七年级数学第二学期抽考试题

合集下载

福建省泉州市2020-2021学年度下学期教学质量跟踪监测考试七年级数学试题参考答案

福建省泉州市2020-2021学年度下学期教学质量跟踪监测考试七年级数学试题参考答案

泉州市2020—2021学年度七年级(下)教学质量监测七年级数学参考答案及评分意见说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分意见”的精神进行评分.(二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分.(三)以下解答各行右端所注分数表示正确做完该步应得的累计分数. 一、选择题(每小题4分,共40分)1.C 2.A 3.B 4.B 5.C 6.D 7.A 8.D 9.B 10.D 二、填空题(每小题4分,共24分)11.< 12.53x − 13. 2 14.90 15.616.①③④三、解答题(共86分)17.解:记2197x y x y ⎧+=⎪⎨+=⎪⎩,①.②由①-②得:y =12, ··························································································· 3分 把y =12代入②得x =-5, ····················································································· 6分所以=512x y ⎧⎨=⎩-,. ···································································································· 8分18.解:记317211132.x x x −>−+−−⎧⎪⎨⎪⎩,①≤② 由①得2x >−, ·································································································· 3分 由②得1x ≤, ···································································································· 6分 所以21x −<≤. ································································································· 8分19.解:依题意得,45360x x −+−= ··············································································· 3分711x = ·············································································· 6分 117x =·········································································· 7分 答:当117x =时,代数式45x −与36x −的值互为相反数. ············································· 8分 20.(1)如图所示; ········································································································· 3分(2)如图所示; ········································································································· 6分(3)等腰直角. ········································································································· 8分21.解:(1)在△ABC 中,∠A +∠ABC +∠C =180°, ··············································································· 1分 又∵∠A =62°,∠ABC =48°,∴∠C =70°. ······························································································· 3分 (2)∵BD 是AC 边上的高,∴∠BDC =90°, ····························································································· 4分 ∴∠DBC =90°-∠C =20°. ············································································ 6分 由(1)可知,∠C =70° ∵DE ∥BC ,∴∠BDE =∠DBC =20°. ················································································ 8分 22.解:(1)∵EF ⊥AE ,∴∠AEF =90°, ··························································································· 1分∵四边形AEFD 内角和为360°,∠D =90°,∴∠DAE +∠DFE =360°-∠D -∠AEF =180°. ··················································· 3分 ∵∠EAD =60°,∴∠DFE =180°-∠EAD =120°. ······································································ 4分(2)由(1)可知,∠DAE +∠DFE =180°, ································································ 5分 又∵∠DFE +∠EFC =180°,∴∠EFC =∠DAE . ························································· 6分 ∵AE 平分∠BAD ,∴∠DAE =∠BAE , ························································· 7分 ∴∠BAE =∠EFC . ····················································································································· 8分又∵∠AEB =∠CEF ,C ′B ′ A ′ABCDEFE BCD A∴(∠B =)180°-∠AEB -∠BAE ,(∠C =)180°-∠CEF -∠EFC , ······························· 9分 ∴∠B =∠C . ······························································································· 10分23.解:(1)依题意,得57430007645000m n m n +=⎧⎨+=⎩, ······································································· 2分解得30004000m n =⎧⎨=⎩, ·························································································· 3分经检验,符合题意,所以m 的值是3000,n 的值是4000. ······························································· 4分 (2)设该商场7月份购进了x 台A 型空调,则购进B 型空调为4378x−台, 依题意,得783124x−≥, ·············································································· 6分 解得10x ≤, ······························································································· 8分 因为x 为正整数,且4378x−也为正整数, 所以x 的取值为2,6,10, ············································································ 9分 所以该商场共有3种进货方案. ······································································ 10分24.解:(1)记34x y a +=−①,53x y a −=②,解法一:当a =4时,30x y +=,512x y −=, ······································································· 1分联立方程组30512x y x y +=−=⎧⎨⎩,解得9=232x y =−⎧⎪⎪⎨⎪⎪⎩,.···························································· 2分所以x -y =6. ······························································································ 3分 解法二:当a =4时,30x y +=,512x y −=, ······································································· 1分 ①+②得,2212x y −=, ················································································· 2分 所以x -y =6. ······························································································ 3分 解法三:()()11113+-5=(4-)+(3)262222x y x y x y a a a −=+=+= (2) 解法一:①×3+②得, ······························································································· 4分()()()335343x y x y a a ++−=−+, ··································································· 5分所以4412x y +=, ························································································ 6分 所以3x y +=. ····························································································· 7分 解法二:①-②得,844y a =− ····················································································· 4分 所以12ay −=, ····························································································· 5分 把12ay −=代入①得52a x −=, ······································································· 6分所以x +y =5122a a+−+=3. ············································································· 7分 (3)解法一:由(2)可知3x y +=, 因为y >1-m ,且3x -5≥m , 所以523m x m +<+≤, ················································································· 7分令x 可取两个连续整数的值为n ,1n +,(n 为整数) , 则有513m n n +−<≤,122n m n +<++≤.故1383 5.n m n n m n −<−<−⎧⎨⎩≤,≤ ··················································································· 8分要使x 可取得两个连续整数的值,m 要先有解,则m 有解可能有三种情况:i)3538138n n n n n n −−<−−⎧⎪⎨⎪⎩≤,,≤,即472n <≤,此时n 没有整数解,不合题意,舍去; ····················· 9分 ii)35381n n n n −⎧⎨−−⎩≥,≤,即5722n ≤≤,此时=3n ;即2314m m <⎧⎨<⎩≤,≤,所以23m <≤; ·············· 10分iii)38113535n n n n n n −−⎧⎪−<−⎨⎪−⎩≤,,≤,即522n <≤,此时n 没有整数解,不合题意,舍去. ···················· 11分综上所述:m 的取值范围为23m <≤. ···························································· 12分 解法二:由(2)可知3x y +=, 因为y >1-m ,且3x -5≥m , 所以523m x m +<+≤, ················································································· 7分令x 可取两个连续整数的值为n ,1n +,(n 为整数) 则有513m n n +−<≤,122n m n +<++≤.故13835n m n n m n −<−<−⎧⎨⎩≤,≤,··················································································· 8分 所以135n n −<−,且38n n −<, ···································································· 10分 所以24n <<,所以3n =, 所以2314m m <<⎧⎨⎩≤,≤.········································································ 11分所以m 的取值范围为23m <≤. ···································································· 12分25.解:(1)由翻折得CD =DE ,∠CDA =∠CEA = 90°, ························································· 1分204102121=⨯⨯=⋅=CE AF S ACF △. ···································································· 3分 (2)①取点M 关于AD 的对称点N ,连接PN ,FN ,则PF PM PN PF FN +=+≥, ····························· 4分 ∴当N ,P ,F 三点共线且FN ⊥AB 时,FN 有最小值, ······································································· 5分 即PF +PM 的最小值为FN 的长. ∵111222ABF S AB FN FN =⋅=⨯⨯△, ·························· 7分 ∴6m FN =,即PM +PF 的最小值为6m . ························································ 8分 ②∵23AM MF =,AC =10, ∴AM =AN =4, MF =6, ···················································· 9分 当PF +PM 取最小值,PN ⊥AB ,利用对称性,则PM ⊥AB ∴11==22APMAPN S AM PM AN PN S =⋅⋅△△. 设s S S APN APM 2==△△,DECNABFMPE DCAB P MFN。

