC →.解得BC →=23a +43b .2.若AB →=5e 1,CD →=-7e 1,且|AD →|=|BC →|,则四边形ABCD 是( ) A.平行四边形 B.等腰梯形C.菱形D.梯形但两腰不相等答案 B解析 CD →=-75AB →,∴CD ∥AB ,且CD ≠AB ,而且|AD →|=|BC →|, ∴四边形ABCD 是等腰梯形.3.在△ABC 中,已知D 是AB 边上的一点,若AD →=2 DB →,CD →=13CA →+λCB →,则λ等于( )A.13B.23C.12D.34答案 B解析 ∵A ,B ,D 三点共线,∴13+λ=1,λ=23.4.已知m ,n 是实数,a ,b 是向量,则下列命题中正确的为( )①m (a -b )=m a -m b ;②(m -n )a =m a -n a ;③若m a =m b ,则a =b ;④若m a =n a ,则m =n . A.①④ B.①② C.①③D.③④答案 B解析 ①和②属于数乘对向量与实数的分配律,正确;③中,若m =0,则不能推出a =b ,错误;④中,若a =0,则m ,n 没有关系,错误. 5.设D 为△ABC 所在平面内一点,BC →=3 CD →,则( ) A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →答案 A解析 AD →=AC →+CD →=AC →+13BC →=AC →+13(AC →-AB →)=43AC →-13AB →=-13AB →+43AC →.故选A.6.若非零向量a 与b 不共线,k a +b 与a +k b 共线,则实数k 的值为( ) A.k =-1 B.k =1 C.k =±1D.k =12答案 C解析 ∵k a +b 与a +k b 共线, ∴存在实数λ使k a +b =λ(a +k b ),∴(k -λ)a +(1-λk )b =0, ∴(k -λ)a =(λk -1)b .∵a 与b 不共线,∴⎩⎪⎨⎪⎧k -λ=0,λk -1=0,∴k =±1.7.已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m 使得AB →+AC →=mAM →成立,则m 的值为( ) A.2 B.3 C.4 D.5 答案 B解析 ∵MA →+MB →+MC →=0,∴点M 是△ABC 的重心. ∴AB →+AC →=3AM →,∴m =3. 二、填空题8.(a +9b -2c )+(b +2c )=________. 答案 a +10b9.在▱ABCD 中,AB →=a ,AD →=b ,AN →=3NC →,M 为BC 的中点,则MN →=________(用a ,b 表示). 答案 14b -14a解析 如图,MN →=MB →+BA →+AN →=-12b -a +34AC →=-12b -a +34(a +b )=14(b -a ). 10.已知向量a ,b 满足|a |=3,|b |=5,且a =λb ,则实数λ的值是________. 答案 ±3511.设a ,b 是不共线的两个向量,已知AB →=2a +k b ,BC →=a +b ,CD →=a -2b ,若A ,B ,D 三点共线,则k 的值为________. 答案 -1解析 BD →=BC →+CD →=2a -b , ∵A ,B ,D 三点共线,∴AB →∥BD →,则存在实数λ使得: AB →=λBD →, 2a +k b =λ(2a -b ),得⎩⎪⎨⎪⎧2=2λk =-λ得:k =-1. 三、解答题12.如图,在△ABC 中,D ,E 分别为AC ,AB 边上的点,CD DA =AE EB =12,记BC →=a ,CA →=b .试用向量a ,b 表示DE →.解 因为AE →=13AB →=13(CB →-CA →) =13(-a -b ),AD →=23AC →=-23b , 所以DE →=AE →-AD →=13(-a -b )-⎝⎛⎭⎫-23b =13(b -a ). 13.设a ,b ,c 为非零向量,其中任意两向量不共线,已知a +b 与c 共线,且b +c 与a 共线,则b 与a +c 是否共线?请证明你的结论. 解 b 与a +c 共线.证明如下: ∵a +b 与c 共线,∴存在唯一实数λ,使得a +b =λc . ① ∵b +c 与a 共线,∴存在唯一实数μ,使得b +c =μa . ②由①-②得,a-c=λc-μa.∴(1+μ)a=(1+λ)c. 又∵a与c不共线,∴1+μ=0,1+λ=0,∴μ=-1,λ=-1,∴a+b=-c,即a+b+c=0.∴a+c=-b.故a+c与b共线.。
2.2.3 向量数乘运算及其几何意义(A3)
重点 难点
1.实数 λ 与向量 a 可作数乘,但实数 λ 不能与向量 a 进行加、减运算, 如 λ+a,λ-a 都是无意义的.还必须明确 λa 是一个向量,λ 的符号与 λa 的方向相 关,|λ|的大小与 λa 的模长有关. 2.利用数乘运算的几何意义可以得到两个向量共线的判定定理及性质定理,一定要 注意,向量的共线(平行)与直线共线(或平行)的区别;常用向量共线解决平面几何中 的“平行”或“点共线”问题. 【向量数乘运算的物理背景】 (1)一物体作匀速直线运动,一秒钟的位移对应向量 v,那么在同方向上 3 秒钟的位移对应的向量 用 3v 表示,试在直线 l 上画出 3v 向量,看看向量 3v 与 v 的关系如何?