七年级数学下段考试卷及答案

七年级数学下段考试卷及答案

七年级数学下段考试卷及答案面对七年级数学下段考试要有坚韧的精神,撑过去就是康庄大道啊。

愿你七年级数学考出好结果,以下是店铺为你整理的七年级数学下段考试卷,希望对大家有帮助!七年级数学下段考试卷一、选择题(每小题3分,共30分)1.下列长度的各组线段,能组成直角三角形的是( )A.12,15,18B.12,35,36C.0.3,0.4,0.5D.2,3,42.下列实数,﹣,0. ,,,( ﹣1)0,﹣,0.1010010001中,其中无理数共有( )A.2个B.3个C.4个D.5个3.如图,直径为1个单位长度的圆从原点沿数轴向右无滑动地滚动一周,原点滚到了点A,下列说法正确的( )A.点A所表示的是πB.OA上只有一个无理数πC.数轴上无理数和有理数一样多D.数轴上的有理数比无理数要多一些4.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是( )A.1对B.2对C.3对D.4对5.等腰三角形一腰上的高与另一腰的夹角是28°,则顶角是( )A.28°B.118°C.62°D.62°或118°6.在下列各组条件中,不能说明△ABC≌△DEF的是( )A.AB=DE,∠B=∠E,∠C=∠FB.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠ED.AB=DE,BC=EF,AC=DF7.如图,正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C 的个数有( )A.4个B.6个C.8个D.10个8.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记为a1,第2个等边三角形的边长记为a2,以此类推.若OA1=1,则a2015=( )A.22013B.22014C.22015D.220169.如图,点P、Q分别是边长为4cm的等边△ABC的边AB、BC 上的动点(其中P、Q不与端点重合),点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,连接AQ、CP交于点M,则在P、Q运动的过程中,下列结论:(1)BP=CM;(2)△ABQ≌△CAP;(3)∠CMQ 的度数始终等于60°;(4)当第秒或第秒时,△PBQ为直角三角形.其中正确的结论有( )A.1个B.2个C.3个D.4个10.如图是一张足够长的矩形纸条ABCD,以点A所在直线为折痕,折叠纸条,使点B落在边AD上,折痕与边BC交于点E;然后将其展平,再以点E所在直线为折痕,使点A落在边BC上,折痕EF交边AD于点F.则∠AFE的大小是( )A.22.5°B.45°C.60°D.67.5°二、填空题(每空2分,共16分)11.近似数3.40×105精确到位.12.当a2=64时, = .13.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于.14.一个正数的平方根为﹣m﹣3和2m﹣3,则这个数为.15.如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC=°.16.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE 于点F.若AC=BD,AB=ED,BC=BE,∠D=60°,∠ABE=28°,则∠ACB=.17.如图,Rt△ABC,∠ACB=90°,AC=3,BC=4,将边AC沿CE 翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为.18.如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为.三、解答题(共10大题,共84分)19.(1)计算:(2)求x的值:5(x﹣1)2=20.20.因式分解:(1)3a5﹣12a4+9a3(2)3a2﹣6ab+3b2﹣12c2.21.如图,OC是∠AOB的角平分线,P是OC上一点.PD⊥OA交OA于D,PE⊥OB交OB于E,F是OC上的另一点,连接DF,EF.求证:DF=EF.22.如图,正方形网格中每个小正方形边长都是1.(1)在直线l上找一点P,使PB+PC的值最小;(2)连接PA、PC,计算四边形PABC的面积;(3)若图中的格点Q到直线BC的距离等于,则图中所有满足条件的格点Q有个.23.已知a,b,c为△ABC的三条边的长,且满足b2+2ab=c2+2ac.(1)试判断△ABC的形状,并说明理由;(2)若a=6,b=5,求△ABC的面积.24.如图,∠ABC=90°,D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD与AB相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.25.仔细阅读下面例题,解答问题:例题:已知关于x的多项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得:x2﹣4x+m=(x+3)(x+n),则x2﹣4x+m=x2+(n+3)x+3n,∴ ,解得:n=﹣7,m=﹣21.∴另一个因式为(x﹣7),m的值为﹣21.问题:仿照以上方法解答下面问题:(1)已知关于x的多项式2x2+3x﹣k有一个因式是(x+4),求另一个因式以及k的值.(2)已知关于x的多项式2x3+5x2﹣x+b有一个因式为x+2,求b 的值.26.如图,在△ABC中,∠ABC=45°,CD⊥AB,BE⊥AC,垂足分别为D、E,F为BC中点,BE与DF,DC分别交于点G,H,∠ABE=∠CBE.(1)求证:BH=AC;(2)求证:BG2﹣GE2=EA2.27.如图1,长方形ABCD中,∠A=∠B=∠C=∠D=90°,AB=CD,AD=BC,且,点P、Q分别是边AD、AB上的动点.(1)求BD的长;(2)①如图2,在P、Q运动中是否能使△CPQ成为等腰直角三角形?若能,请求出PA的长;若不能,请说明理由;②如图3,在BC上取一点E,使EC=5,那么当△EPC为等腰三角形时,求出PA的长.28.【阅读】如图1,四边形OABC中,OA=a,OC=3,BC=2,∠AOC=∠BCO=90°,经过点O的直线l将四边形分成两部分,直线l与OC所成的角设为θ,将四边形OABC的直角∠OCB沿直线l折叠,点C落在点D处,我们把这个操作过程记为FZ[θ,a].【理解】若点D与点A重合,则这个操作过程为FZ[45°,3];【尝试】(1)若点D恰为AB的中点(如图2),求θ;(2)经过FZ[45°,a]操作,点B落在点E处,若点E在四边形OABC 的边AB上,求出a的值;若点E落在四边形OABC的外部,直接写出a的取值范围.七年级数学下段考试卷答案一、选择题(每小题3分,共30分)1.下列长度的各组线段,能组成直角三角形的是( )A.12,15,18B.12,35,36C.0.3,0.4,0.5D.2,3,4【考点】勾股定理的逆定理.【分析】验证两小边的平方和是否等于最长边的平方;应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断即可.【解答】解:A、因为122+152≠182,所以不能组成直角三角形,故选项错误;B、因为122+352≠362,所以不能组成直角三角形,故选项错误;C、因为0.32+0.42=0.52,所以能组成直角三角形,故选项正确;D、因为22+32≠42,所以不能组成直角三角形,故选项错误;故选:C.2.下列实数,﹣,0. ,,,( ﹣1)0,﹣,0.1010010001中,其中无理数共有( )A.2个B.3个C.4个D.5个【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数有:,﹣,共有3个.故选B.3.如图,直径为1个单位长度的圆从原点沿数轴向右无滑动地滚动一周,原点滚到了点A,下列说法正确的( )A.点A所表示的是πB.OA上只有一个无理数πC.数轴上无理数和有理数一样多D.数轴上的有理数比无理数要多一些【考点】实数与数轴.【分析】首先根据圆周长公式求出圆的周长,然后结合数轴的特点即可确定A表示的数.【解答】解:A、∵圆的周长为π,∴滚动一圈的路程即π,∴点A 所表示的是π,故选项正确;B、数轴上不只有一个无理数π,故选项错误;C、数轴上既有无理数,也有有理数,故选项错误;D、数轴上的有理数与无理数多少无法比较,故选项错误;故选A.4.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是( )A.1对B.2对C.3对D.4对【考点】全等三角形的判定;线段垂直平分线的性质;等腰三角形的性质.【分析】根据已知条件“AB=AC,D为BC中点”,得出△ABD≌△ACD,然后再由AC的垂直平分线分别交AC、AD、AB于点E、O、F,推出△AOE≌△EO C,从而根据“SSS”或“SAS”找到更多的全等三角形,要由易到难,不重不漏.【解答】解:∵AB=AC,D为BC中点,∴CD=BD,∠BDO=∠CDO=90°,在△ABD和△ACD中,,∴△ABD≌△ACD;∵EF垂直平分AC,∴OA=OC,AE=CE,在△AOE和△COE中,,∴△AOE≌△COE;在△BOD和△COD中,,∴△BOD≌△COD;在△AOC和△AOB中,,∴△AOC≌△AOB;故选:D.5.等腰三角形一腰上的高与另一腰的夹角是28°,则顶角是( )A.28°B.118°C.62°D.62°或118°【考点】等腰三角形的性质.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成立,因而可分两种情况进行讨论.【解答】解:分两种情况:①当高在三角形内部时(如图1),∵∠ABD=28°,∴顶角∠A=90°﹣28°=62°;②当高在三角形外部时(如图2),∵∠ABD=28°,∴顶角∠CAB=90°+28°=118°.故选D.6.在下列各组条件中,不能说明△ABC≌△DEF的是( )A.AB=DE,∠B=∠E,∠C=∠FB.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠ED.AB=DE,BC=EF,AC=DF【考点】全等三角形的判定.