鸡西市第十九中学学案
2015 年( )月( )日 班级 姓名
2.2.3 学习 目标
向量数乘运算及其几何意义
1.了解向量数乘的概念,并理解这种运算的几何意义. 2.理解并掌握向量数乘的运算律,会运用向量数乘运算律进行向量运算. 3.理解并掌握两向量共线的性质及其判定方法,并能熟练地运用这些知识处理有关 共线向量问题.
CD =4e1-8e2,求证:A、B、D 三点共线.
3.已知 e1 与 e2 不共线, AB =e1+e2, BC =2e1+8e2, CD =3(e1-e2), 求证:A、B、D 三点共线.
例3
如图, ▱ABCD 的两条对角线相交于点 M, 且 AB =a,AD =b, 你能用 a、 b 表示 MA 、MB 、
三点之间的位置关系,并说明理由.
1 1 1 2.如图, AM = AB , AN = AC .求证: MN = BC . 3 3 3 小结 本题给出了证明三点共线方法,利用向量共线定理,关键是找到唯一实数 λ,使 a=λb, 先证向量共线,再证三点共线. 训练 2 已知两个非零向量 e1 和 e2 不共线,如果 AB =2e1+3e2, BC =6e1+23e2,
《向量的数乘运算及其几何意义》教学设计(优质课比赛教案)
《向量的数乘运算及其几何意义》教学设计一、教学分析向量具有丰富的实际背景和几何背景,向量既有大小,又有方向.本节学习向量的数乘运算及其几何意义.向量数乘运算以及加法、减法统称为向量的三大线性运算,向量的数乘运算其实是加法运算的推广及简化.教学时从加法入手,引入数乘运算,充分体现了数学知识之间的内在联系.实数与向量的乘积仍然是一个向量,既有大小,又有方向.特别是方向与已知向量是共线向量,进而引出共线向量定理.这样平面内任意一条直线l 就可以用点A和某个向量a 表示了.共线向量定理是本章节的重要的内容,应用相当广泛,且容易出错,尤其是定理的前提条件:向量a 是非零向量.共线向量的应用主要用于证明点共线或线平行等,且与后学的知识有着密切的联系.二、教学目标1、知识与技能通过经历探究数乘运算法则及其几何意义的过程,掌握实数与向量积的定义;理解实数与向量积的几何意义;掌握实数与向量积的运算律.2、过程与方法通过师生互动理解两个向量共线的等价条件,能够运用两向量共线条件判定两向量是否平行,进而判定点共线或直线平行.3、情感态度与价值观通过探究,体会类比迁移的思想方法,渗透研究新问题的思想和方法(从特殊到一般、分类讨论、转化化归、观察、猜想、归纳、类比、总结等);培养创新能力和积极进取精神;通过解决具体问题,体会数学在实际生活中的重要作用.四、教学重难点教学重点:1.实数与向量积的意义及其几何意义; 2.实数与向量积的运算律;3.两个向量共线的等价条件及其运算. 教学难点:对向量共线的等价条件的理解以及运用. 五、教具选取三角板、投影仪、多媒体辅助教学. 六、教学过程 1、导入新课:一条细绳东西方向摆放,一只蚂蚁在细绳上做匀速直线运动,若蚂蚁向东方向一秒钟的位移对应的向量为a,那么它在同一方向上3秒钟的位移对应的向量怎样表示?是a 3吗?若蚂蚁向西3秒钟的位移对应的向量又怎样表示?是a3-吗?你能用图形表示吗?学生活动:独立思考.教师活动:提问、引导学生作答.设计意图:向量具有丰富的实际背景和几何背景,并且兼具“数”与“形”的特点,它在物理和几何中具有广泛的应用,故本节通过位移的实际背景引入新课. 2、推进新课:探究:已知非零向量a ,试作出a a a ++和)()()(a a a-+-+-,你能说明它的几何意义吗?学生活动:独立观察、思考、总结. 教师活动:提问、引导学生.设计意图:认识和理解向量数乘的几何意义必须从几何直观入手,即通过学生自己作出向量a a a++和)()()(a a a-+-+-,以及独立观察、思考,让学生对向量的伸缩有一个初步的感性认识,进而为下一步对向量的数乘的定义及其几何意义的理性aa a认识做好铺垫.问题1:你能通过上述的具体实例总结出更具一般性的向量数乘的定义吗? 