【分析】根据题目所给的条件结合判定三角形全等的判定定理分别进行分析即可.【解答】解:A、AB=DE,∠B=∠E,∠C=∠F,可以利用AAS定理证明△ABC≌△DEF,故此选项不合题意;B、AC=DF,BC=EF,∠A=∠D不能证明△ABC≌△DEF,故此选项符合题意;C、AB=DE,∠A=∠D,∠B=∠E,可以利用ASA定理证明△ABC≌△DEF,故此选项不合题意;D、AB=DE,BC=EF,AC=DF可以利用SSS定理证明△ABC≌△DEF,故此选项不合题意;故选:B.7.如图,正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C 的个数有( )A.4个B.6个C.8个D.10个【考点】等腰三角形的判定.【分析】根据AB的长度确定C点的不同位置,由已知条件,利用勾股定理可知AB= ,然后即可确定C点的位置.【解答】解:如图,AB= = ,∴当△ABC为等腰三角形,则点C的个数有8个,故选C.8.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记为a1,第2个等边三角形的边长记为a2,以此类推.若OA1=1,则a2015=( )A.22013B.22014C.22015D.22016【考点】等边三角形的性质.【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及a2=2a1,得出a3=4a1=4,a4=8a1=8,a5=16a1…进而得出答案.【解答】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴a2=2a1,a3=4a1=4,a4=8a1=8,a5=16a1,以此类推:a2015=22014.故选B.9.如图,点P、Q分别是边长为4cm的等边△ABC的边AB、BC 上的动点(其中P、Q不与端点重合),点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,连接AQ、CP交于点M,则在P、Q运动的过程中,下列结论:(1)BP=CM;(2)△ABQ≌△CAP;(3)∠CMQ 的度数始终等于60°;(4)当第秒或第秒时,△PBQ为直角三角形.其中正确的结论有( )A.1个B.2个C.3个D.4个【考点】全等三角形的判定与性质;等边三角形的性质.【分析】易证△ABQ≌△CAP,可得∠AQB=∠CPA,即可求得∠AMP=∠B=60°,易证∠CQM≠60°,可得CQ≠CM,根据t的值易求BP,BQ的长,即可求得PQ的长,即可解题.【解答】解:∵△ABC是等边三角形,∴AB=BC=AC,∠BAC=∠B=∠ACB=60°,根据题意得:AP=BQ,在△ABQ和△CAP中,,∴△ABQ≌△CAP(SAS),(2)正确;∴∠AQB=∠CPA,∵∠BAQ+∠APC+∠AMP=180°,∠BAQ+∠B+∠AQB=180°,∴∠AMP=∠B=60°,∴∠QMC=60°,(3)正确;∵∠QMC=60°,∠QCM≠60°,∴∠CQM≠60°,∴CQ≠CM,∵BP=CQ,∴CM≠BP,(1)错误;当t= 时,BQ= ,BP=4﹣ = ,∵PQ2=BP2+BQ2﹣2BP•BQcos60°,∴PQ= ,∴△PBQ为直角三角形,同理t= 时,△PBQ为直角三角形仍然成立,(4)正确;故选 C.10.如图是一张足够长的矩形纸条ABCD,以点A所在直线为折痕,折叠纸条,使点B落在边AD上,折痕与边BC交于点E;然后将其展平,再以点E所在直线为折痕,使点A落在边BC上,折痕EF交边AD于点F.则∠AFE的大小是( )A.22.5°B.45°C.60°D.67.5°【考点】翻折变换(折叠问题).【分析】先根据折叠的性质得到∠AEB=45°,继而得出∠AEC,再由折叠的性质即可得到∠AFE的度数.【解答】解:以点A所在直线为折痕,折叠纸片,使点B落在AD 上,折痕与BC交于E点,∠AEB=45°,∠FEC=∠FEA= =67.5°.∵AF∥EC,∴∠AFE=∠FEC=67.5°.故选D.二、填空题(每空2分,共16分)11.近似数3.40×105精确到千位.【考点】近似数和有效数字.【分析】近似数精确到哪一位,应当看末位数字实际在哪一位.【解答】解:近似数3.40×105精确到千位.故答案是:千.12.当a2=64时, = ±2.【考点】立方根;算术平方根.【分析】由于a2=64时,根据平方根的定义可以得到a=±8,再利用立方根的定义即可计算a的立方根.【解答】解:∵a2=64,∴a=±8.∴ =±2.13.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于8 .【考点】勾股定理;直角三角形斜边上的中线.【分析】由“直角三角形斜边上的中线等于斜边的一半”求得AC=2DE=10;然后在直角△ACD中,利用勾股定理来求线段CD的长度即可.【解答】解:如图,∵△ABC中,CD⊥AB于D,E是AC的中点,DE=5,∴DE= AC=5,∴AC=10.在直角△ACD中,∠ADC=90°,AD=6,AC=10,则根据勾股定理,得CD= = =8.故答案是:8.14.一个正数的平方根为﹣m﹣3和2m﹣3,则这个数为81 .【考点】平方根.【分析】根据一个正数的平方根互为相反数,即可得到一个关于x 的方程,即可求得x,进而求得所求的正数.【解答】解:根据题意得:(﹣m﹣3)+(2m﹣3)=0,解得:m=6,则这个数是:(﹣3﹣6)2=81.故答案是:81.15.如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC=45 °.【考点】等腰三角形的性质;线段垂直平分线的性质.【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,然后求出△ABE是等腰直角三角形,根据等腰直角三角形的性质求出∠BAE=∠ABE=45°,再根据等腰三角形两底角相等求出∠ABC,然后求出∠CBE,根据等腰三角形三线合一的性质可得BF=CF,根据直角三角形斜边上的中线等于斜边的一半可得BF=EF,根据等边对等角求出∠BEF=∠CBE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵DE垂直平分AB,∴AE=BE,∵BE⊥AC,∴△ABE是等腰直角三角形,∴∠BAE=∠ABE=45°,又∵AB=AC,∴∠ABC= = =67.5°,∴∠CBE=∠ABC﹣∠ABE=67.5°﹣45°=22.5°,∵AB=AC,AF⊥BC,∴BF=CF,∵EF= BC(直角三角形斜边中线等于斜边的一半),∴BF=EF=CF,∴∠BEF=∠CBE=22.5°,∴∠EFC=∠BEF+∠CBE=22.5°+22.5°=45°.故答案为:45.16.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,∠D=60°,∠ABE=28°,则∠ACB=46°.【考点】全等三角形的判定与性质.【分析】根据全等三角形的判定与性质,可得∠ACB与∠DBE的关系,根据三角形外角的性质,可得答案.【解答】解:在△ABC和△DEB中,,∴△ABC≌△DEB (SSS),∴∠ACB=∠DBE.∵∠AFB是△BFC的外角,∴∠ACB+∠DBE=∠AFB,∠ACB= ∠AFB=46°.故答案为:46°.17.如图,Rt△ABC,∠ACB=90°,AC=3,BC=4,将边AC沿CE 翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为.【考点】翻折变换(折叠问题).【分析】首先根据折叠可得CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,然后求得△ECF是等腰直角三角形,进而求得∠B′FD=90°,CE=EF= ,ED=AE= ,从而求得B′D=1,DF= ,在Rt△B′DF中,由勾股定理即可求得B′F的长.【解答】解:根据折叠的性质可知CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,∴B′D=4﹣3=1,∠DCE+∠B′CF=∠ACE+∠BCF,∵∠ACB=90°,∴∠ECF=45°,∴△ECF是等腰直角三角形,∴EF=CE,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FD=90°,∵S△ABC= AC•BC= AB•CE,∴AC•BC=AB•CE,∵根据勾股定理求得AB=5,∴CE= ,∴EF= ,ED=AE= ,∴DF=EF﹣ED= ,∴B′F= .故答案为: .18.如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为.【考点】全等三角形的判定与性质;勾股定理;等腰直角三角形.【分析】根据等式的性质,可得∠BAD与∠CAD′的关系,根据SAS,可得△BAD与△CAD′的关系,根据全等三角形的性质,可得BD 与CD′的关系,根据勾股定理,可得答案.【解答】解:作AD′⊥AD,AD′=AD,连接CD′,DD′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAD′中,,∴△BAD≌△CAD′(SAS),∴BD=CD′.∠DAD′=90°由勾股定理得DD′= ,∠D′DA+∠ADC=90°由勾股定理得CD′= ,∴BD=CD′= ,故答案为: .三、解答题(共10大题,共84分)19.(1)计算:(2)求x的值:5(x﹣1)2=20.【考点】实数的运算;平方根.【分析】此题涉及有理数的乘方、平方根、立方根的求法,在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果即可.【解答】解:(1)=﹣2+3﹣8=﹣7(2)∵5(x﹣1)2=20,∴(x﹣1)2=4,∴x﹣1=2或x﹣1=﹣2,解得x=3或x=﹣1.20.因式分解:(1)3a5﹣12a4+9a3(2)3a2﹣6ab+3b2﹣12c2.【考点】因式分解﹣分组分解法;提公因式法与公式法的综合运用.【分析】(1)利用提供因式法和十字相乘分式分解因式;(2)利用提公因式法和分组分解法分解因式.【解答】解:(1)原式=3a3(a2﹣4a+3)=3a3(a﹣3)(a﹣1).(2)原式=3(a2﹣2ab+b2﹣4c2)=3[(a﹣b)2﹣4c2]=3(a﹣b+2c)(a﹣b﹣2c).21.如图,OC是∠AOB的角平分线,P是OC上一点.PD⊥OA交OA于D,PE⊥OB交OB于E,F是OC上的另一点,连接DF,EF.求证:DF=EF.【考点】角平分线的性质;全等三角形的判定与性质.【分析】先根据点P在∠AOB的角平分线OC上,PE⊥OB可求出PD=PE,∠DOP=∠EOP,∠PDO=∠PEO=90°,由全等三角形的判定定理可得出△DPF≌△EPF,进而可得出答案.【解答】证明:∵点P在∠AOB的角平分线OC上,PE⊥OB,PD⊥AO,∴PD=PE,∠DOP=∠EOP,∠PDO=∠PEO=90°,∴∠DPF=90°﹣∠DOP,∠EPF=90°﹣∠EOP,∴∠DPF=∠EPF,在△DPF和△EPF中(SAS),∴△DPF≌△EPF∴DF=EF.22.如图,正方形网格中每个小正方形边长都是1.(1)在直线l上找一点P,使PB+PC的值最小;(2)连接PA、PC,计算四边形PABC的面积;(3)若图中的格点Q到直线BC的距离等于,则图中所有满足条件的格点Q有16 个.【考点】轴对称﹣最短路线问题;点到直线的距离.【分析】(1)找到B点对称点B′,再连接B′C交直线l于点P,即可得出答案;(2)直接将四边形分割为两个三角形,进而求出其面积;(3)利用勾股定理结合网格得出平行于直线BC且到直线BC的距离为的直线,即可得出答案.【解答】解:(1)如图所示:点P即为所求;(2)四边形PABC的面积为:×3×5+ ×4×1=9.5;(3)图中所有满足条件的格点Q有:16个.故答案为:16.23.已知a,b,c为△ABC的三条边的长,且满足b2+2ab=c2+2ac.(1)试判断△ABC的形状,并说明理由;(2)若a=6,b=5,求△ABC的面积.【考点】因式分解的应用.【分析】(1)由已知条件得出b2﹣c2+2ab﹣2ac=0,用分组分解法进行因式分解得出(b﹣c)(b+c+2a)=0,得出b﹣c=0,因此b=c,即可得出结论;(2)作△ABC底边BC上的高AD.根据等腰三角形三线合一的性质得出BD=DC= BC=3,利用勾股定理求出AD= =4,再根据三角形的面积公式即可求解.【解答】解:(1)△ABC是等腰三角形,理由如下:∵a,b,c为△ABC的三条边的长,b2+2ab=c2+2ac,∴b2﹣c2+2ab﹣2ac=0,因式分解得:(b﹣c)(b+c+2a)=0,∴b﹣c=0,∴b=c,∴△ABC是等腰三角形;(2)如图,作△ABC底边BC上的高AD.∵AB=AC=5,AD⊥BC,∴BD=DC= BC=3,∴AD= =4,∴△ABC的面积= BC•AD= ×6×4=12.24.如图,∠ABC=90°,D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD与AB相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)根据等腰直角三角形的性质得出DF⊥AE,DF=AF=EF,进而利用全等三角形的判定得出△DFC≌△AFM(AAS),即可得出答案;(2)由(1)知,∠MFC=90°,FD=EF,FM=FC,即可得出∠FDE=∠FMC=45°,即可理由平行线的判定得出答案.【解答】(1)证明:∵△ADE是等腰直角三角形,F是AE中点,∴DF⊥AE,DF=AF=EF,又∵∠ABC=90°,∠DCF,∠AMF都与∠MAC互余,∴∠DCF=∠AMF,在△DFC和△AFM中,,∴△DFC≌△AFM(AAS),∴CF=MF,∴∠FMC=∠FCM;(2)AD⊥MC,理由:由(1)知,∠MFC=90°,FD=FA=FE,FM=FC,∴∠FDE=∠FMC=45°,∴DE∥CM,∴AD⊥MC.25.仔细阅读下面例题,解答问题:例题:已知关于x的多项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得:x2﹣4x+m=(x+3)(x+n),则x2﹣4x+m=x2+(n+3)x+3n,∴ ,解得:n=﹣7,m=﹣21.∴另一个因式为(x﹣7),m的值为﹣21.问题:仿照以上方法解答下面问题:(1)已知关于x的多项式2x2+3x﹣k有一个因式是(x+4),求另一个因式以及k的值.(2)已知关于x的多项式2x3+5x2﹣x+b有一个因式为x+2,求b 的值.【考点】因式分解﹣十字相乘法等;解二元一次方程组.【分析】(1)设另一个因式是(2x+b),则(x+4)(2x+b)=2x2+bx+8x+4b=2x2+(b+8)x+4b=2x2+3x﹣k,根据对应项的系数相等即可求得b和k的值;(2)设另一个因式是(2x2+mx+n),利用多项式的乘法运算法则展开,然后根据对应项的系数相等列式求出b的值即可得解.【解答】解:(1)设另一个因式是(2x+b),则(x+4)(2x+b)=2x2+bx+8x+4b=2x2+(b+8)x+4b=2x2+3x﹣k,则,解得: .则另一个因式是:2x﹣5,k=20.(2)设另一个因式是(2x2+mx+n),则(x+2)(2x2+mx+n)=2x3+(m+4)x2+(2m+n)x+2n=2x3+5x2﹣x+b,则,解得 .故b的值是﹣6.26.如图,在△ABC中,∠ABC=45°,CD⊥AB,BE⊥AC,垂足分别为D、E,F为BC中点,BE与DF,DC分别交于点G,H,∠ABE=∠CBE.(1)求证:BH=AC;(2)求证:BG2﹣GE2=EA2.【考点】全等三角形的判定与性质;线段垂直平分线的性质;勾股定理.【分析】(1)根据三角形的内角和定理求出∠BCD=∠ABC,∠ABE=∠DCA,推出DB=CD,根据ASA证出△DBH≌△DCA即可;(2)根据DB=DC和F为BC中点,得出DF垂直平分BC,推出BG=CG,根据BE⊥AC和∠ABE=∠CBE得出AE=CE,在Rt△CGE中,由勾股定理即可推出答案.【解答】证明:(1)∵CD⊥AB,BE⊥AC,∴∠BDH=∠BEC=∠CDA=90°,∵∠ABC=45°,∴∠BCD=180°﹣90°﹣45°=45°=∠ABC∴DB=DC,∵∠BDH=∠BEC=∠CDA=90°,∴∠A+∠ACD=90°,∠A+∠HBD=90°,∴∠HBD=∠ACD,∵在△DBH和△DCA中,,∴△DBH≌△DCA(ASA),∴BH=AC.(2)连接CG,由(1)知,DB=CD,∵F为BC的中点,∴DF垂直平分BC,∴BG=CG,∵∠ABE=∠CBE,BE⊥AC,∴△ABE≌△CBE,∴EC=EA,在Rt△CGE中,由勾股定理得:CG2﹣GE2=CE2,∵CE=AE,BG=CG,∴BG2﹣GE2=EA2.27.如图1,长方形ABCD中,∠A=∠B=∠C=∠D=90°,AB=CD,AD=BC,且,点P、Q分别是边AD、AB上的动点.(1)求BD的长;(2)①如图2,在P、Q运动中是否能使△CPQ成为等腰直角三角形?若能,请求出PA的长;若不能,请说明理由;②如图3,在BC上取一点E,使EC=5,那么当△EPC为等腰三角形时,求出PA的长.【考点】四边形综合题.【分析】(1)由条件可求得AB=4,BC=6,由勾股定理可求出BD 的长;(2)①由题可知只能有∠QPC为直角,当PQ=PC时,可证得Rt△PDC≌Rt△QAP,可求得AP的长;②分PC=EC、PC=PE和PE=EC 三种情况分别利用等腰三角形的性质和勾股定理求解即可.【解答】解:(1)如图1,连接BD,∵ ,∴AB=4,BC=6,则在Rt△ABD中,由勾股定理可求得BD= =2 ;(2)①能,AP=4,理由如下:如图2,由图形可知∠PQC和∠PCQ不可能为直角,所以只有∠QPC=90°,则∠QPA+∠CPD=∠PCD+∠CPD,∴∠QPA=∠PCD,当PQ=PC时,在Rt△APQ和Rt△DCP中∴△APQ≌△DCP(AAS),∴AP=CD=4,故在P、Q运动中是否能使△CPQ成为等腰直角三角形,此时AP=4;②当PC=EC=5时,在Rt△PCD中,CD=4,PC=EC=5,由勾股定理可求得PD=3,所以AP=AB﹣PD=3,当PC=PE=5时,如图3,过P作PF⊥BC交BC于点F,则FC=EF=PD= EC=2.5,所以AP=AB﹣PD=6﹣2.5=3.5,当PE=EC=5时,如图4,过E作EH⊥AD于点H,由可知AH=BE=1,在Rt△EHD中,EH=AB=4,EP=5,由勾股定理可得HP=3,所以AP=AH+PH=1+3=4,综上可知当△EPC为等腰三角形时,求出PA的长为3、3.5或4.28.【阅读】如图1,四边形OABC中,OA=a,OC=3,BC=2,∠AOC=∠BCO=90°,经过点O的直线l将四边形分成两部分,直线l与OC所成的角设为θ,将四边形OABC的直角∠OCB沿直线l折叠,点C落在点D处,我们把这个操作过程记为FZ[θ,a].【理解】若点D与点A重合,则这个操作过程为FZ[45°,3];【尝试】(1)若点D恰为AB的中点(如图2),求θ;(2)经过FZ[45°,a]操作,点B落在点E处,若点E在四边形OABC 的边AB上,求出a的值;若点E落在四边形OABC的外部,直接写出a的取值范围.【考点】几何变换综合题.【分析】(1)先根据ASA定理得出△BCD≌△AFD,故可得出CD=FD,即点D为Rt△COF斜边CF的中点,由折叠可知,OD=OC,故OD=OC=CD,△OCD为等边三角形,∠COD=60°,根据等边三角形三线合一的性质可得出结论;(2)根据点E四边形0ABC的边AB上可知AB⊥直线l,根据由折叠可知,OD=OC=3,DE=BC=2.再由θ=45°,AB⊥直线l,得出△ADE为等腰直角三角形,故可得出OA的长,由此可得出结论.【解答】解:(1)连接CD并延长,交OA延长线于点F.在△BCD与△AFD中,,∴△BCD≌△AFD(ASA).∴CD=FD,即点D为Rt△COF斜边CF的中点,∴OD= CF=CD.又由折叠可知,OD=OC,∴OD=OC=CD,∴△OCD为等边三角形,∠COD=60°,∴θ= ∠COD=30°;(2)∵点E四边形0ABC的边AB上,∴AB⊥直线l由折叠可知,OD=OC=3,DE=BC=2.∵θ=45°,AB⊥直线l,∴△ADE为等腰直角三角形,∴AD=DE=2,∴OA=OD+AD=3+2=5,∴a=5;由图可知,当0。