从而推广到一般的向量数乘的定义.我们规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作aλ,它的长度与方向规定如下:(1)a aλλ=;(2)当0>λ时,a λ的方向与a 一致;当0<λ时,a λ的方向与a的方向相反.由(1)可知当0=λ时,0=a λ.设计意图:通过引出向量的数乘的定义,让学生体会从特殊到一般的思想方法. 问题2:你能说明它的几何意义吗? 学生活动:小组合作交流,学生单独作答.设计意图:从数学学科这个整体来看,数学的高度抽象性造就了数学的难懂、难学,解决这一问题的基本途径是顺应学习者的认知规律,在可能的情况下,尽量做到从直观入手,从具体开始,逐步抽象.通过师生互动,得到向量数乘的几何意义是把向量a 沿a 的方向或a的反方向放大λ倍或缩小λ倍.问题3:C 在线段AB 上,且25=CB AC ,则=AC AB ;=BC AB . 学生活动:独立思考并踊跃回答. 教师活动:评价.设计意图:通过简单口答题来巩固学生对向量数乘定义的理解及运用.通过活动过程的成功体验提高学生学习的积极性.问题4:数的运算和运算律是紧密相连的,运算律可以有效地简化运算.类比数的乘法的运算律,你能说出数乘向量的运算律吗?归纳总结: (1)a a)()(λμμλ=(2)a a aμλμλ+=+)((3)b a b aλλλ+=+)(问题5:你能解释上述运算律的几何意义吗?归纳总结:)()(a a a-=-=-λλλ, b a b a λλλ-=-)(.问题6:你能从形式上描述向量数乘运算律与思考向量线性运算与以前学习过的哪些运算相类似?师生活动:通过类比得到向量数乘运算律;并且通过师生活动得到向量数乘运算、向量的加法、减法可以进行综合运算;实数运算中去括号、移项、提取公因式等可类比进行向量的线性运算.设计意图:数学中引进一个新的量,自然要看看它的运算及其运算律的问题.向量运算可以与学生熟悉的数的运算进行类比,从中得到启发.而数的运算和运算律是紧密相连的,运算律可以有效地简化运算.类比数的乘法的运算律引出数乘向量的运算律.向量具有明显的几何背景,所以向量的运算及运算律也具有明显的几何意义,尤其是涉及到长度、夹角的几何问题可以通过向量及其运算得到解决.这样了解向量数乘运算律的几何意义就有必要了. 3、例题讲解:例1.计算: 1.a 4)3(⨯-;2.)23()32(c b a c b a +---+. 变式练习:(1)计算:---+)(2)(3;(2)已知:0)(4)2(2)(3 =+---++b a x a x a x 求x.学生活动:独立完成,学生单独回答. 教师活动:提问、及时评价.设计意图:心理学认为:概念一旦形成,必须及时加以巩固,通过例1及巩固练习加深学生对数乘向量运算律的理解.解以向量作为未知数的方程可与求解实数方程类比.归纳总结:向量的加、减、数乘运算统称为向量的线性运算.对于任意的向量b a ,,以及任意实数21,,μμλ,恒有b a b a2121)(λμλμμμλ±=±.设计意图:向量的加、减、数乘运算统称为向量的线性运算.本节作为向量线性运算的最后一节,有必要综合认识向量线性运算.问题7:引入向量数乘运算后,你能发现数乘向量与原向量之间的位置关系吗? 师生活动:(分析总结)对于向量)0(≠a a 、b ,如果有一个实数λ,使a b λ=,那么由向量数乘的定义知a与b 共线,且向量b 是向量)0( ≠a a 模的λ倍,而λ的正负由向量)0( ≠a a 、b 的方向所决定.反过来,已知向量a 与b 共线,0 ≠a ,且向量b 的长度是向量a的长度的μ倍,即a b μ=,那么当a 与b 同方向时,有a b μ=;当a与b 反方向时,有a b μ-=.从上述两方面可知归纳总结:共线向量定理:向量)0(≠a a 、b 共线,当且仅当有一个实数λ,使得a b λ=.问题8:1) a为什么要是非零向量?2) b可以是零向量吗?3) 怎样理解向量平行?