人教版七年级数学第二学期 第二次自主检测测试卷含答案

人教版七年级数学第二学期 第二次自主检测测试卷含答案

人教版七年级数学第二学期 第二次自主检测测试卷含答案一、选择题1.有一个数阵排列如下:1 2 4 7 11 16 22 3 5 8 12 17 23 6 9 13 18 2410 14 19 2515 20 2621 2728则第20行从左至右第10个数为( ) A .425 B .426 C .427 D .428 2.表面积为12dm 2的正方体的棱长为( )Adm B .dmC .1dmD .2dm3.=15.9065.036( )A .159.06B .50.36C .1590.6D .503.6 4.圆的面积增加为原来的m 倍,则它的半径是原来的( )A .m 倍B .2m 倍C倍D .2m 倍5.下列结论正确的是( ) A .无限小数都是无理数 B .无理数都是无限小数 C .带根号的数都是无理数 D .实数包括正实数、负实数6) A .5和6B .6和7C .7和8D .8和97.给出下列各数①0.32,②227,③π0.2060060006(每两个6之间依次多个0) A .②④⑤B .①③⑥C .④⑤⑥D .③④⑤8.下列计算正确的是( )A .21155⎛⎫-= ⎪⎝⎭ B .()239-=C2=±D .()515-=-9.给出下列说法:①﹣0.064的立方根是±0.4;②﹣9的平方根是±3;=﹣;④0.01的立方根是0.00001,其中正确的个数是( )A .1个B .2个C .3个D .4个10.在如图所示的数轴上,,AB AC A B =,1,-则点C 所对应的实数是( )A .13+B .23+C .231-D .231+二、填空题11.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A 点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A 到达点A′的位置,则点A′表示的数是_______.12.[x )表示小于x 的最大整数,如[2.3)=2,[-4)=-5,则下列判断:①[385-)= 8-;②[x )–x 有最大值是0;③[x ) –x 有最小值是-1;④x 1-≤[x )<x ,其中正确的是__________ (填编号). 13.已知M 是满足不等式36a <<N 是满足不等式x 372-的最大整数,则M +N 的平方根为________. 14.观察下列各式: 123415⨯⨯⨯+=; 2345111⨯⨯⨯+=; 3456119⨯⨯⨯+=;121314151a ⨯⨯⨯+=,则a =_____. 15.用⊕表示一种运算,它的含义是:1(1)(1)xA B A B A B ⊕=++++,如果5213⊕=,那么45⊕= __________. 16.现定义一种新运算:对任意有理数a 、b ,都有a ⊗b=a 2﹣b ,例如3⊗2=32﹣2=7,2⊗(﹣1)=_____.17.下面是按一定规律排列的一列数:14,37,512,719,928…,那么第n 个数是__. 18.一个数的立方等于它本身,这个数是__. 19.3是______的立方根;81的平方根是________32=__________.20.对于任意有理数a ,b ,定义新运算:a ⊗b =a 2﹣2b +1,则2⊗(﹣6)=____.三、解答题21.在有理数的范围内,我们定义三个数之间的新运算法则“⊕”:a ⊕b ⊕c =2a b c a b c--+++.如:(1)-⊕2⊕3=123(1)2352---+-++=.①根据题意,3⊕(7)-⊕113的值为__________; ②在651128,,,,0,,,,777999---这15个数中,任意取三个数作为a ,b ,c 的值,进行“a ⊕b ⊕c ”运算,在所有计算结果中的最大值为__________;最小值为__________.22.观察下列三行数:(1)第①行的第n 个数是_______(直接写出答案,n 为正整数) (2)第②、③行的数与第①行相对应的数分别有什么关系?(3)取每行的第9个数,记这三个数的和为a ,化简计算求值:(5a 2-13a-1)-4(4-3a+54a 2) 23.观察下列两个等式:1122133-=⨯+,2255133-=⨯+,给出定义如下:我们称使等式 1a b ab -=+成立的一对有理数,a b 为“共生有理数对”,记为(),a b ,如:数对12,3⎛⎫ ⎪⎝⎭,25,3⎛⎫⎪⎝⎭,都是“共生有理数对”. (1)判断下列数对是不是“共生有理数对”,(直接填“是”或“不是”).(2,1)- ,(13,2) .(2)若 5,2a ⎛⎫-⎪⎝⎭是“共生有理数对”,求a 的值; (3)若(),m n 是“共生有理数对”,则(),n m --必是“共生有理数对”.请说明理由; (4)请再写出一对符合条件的 “共生有理数对”为 (注意:不能与题目中已有的“共生有理数对”重复).24.“比差法”是数学中常用的比较两个数大小的方法,即:0,?0,?0,?a b a ba b a b a b a b ->>⎧⎪-==⎨⎪-<<⎩则则则; 192与2的大小 ∵1922194-= 161925<< 则4195<< ∴19221940-=> ∴1922>请根据上述方法解答以下问题:比较2-与3-的大小. 25.阅读下列材料:小明为了计算22019202012222+++++的值,采用以下方法:设22019202012222s =+++++ ① 则22020202122222s =++++ ②②-①得,2021221s s s -==- 请仿照小明的方法解决以下问题: (1)291222++++=________;(2)220333+++=_________;(3)求231n a a a a ++++的和(1a >,n 是正整数,请写出计算过程).26.阅读下面的文字,解答问题:是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,而121的小数部分.请解答下列问题:(1_______,小数部分是_________;(2)的小数部分为a b ,求a b +(3)已知:100x y +=+,其中x 是整数,且01y <<,求24x y +-的平方根。

江苏省连云港市灌云县2023年七年级(下)第二次抽测数学试卷【含答案】

江苏省连云港市灌云县2023年七年级(下)第二次抽测数学试卷【含答案】

江苏省连云港市灌云县2023年七年级(下)第二次抽测数学试卷一、选择题(本题共计8小题,每题3分,共计24分)1.下列计算正确的是( )A.a5﹣a3=a2B.a4•a3=a12C.(﹣3a3)2=9a6D.a8÷a2=a42.如图所示,下列各组图形中,一个图形经过平移能得到另一个图形的是( )A.B.C.D.3.若一个正多边形的外角等于其内角,则这个正多边形的边数为( )A.3B.4C.5D.64.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=( )A.20°B.30°C.40°D.50°5.小颖用长度为奇数的三根木棒搭一个三角形,其中两根木棒的长度分别为7cm和3cm,则第三根木棒的长度是( )A.7cm B.8cm C.11cm D.13cm6.下列说法正确的是( )A.过一点有且只有一条直线与已知直线平行B.相等的角是对顶角C.两条直线被第三条直线所截,同旁内角互补D.在同一平面内,垂直于同一直线的两条直线平行7.若2x+5y=4,则4x×32y的值为( )A.4B.8C.16D.328.如图在△ABC与△ACD中,∠B=85°,∠ACB=45°,AC=AD,AB∥CD,则∠D 的度数为( )A.40°B.50°C.55°D.65°二、填空题(本题共计10小题,每题4分,共计40分)9.肥皂泡沫的泡壁厚度大约是0.0007mm,则数据0.0007用科学记数法表示为 .10.计算3x3•(﹣2x2y)的结果是 .11.如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是 .12.如图,直线AB∥CD,∠A=60°,∠D=40°,则∠E= .13.如果从某个多边形的一个顶点出发的对角线共有2条,那么该多边形的内角和是 度.14.若4m=8,4n=4,则4m﹣n= .15.如图,五边形ABCDE中,AB∥CD,∠1,∠2,∠3分别是∠BAE,∠AED,∠EDC 的外角,则∠1+∠2+∠3= .16.= .17.如图,小亮从A点出发前进10m,向右转15°,再前进10m,又向右转15°,…这样他以3m/s的速度匀速的一直走下去,他第一次回到出发点A时,一共走了 s.18.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为 三、解答题(本题共计8小题,共计86分)19.(8分)把小船ABCD通过平移后到A′B′C′D′的位置,请你根据题中信息,画出平移后的小船位置.20.(12分)计算:(1)(﹣2x2)3+x4•x2;.21.(10分)如图,∠B=42°,∠A+10°=∠1,∠ACD=64°,证明:AB∥CD.22.(10分)如图,直线a∥b,∠1=45°,∠2=30°,求∠P的度数.23.(10分)已知2a﹣3b﹣4c=5,求4a÷8b×()c的值.24.(12分)如图,△ACB中,∠ACB=90°,∠1=∠B.(1)试说明CD是△ABC的高;(2)如果AC=8,BC=6,AB=10,求CD的长.25.(10分)如图,已知:AC∥DE,DC∥EF,CD平分∠BCA.求证:EF平分∠BED.(证明注明理由)26.(14分)阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘2得:2S=2+22+23+24+25+…+22013+22014将下式减去上式得2S﹣S=22014﹣1即S=22014﹣1即1+2+22+23+24+…+22013=22014﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n(其中n为正整数).参考答案与试题解析一、选择题(本题共计8小题,每题3分,共计24分)1.下列计算正确的是( )A.a5﹣a3=a2B.a4•a3=a12C.(﹣3a3)2=9a6D.a8÷a2=a4【分析】根据同底数幂的除法的运算方法,幂的乘方与积的乘方的运算方法,合并同类项的方法,以及同底数幂的乘法的运算方法,逐项判断即可.【解答】解:∵a5﹣a3≠a2,∴选项A不符合题意;∵a4•a3=a7,∴选项B不符合题意;∵(﹣3a3)2=9a6,∴选项C符合题意;∵a8÷a2=a6,∴选项D不符合题意.故选:C.2.如图所示,下列各组图形中,一个图形经过平移能得到另一个图形的是( )A.B.C.D.【分析】根据平移的性质,结合图形,对选项进行一一分析,选出正确答案.【解答】解:各组图形中,选项D中的图形是一个图形经过平移能得到另一个图形,故选:D.3.若一个正多边形的外角等于其内角,则这个正多边形的边数为( )A.3B.4C.5D.6【分析】根据一个正多边形的外角等于其内角,可得外角度数,再根据外角和得出这个正多边形的边数.【解答】解:∵正多边形的外角等于其内角,∴外角和内角均为90°,又∵多边形的外角和等于360°,∴这个正多边形的边数为360°÷90°=4,故选:B.4.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=( )A.20°B.30°C.40°D.50°【分析】根据两直线平行,同位角相等可得∠3=∠1,再根据平角等于180°列式计算即可得解.【解答】解:∵直尺对边互相平行,∴∠3=∠1=50°,∴∠2=180°﹣50°﹣90°=40°.故选:C.5.小颖用长度为奇数的三根木棒搭一个三角形,其中两根木棒的长度分别为7cm和3cm,则第三根木棒的长度是( )A.7cm B.8cm C.11cm D.13cm【分析】首先根据三角形的三边关系求得第三根木棒的取值范围,再进一步根据奇数这一条件分析.【解答】解:根据三角形的三边关系,得7﹣3<第三根木棒<7+3,即4<第三根木棒<10.又∵第三根木棒的长选取奇数,∴第三根木棒的长度可以为5cm,7cm,9cm.故选:A.6.下列说法正确的是( )A.过一点有且只有一条直线与已知直线平行B.相等的角是对顶角C.两条直线被第三条直线所截,同旁内角互补D.在同一平面内,垂直于同一直线的两条直线平行【分析】根据平行公理,对顶角的定义以及平行线的性质对各选项分析判断后利用排除法求解.【解答】解:A、应为在同一平面内,经过直线外一点有且只有一条直线与已知直线平行,故本选项错误;B、对顶角相等,但相等的两个角不一定是对顶角,故本选项错误;C、正确的说法是两条平行线被第三条直线所截,同旁内角互补,故本选项错误;D、在同一平面内垂直于同一条直线的两条直线平行,故该选项正确.故选:D.7.若2x+5y=4,则4x×32y的值为( )A.4B.8C.16D.32【分析】都化为以2为底数的幂的运算,然后根据幂的乘方和同底数幂的乘法运算法则进行计算即可得解.【解答】解:∵2x+5y=4,∴4x×32y=(22)x×(25)y=22x×25y=22x+5y=24=16.故选:C.8.如图在△ABC与△ACD中,∠B=85°,∠ACB=45°,AC=AD,AB∥CD,则∠D的度数为( )A.40°B.50°C.55°D.65°【分析】根据三角形的内角和定理,平行线的性质,以及等腰三角形的性质即可得到结论.【解答】解:∵∠B=85°,∠ACB=45°,∴∠BAC=180°﹣85°﹣45°=50°,∵AB∥CD,∴∠ACD=∠CAB=50°,∵AD=AC,∴∠D=∠ACD=50°,故选:B.二、填空题(本题共计10小题,每题4分,共计40分)9.肥皂泡沫的泡壁厚度大约是0.0007mm,则数据0.0007用科学记数法表示为 7×10﹣4 .【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0007=7×10﹣4,故答案为:7×10﹣4.10.计算3x3•(﹣2x2y)的结果是 ﹣6x5y .【分析】本题是单项式与单项式的乘法运算,系数与系数相乘作为系数,相同的字母相乘.【解答】解:3x3•(﹣2x2y),=3×(﹣2)•x3x2•y,=﹣6x5y.故填﹣6x5y.11.如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是 利用三角形的稳定性 .【分析】三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.【解答】解:这样做的道理是利用三角形的稳定性.12.如图,直线AB∥CD,∠A=60°,∠D=40°,则∠E= 20° .【分析】根据平行线的性质,可以得到∠1的度数,再根据∠1=∠E+∠D,即可得到∠E的度数.【解答】解:∵AB∥CD,∠A=60°,∴∠A=∠1=60°,∵∠1=∠E+∠D,∠D=40°,∴∠E=∠1﹣∠D=60°﹣40°=20°,故答案为:20°.13.如果从某个多边形的一个顶点出发的对角线共有2条,那么该多边形的内角和是 540 度.【分析】根据从多边形的一个顶点可以作对角线的条数公式(n﹣3)求出边数,然后根据多边形的内角和公式(n﹣2)•180°列式进行计算即可得解.【解答】解:∵多边形从一个顶点出发可引出9条对角线,∴n﹣3=2,解得n=5,∴内角和=(5﹣2)•180°=540°.故答案为:540.14.若4m=8,4n=4,则4m﹣n= 2 .【分析】根据同底数幂的除法解答即可.【解答】解:因为4m=8,4n=4,所以4m﹣n=4m÷4n=8÷4=2,故答案为:215.如图,五边形ABCDE中,AB∥CD,∠1,∠2,∠3分别是∠BAE,∠AED,∠EDC 的外角,则∠1+∠2+∠3= 180° .【分析】根据两直线平行,同旁内角互补求出∠B+∠C=180°,从而得到以点B、点C为顶点的五边形的两个外角的度数之和等于180°,再根据多边形的外角和定理列式计算即可得解.【解答】解:∵AB∥CD,∴∠4+∠5=180°,根据多边形的外角和定理,∠1+∠2+∠3+∠4+∠5=360°,∴∠1+∠2+∠3=360°﹣180°=180°.故答案为:180°.16.= 2 .【分析】积的乘方,等于各个因式乘方的积,据此计算即可.【解答】解:===12019×2=1×2=2.故答案为:2.17.如图,小亮从A点出发前进10m,向右转15°,再前进10m,又向右转15°,…这样他以3m/s的速度匀速的一直走下去,他第一次回到出发点A时,一共走了 80 s.【分析】由题意可知小亮所走的路线为正多边形,根据多边形的外角和定理即可求出答案.【解答】解:∵小亮从A点出发最后回到出发点A时正好走了一个正多边形,∴根据外角和定理可知正多边形的边数为n=360°÷15°=24,则一共走了24×10=240(m),一共走了240÷3=80(s).故答案为:80.18.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为 48 【分析】根据平移的性质得出BE=6,DE=AB=10,则OE=6,则阴影部分面积=S四边形ODFC=S梯形ABEO,根据梯形的面积公式即可求解.【解答】解:由平移的性质知,BE=6,DE=AB=10,∴OE=DE﹣DO=10﹣4=6,∴S四边形ODFC=S梯形ABEO=(AB+OE)•BE=(10+6)×6=48.故答案为48.三、解答题(本题共计8小题,共计86分)19.(8分)把小船ABCD通过平移后到A′B′C′D′的位置,请你根据题中信息,画出平移后的小船位置.【分析】看旗子的一个对应点是向左移9个格子,再向上移1个格子,那么将小船的四个顶点向左移9个格子,再向上移1个格子即可得到所求的位置.【解答】解:.20.(12分)计算:(1)(﹣2x2)3+x4•x2;.【分析】(1)根据幂的乘方与积的乘方运算法则以及同底数幂的乘法法则化简即可;(2)根据任何非零数的零次幂等于1,有理数的乘方以及负整数指数幂的定义计算即可.【解答】解:(1)原式=﹣8x6+x6=﹣7x6;(2)原式=1﹣4+8=5.21.(10分)如图,∠B=42°,∠A+10°=∠1,∠ACD=64°,证明:AB∥CD.【分析】在△ABC中,∠B=42°即已知∠A+∠1=180°﹣42°=138°,又∠A+10°=∠1可以求出∠A的大小,只要能得到∠A=64°,根据内错角相等,两直线平行,就可以证出结论.【解答】证明:在△ABC中,∠A+∠B+∠1=180°,∠B=42°,∴∠A+∠1=138°,又∵∠A+10°=∠1,∴∠A+∠A+10°=138°,解得:∠A=64°.∴∠A=∠ACD=64°,∴AB∥CD(内错角相等,两直线平行).22.(10分)如图,直线a∥b,∠1=45°,∠2=30°,求∠P的度数.【分析】过P作PM∥直线a,求出直线a∥b∥PM,根据平行线的性质得出∠EPM=∠2=30°,∠FPM=∠1=45°,即可求出答案.【解答】解:过P作PM∥直线a,∵直线a∥b,∴直线a∥b∥PM,∵∠1=45°,∠2=30°,∴∠EPM=∠2=30°,∠FPM=∠1=45°,∴∠EPF=∠EPM+∠FPM=30°+45°=75°,23.(10分)已知2a﹣3b﹣4c=5,求4a÷8b×()c的值.【分析】根据幂的乘方与积的乘方法则以及同底数幂的除法法则计算即可.【解答】解:∵2a﹣3b﹣4c=5,∴4a÷8b×()c==22a÷23b×2﹣4c=22a﹣3b﹣4c=25=32.24.(12分)如图,△ACB中,∠ACB=90°,∠1=∠B.(1)试说明CD是△ABC的高;(2)如果AC=8,BC=6,AB=10,求CD的长.【分析】(1)由等量代换可得到∠B+∠BCD=90°,故△BDC是直角三角形,即CD⊥AB;(2)由面积法可求得CD的长.【解答】解:(1)∵∠1+∠BCD=90°,∠1=∠B∴∠B+∠BCD=90°∴△BDC是直角三角形,即CD⊥AB,∴CD是△ABC的高;(2)∵∠ACB=∠CDB=90°∴S△ABC=AC•BC=AB•CD,∵AC=8,BC=6,AB=10,∴CD===.25.(10分)如图,已知:AC∥DE,DC∥EF,CD平分∠BCA.求证:EF平分∠BED.(证明注明理由)【分析】要证明EF平分∠BED,即证∠4=∠5,由平行线的性质,∠4=∠3=∠1,∠5=∠2,只需证明∠1=∠2,而这是已知条件,故问题得证.【解答】证明:∵AC∥DE(已知),∴∠BCA=∠BED(两直线平行,同位角相等),即∠1+∠2=∠4+∠5,∵AC∥DE,∴∠1=∠3(两直线平行,内错角相等);∵DC∥EF(已知),∴∠3=∠4(两直线平行,内错角相等);∴∠1=∠4(等量代换),∴∠2=∠5(等式性质);∵CD平分∠BCA(已知),∴∠1=∠2(角平分线的定义),∴∠4=∠5(等量代换),∴EF平分∠BED(角平分线的定义).26.(14分)阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘2得:2S=2+22+23+24+25+…+22013+22014将下式减去上式得2S﹣S=22014﹣1即S=22014﹣1即1+2+22+23+24+…+22013=22014﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n(其中n为正整数).【分析】(1)设S=1+2+22+23+24+…+210,两边乘以2后得到关系式,与已知等式相减,变形即可求出所求式子的值;(2)同理即可得到所求式子的值.【解答】解:(1)设S=1+2+22+23+24+ (210)将等式两边同时乘2得:2S=2+22+23+24+…+210+211,将下式减去上式得:2S﹣S=211﹣1,即S=211﹣1,则1+2+22+23+24+…+210=211﹣1;(2)设S=1+3+32+33+34+…+3n①,两边同时乘3得:3S=3+32+33+34+…+3n+3n+1②,②﹣①得:3S﹣S=3n+1﹣1,即S=(3n+1﹣1),则1+3+32+33+34+…+3n=(3n+1﹣1).。