与两直线平行有什么异同? 学生活动:合作交流,独立作答. 教师活动:提问、引导、及时评价.设计意图:师生共同活动引出向量共线的定理;引导学生理解向量共线只需看这两个向量的方向相同或是相反,在向量)0( ≠a a 的前提下,向量)0(≠a a 、b 共线,当且仅当有一个实数λ,使得a b λ=;且实数λ的唯一性是由向量a和b 的模和方向同时决定.通过学生合作交流,促进学生合作的集体意识;通过学生独立作答,提高学生分析问题、解决问题的能力. 例2.如图,ABCD 的两条对角线相交于点M ,且b a==,,你能用b a ,表示,,,吗?师生互动:利用向量共线的定理及平行四 边形的性质定理,即平行四边形的对角线互相平分.∵b a AC AB AC+=+=, .b a-=-=结合平行四边形的性质:b a b a AC MA2121)(2121--=+-=-=,,212121b a +==.212121b a+-=-=-=设计意图:综合运用向量的加、减、数乘等向量的线性运算.尤其是应当注意到-=,-=从而可简化解题过程,并且在实际的解题中做到举一反三、融会贯通;通过例3的教学使学生明确:有了向量的线性运算,平面中的点、线段(直线)就可以得到向量表示,这是利用向量解决几何问题的重要步骤. 4、课堂作业(1).在△ABC 中,已知D 是AB 边上的一点,若DB AD 2=,CB CA CD λ+=31,则λ的值为( )32.A31.B31.-C32.-D ,2121)(2121b a b a -=-==Aa(2.)计算:=⎥⎦⎤⎢⎣⎡--+)24()82(2131b a b a.(3).若向量方程0)2(32 =--a x x ,则向量=x.(4).根据下列各小题中的条件,分别判断四边形ABCD 的形状,并给出证明.(1)=; (2)BC AD 31=; (3)==,5、课堂小结一、①aλ的定义及运算律;②向量共线定理)0( ≠a ,⇔=a b λ 向量a与b 共线.二、定理的应用:(1)证明向量共线;(2)证明三点共线:⇒=λA 、B 、C 三点共线; (3)证明两直线平行. 三、你体会到了那些数学思想.特殊到一般,归纳,猜想,类比,分类讨论,等价转化等数学思想. 设计意图:1.知识性内容的总结,可以把课堂教学传授的知识尽快转化为学生的素质.2.运用数学方法,创新素质的小结能让学生更系统,更深刻地理解数学理想方法在解题中的地位和作用,并且逐渐培养学生的良好个性品质.3.由学生口头表述,不仅可以提高学生的综合概括能力,还能提高学生的口头表达能力. 6、课后作业P92 A 组习题11、12题。
向量的数乘运算及几何意义教学设计(郭会芹)
《向量的数乘运算及几何意义》教学设计霸州四中郭会芹版本:人教A版必修四第一章第二节题目:《向量的数乘运算及几何意义》课型:新知教学课课时:一课时一、教学目标:知识目标:1.理解并掌握向量数乘的定义及几何意义;2.熟练地掌握和运用实数与向量积的运算律;3.会综合运用向量的加法,减法和数乘运算解决问题。
能力目标:通过探究,体会类比迁移的思想方法,渗透研究新问题的思想和方法(从特殊到一般、分类讨论、转化化归、观察、猜想、归纳、类比、总结等);培养创新能力和积极进取精神。
二、目标分析可行性分析:学生已学习了向量的加法和减法及其几何意义,在此基础上能够较好地理解并掌握向量的数乘运算及其几何意义。
学生能由实数运算律类比向量运算律,从而加深对后者的理解及运用;准确性分析:学生在掌握向量加法、减法的基础上,学习实数与向量的积的运算已无多大困难。
通过前面学习两个向量的运算,进一步转化为数与向量的联系,是后面学习平面向量基本定理的基础。
弹性分析:所授课班级为普通班,学生基础参差不齐,所以在授课过程中,要根据学生的接受情况侧重数乘运算的定义及运算律的应用,调整练习量与习题的难易程度。
)()()a a a +-+- :相加后,和的长度和方向有什么变化? :这些变化与哪些因素有关?学生在白纸上作出图像,并讨论两个问题。