重庆市北碚区2018-2019学年七年级(下)期末数学试卷(含答案)

重庆市北碚区2018-2019学年七年级(下)期末数学试卷(含答案)

北碚区2018-2019学年度第二学期七年级调研抽测数学试题(分数:150分时间:120分钟全卷共五个大题)注意事项:1.试题的答案书写在答题卡(卷)上,不得在试卷上直接作答。

2.作答前认真阅读答题卡(卷)上的注意事项。

3.考试结束,由监考人员将试题和答题卡(卷)一并收回。

一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.在我们身边有一些股民,在每一次的股票交易中或盈利或亏损.某股民将甲,乙两种股票卖出,甲种股票卖出1500元,盈利20%,乙种股票卖出1500元,但亏损20%,该股民在这次交易中是()A.盈利125元B.亏损125元C.不赔不赚D.亏损625元2.为了迎接暑假的购物高峰,北碚万达广场耐克专卖店购进甲、乙两种服装,现此商店同时卖出甲、乙两种服装各一件,每件售价都为240元,其中一件赚了20%,另一件亏了20%,那么这个商店卖出这两件服装总体的盈亏情况是()A.赚了12元B.亏了12元C.赚了20元D.亏了20元3.下列方程中,是二元一次方程的有()①;②x(y+1)=6;③;④mn+m=7;⑤x+y=6;⑥3x+y=z+1;⑦2x(3-x)=x2-3(x2+y)A.1个B.2个C.3个D.4个4.若3x3m+5n+9+4y4m-2n-7=2是关于x、y的二元一次方程,则=()A. B. C.- D.5.若数a使关于x的不等式组有且仅有四个整数解,且使关于y的分式方程+=2有非负数解,则所有满足条件的整数a的值之和是()A.3B.1C.0D.-36.如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是()A. B. C. D.7.如图,一条公路修到湖边时需绕道,第一次拐角∠B=120°,第二次拐角∠C=140°.为了保持公路AB与DE平行,则第三次拐角∠D的度数应为()A.130°B.140°C.150°D.160°第7题图第8题图第9题图8.如图,△ABC的面积是12,点D、E、F、G分别是BC、AD、BE、CE的中点,则△AFG的面积是()A.4.5B.5C.5.5D.69.如图.在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点E处,且CE与AB交于F,那么S△ACF为()A.12B.15C.6D.1010.如图,△ODC是由△OAB绕点O顺时针旋转30°后得到的图形,若点D恰好落在AB上,且∠AOC的度数为100°,则∠B的度数是()A.40°B.35°C.30°D.15°第10题图第11题图第12题图11.把一张对面互相平行的纸条折成如图所示那样,EF是折痕,若∠EFB=32°则下列结论正确的有()(1)∠C′EF=32°(2)∠AEC=116°(3)∠BGE=64°(4)∠BFD=116°.A.1个B.2个C.3个D.4个12.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为()A.56°B.62°C.68°D.78°二、填空题:(本大题共6个小题,每小题4分,共24分)13.若整式与互为相反数,则a的值为______.14.若关于x,y方程组的解为,则方程组的解为____________.15.如图:在矩形ABCD中,AB=6,BC=8,P为AD上任一点,过点P作PE⊥AC于点E,PF⊥BD 于点F,则PE+PF= ______ .16.如图,△ABC绕C点顺时针旋转37°后得到了△A′B′C,A′B′⊥AC于点D,则∠A=______°.17.一种药品的说明书上写着:“每日用量60~120mg,分4次服用”,一次服用这种药量x(mg)范围为_________.18.如图,▱ABCD中,E是AD边上一点,AD=4,CD=3,ED=,∠A=45°,点P、Q分别是BC,CD边上的动点,且始终保持∠EPQ=45°,将△CPQ沿它的一条边翻折,当翻折前后两个三角形组成的四边形为菱形时,线段BP的长为______.第15题图第16题图第18题图三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答书写在答题卡中对应题号的位置上。