最后学生a 与a方向相同且a 3=;3a 与a方向相反且3a a =预设问题:1.学生对向量的加法和相反向量掌握的不够牢固,在作图时有可能存在问题;2.学生分析问题时不能从向量的大小和方向两个角度考虑。
学生通过作图,观察学习2.引导学生从向量的大小和方向两个方面考虑所作向量与a的关系同时通过多媒体展示作好铺垫。
归纳总结请大家根据上述问题作一下类比,看看怎样定义实数与向量的积?学生思考并作答实数与向量的积的定义:一般地,实数λ与向量a的积是一个向量,记作aλ,它的长度与方向规定如下:(1)||||||a aλλ=;(2)当0λ>时,aλ的方向与a的方向相同;当0λ<时,aλ的方向与a的方向相反;当λ=时,0aλ=.预设问题:1.学生忽略数乘向量在方向和长度两个方面与原向量的联系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 2.2.3
向量数乘运算及其几何意义
一.教学目标
1.知识与技能: 通过实例,掌握向量数乘运算,理解其几何意义,理解向量共线定理。
熟练 运用定义、运算律进行有关计算,能够运用定理解决向量共线、三点共线、直线 平行等问题。
2.过程与方法:
理解掌握向量共线定理及其证明过程,会根据向量共线定理判断两个向量是 否共线。
3.态度情感与价值观:
通过由实例到概念,由具体到抽象,培养学生自主探究知识形成的过程的能 力,合作释疑过程中合作交流的能力。
激发学生学习数学的兴趣和积极性,陶冶 学生的情感,培养学生实事求是的科学态度,勇于创新的精神。
二.教学重难点
重点:掌握实数与向量的积的定义、运算律,理解向量共线定理。
难点:向量共线定理的探究及其应用。
三.教学过程
(一)复习回顾
问题1:向量加法的运算法则?
问题2:向量减法的运算法则?
(二)新课讲解
1.向量数量积的定义
【探究1】 已知非零向量a ,作出a a a ++和()()()a a a -+-+-,你能说出他们的几何意义 吗?
问题1:相加后,和的长度和方向有什么变化?
问题2:这些变化与哪些因素有关?
练一练:P 90 第1题,第2题.
2
2.向量数乘的运算律
【探究2】 问题一:求作向量)2(3a 和a 6(a 为非零向量),并进行比较。
问题二:已知向量a 、b ,求作向量)(2b a +和b a 22+,并进行比较。
类比实数乘法的运算律得向量数乘的运算律:
对于任意向量a 、b 及任意实数λ、μ,恒有b a b a 2121)(λμλμμμλ±=±. 例5:计算(口答) (1) a 4)3(⨯-
(2) a b a b a ---+)(2)(3
(3) )23()32(c b a c b a +---+
练一练:P 90 第5题.
3、向量共线定理 【探究3】
问题1:如果 a b λ=(0≠a ), 那么,向量a 与b 是否共线?
问题2: b 与非零向量a 共线, 那么,a b λ= ?
思考:1. a 为什么要是非零向量? 2. b 可以是零向量吗?
例6.已知任意两非零向量a 、b ,试作b a OA +=, b a OB 2+=,b a OC 3+=。
你能判断A 、B 、C 三点之间的位置关系吗?为什么?
3
⇒直线AB ∥直线CD
四.课堂小结
1.概念与定理
① a λ的定义及运算律。
② 向量共线定理:向量b 与非零..向量a 共线当且仅当有唯一.......
一个实数λ,使得 a b λ=。
2.知识应用:
① 证明 向量共线;
② 证明 三点共线: 两向量共线且有一个公共点 若BC AB λ=,即AB 与BC 共线且有一个公共点B ,则A 、B 、C 三点共线; ③ 证明 两直线平行: CD AB λ=⇒AB ∥CD AB 、CD 不重合
五.作业布置: 必做:习题2.2 A 组9.12.13题
选做:B 组4题
,,,,,,.例7.如图,的两条对角线相交与点且用
表示和==ABCD M AB a AD b a b MA MB MC MD。