七年级数学第二学期第二次质量检测测试卷含答案

七年级数学第二学期第二次质量检测测试卷含答案

七年级数学第二学期第二次质量检测测试卷含答案一、选择题1.一个正数a 的平方根是2x ﹣3与5﹣x ,则这个正数a 的值是( )A .25B .49C .64D .812.对一组数(x,y)的一次操作变换记为P 1(x,y),定义其变换法则如下:P 1(x,y)=(x+y,x-y),且规定P n (x,y)=P 1(P n-1(x,y))(n 为大于1的整数),如:P 1(1,2)=(3,-1),P 2(1,2)= P 1(P 1(1,2))= P 1(3,-1)=(2,4),P 3(1,2)= P 1(P 2(1,2))= P 1(2,4)=(6,-2),则P 2017(1,-1)=( ).A .(0,21008)B .(0,-21008)C .(0,-21009)D .(0,21009)3.如图,数轴上的,,A B C 三点所表示的数分别为a b c 、、,其中AB BC =,如果||||||a c b >>那么该数轴的原点O 的位置应该在( )A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点C 的右边4.我们规定一种运算“★”,其意义为a ★b =a 2﹣ab ,如2★3=22﹣2×3=﹣2.若实数x 满足(x +2)★(x ﹣3)=5,则x 的值为( )A .1B .﹣1C .5D .﹣5 5.280x y -+=,则x y +的值为( ) A .10B .-10C .-6D .不能确定 6.若一个正数x 的平方根为27a -和143a -,则x =( ) A .7B .16C .25D .49 7.已知|x |=2,y 2=9,且xy <0,则x +y 的值为( )A .1或﹣1B .-5或5C .11或7D .-11或﹣7 8.下列命题中,①81的平方根是916±2;③−0.003没有立方根;④−64的立方根为±45 )A .1B .2C .3D .49.若320,a b -+=则+a b 的值是( )A .2B 、1C 、0D 、1-10.在下列实数中,无理数是( )A .337B .πC 25D .13二、填空题11.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A 点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A 到达点A′的位置,则点A′表示的数是_______.12.若已知()21230a b c -+++-=,则a b c -+=_____.13.观察下面两行数:2,4,8,16,32,64…①5,7,11,19,35,67…②根据你发现的规律,取每行的第8个数,并求出它们的和_______(要求写出最后的计算结果).14.数轴上表示1、2的点分别为A 、B ,点A 是BC 的中点,则点C 所表示的数是____.15.如果某数的一个平方根是﹣5,那么这个数是_____.16.对于任意有理数a ,b ,定义新运算:a ⊗b =a 2﹣2b +1,则2⊗(﹣6)=____.17.定义:对于任意数a ,符号[]a 表示不大于a 的最大整数.例如:[][][]3.93,55,4π==-=-,若[]6a =-,则[]2a 的值为______.18.已知2(21)10a b ++-=,则22004a b +=________.19.11133+=112344+=113455+=,……请你将发现的规律用含自然数n (n≥1)的等式表示出来__________________.20.若x ,y 为实数,且|2|30x y ++-=,则(x+y) 2012的值为____________.三、解答题21.观察下列各式:(x -1)(x+1)=x 2-1(x -1)(x 2+x+1)=x 3-1(x -1)(x 3+x 2+x+1)=x 4-1……(1)根据以上规律,则(x -1)(x 6+x 5+x 4+x 3+x 2+x+1)=__________________.(2)你能否由此归纳出一般性规律(x -1)(x n +x n -1+x n -2+…+x+1)=____________. (3)根据以上规律求1+3+32+…+349+350的结果.22.定义:对任意一个两位数a ,如果a 满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“奇异数”.将一个“奇异数”的个位数字与十位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与11的商记为()f a例如:19=a ,对调个位数字与十位数字后得到新两位数是91,新两位数与原两位数的和为9119110+=,和与11的商为1101110÷=,所以()1910f =根据以上定义,完成下列问题:(1)填空:①下列两位数:10,21,33中,“奇异数”有 . ②计算:()15f = .()10f m n += .(2)如果一个“奇异数”b 的十位数字是k ,个位数字是21k -,且()8f b =请求出这个“奇异数”b (3)如果一个“奇异数”a 的十位数字是x ,个位数字是y ,且满足()510a f a -=,请直接写出满足条件的a 的值.23.概念学习规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2, (﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把n a a a a a ÷÷÷÷个(a≠0)记作a ,读作“a 的圈n 次方”.初步探究 (1)直接写出计算结果:2③=________,1)2-(⑤=________; (2)关于除方,下列说法错误的是________ A .任何非零数的圈2次方都等于1; B .对于任何正整数n ,1=1; C .3④=4③ D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.深入思考我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=________;5⑥=________;1)2-(⑩=________. (2)想一想:将一个非零有理数a 的圈n 次方写成幂的形式等于________;(3)算一算:()3242162÷+-⨯④. 24.定义☆运算:观察下列运算:(+3)☆(+15)= +18 (﹣14)☆(﹣7)= +21(﹣2)☆(+14)=﹣16(+15)☆(﹣8)=﹣23 0☆(﹣15)= +15 (+13)☆ 0= +13两数进行☆运算时,同号 ,异号 .特别地,0和任何数进行☆运算,或任何数和0进行☆运算, .(2)计算:(﹣11)☆ [0☆(﹣12)]= .(3)若2×(﹣2☆a )﹣1=8,求a 的值.25.(1)计算:3231927|25|(2)-+-+-+-;(2)若21x -的平方根为2±,21x y +-的立方根为2-,求2x y -的算术平方根.26.已知a 是最大的负整数,b 是多项式2m 2n ﹣m 3n 2﹣m ﹣2的次数,c 是单项式﹣2xy 2的系数,且a 、b 、c 分别是点A 、B 、C 在数轴上对应的数.(1)求a 、b 、c 的值,并在数轴上标出点A 、B 、C .(2)若M 点在此数轴上运动,请求出M 点到AB 两点距离之和的最小值;(3)若动点P 、Q 同时从A 、B 出发沿数轴负方向运动,点P 的速度是每秒12个单位长度,点Q 的速度是每秒2个单位长度,求运动几秒后,点Q 能追上点P ?(4)在数轴上找一点N ,使点M 到A 、B 、C 三点的距离之和等于10,请直接写出所有的N 对应的数.(不必说明理由)【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据一个正数的两个平方根互为相反数可得(2x ﹣3)+(5﹣x )=0,可求得x ,再由平方根的定义即可解答.【详解】解:由正数的两个平方根互为相反数可得(2x ﹣3)+(5﹣x )=0,解得x =﹣2,所以5﹣x =5﹣(﹣2)=7,所以a =72=49.故答案为B .本题考查了平方根的性质,理解平方根与算术平方根的区别及联系是解答本题的关键.2.D解析:D【解析】分析:用定义的规则分别计算出P1,P2,P3,P4,P5,P6,观察所得的结果,总结出规律求解.详解:因为P1(1,-1)=(0,2);P2(1,-1)=P1(P1(1,-1))=P1(0,2)=(2,-2);P3(1,-1)=P1(P2(2,-2))=(0,4);P4(1,-1)=P1(P3(0,4))=(4,-4);P5(1,-1)=P1(P4(4,-4))=(0,8);P6(1,-1)=P1(P5(0,8))=(8,-8);……P2n-1(1,-1)=……=(0,2n);P2n(1,-1)=……=(2n,-2n).因为2017=2×1009-1,所以P2017=P2×1009-1=(0,21009).故选D.点睛:对于新定义,要理解它所规定的运算规则,再根据这个规则进行相关的计算;探索数字的变化规律通常用列举法,按照一定的顺序列举一定数量的运算过程和结果,从运算过程和结果中归纳出运算结果或运算结果的规律.3.C解析:C【分析】根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A、B、C到原点的距离的大小,从而得到原点的位置,即可得解.【详解】∵|a|>|c|>|b|,∴点A到原点的距离最大,点C其次,点B最小,又∵AB=BC,∴原点O的位置是在点B、C之间且靠近点B的地方.故选:C.【点睛】此题考查了实数与数轴,理解绝对值的定义是解题的关键.4.B解析:B【分析】根据a★b=a2-ab可得(x+2)★(x-3)=(x+2)2-(x+2)(x-3),进而可得方程:(x+2)2-(x+2)(x-3)=5,再解方程即可.解:由题意得:(x+2)2-(x+2)(x -3)=5,x 2+4x+4-(x 2-x -6)=5,x 2+4x+4-x 2+x+6=5,5x=-5,解得:x=-1,故选:B .【点睛】此题主要考查了实数运算,以及解方程,关键是正确理解所给条件a ★b=a 2-ab 所表示的意义.5.C解析:C【分析】根据算术平方根的非负性求出x ,y ,然后再求x+y 即可;【详解】解:由题意得:x-2=0,y+8=0∴x=2,y=-8∴x+y=2+(-8)=-6故答案为C.【点睛】本题考查了算术平方根的非负性,掌握若干个非负数之和为0,则每个非负数都为0是解答本题的关键.6.D解析:D【解析】【分析】首先根据正数的两个平方根互为相反数,列的方程:(27a -)+(143a -)=0,解方程即可求得a 的值,代入即可求得x 的两个平方根,则可求得x 的值.【详解】∵一个正数x 的平方根为27a -和143a -,∴(27a -)+(143a -)=0,解得:a=7.∴27a -=7,143a -=-7,∴x=(±7)2 =49.故选D.【点睛】此题考查平方根,解题关键在于求出a 的值.7.A解析:A根据题意,利用平方根定义,绝对值的代数意义,以及有理数的乘法法则判断确定出x与y的值即可.【详解】解:∵|x|=2,y2=9,且xy<0,∴x=2或-2,y=3或-3,当x=2,y=-3时,x+y=2-3=-1;当x=-2,y=3时,原式=-2+3=1,故选:A.【点睛】此题考查了有理数的乘方,绝对值,以及有理数的加法,熟练掌握运算法则是解本题的关键.8.A解析:A【分析】根据平方根的定义对①②进行判断;根据立方根的定义对③④进行判断;根据命题的定义对⑤进行判断.【详解】解:81的平方根是±9,所以①错误;±2,所以②正确;-0.003有立方根,所以③错误;−64的立方根为-4,所以④错误;故选:A.【点睛】本题考查了立方根和平方根的应用,主要考查学生的辨析能力,题目比较典型,但是一道比较容易出错的题目.9.B解析:B【解析】试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B.考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.10.B解析:B【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】解:337,13是有理数, π是无理数,故选B .【点睛】 此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.二、填空题11.-4【解析】解:该圆的周长为2π×2=4π,所以A′与A 的距离为4π,由于圆形是逆时针滚动,所以A′在A 的左侧,所以A′表示的数为-4π,故答案为-4π. 解析:-4π【解析】解:该圆的周长为2π×2=4π,所以A ′与A 的距离为4π,由于圆形是逆时针滚动,所以A ′在A 的左侧,所以A ′表示的数为-4π,故答案为-4π.12.6【分析】分别根据绝对值、平方和算术平方根的非负性求得a 、b 、c 的值,代入即可.【详解】解:因为,所以,解得,故,故答案为:6.【点睛】本题考查非负数的性质,主要考查绝对值、平方解析:6【分析】分别根据绝对值、平方和算术平方根的非负性求得a 、b 、c 的值,代入即可.【详解】解:因为()2120a b -+++=,所以10,20,30a b c -=+=-=,解得1,2,3a b c ==-=,故1(2)36a b c -+=--+=,故答案为:6.【点睛】本题考查非负数的性质,主要考查绝对值、平方和算术平方根的非负性.理解几个非负数(式)的和为0,那么这几个数或(式)都为0是解题关键.13.515【分析】由已知条件可得:①中各数都符合2n的形式,②中各数比①中对应数字大3,按此规律即可求得①、②中第8个数的值,再求和即可.【详解】根据题意可知,①中第8个数为28=256;②第8解析:515【分析】由已知条件可得:①中各数都符合2n的形式,②中各数比①中对应数字大3,按此规律即可求得①、②中第8个数的值,再求和即可.【详解】根据题意可知,①中第8个数为28=256;②第8个数为28+3=259,故它们的和为256+259=515,故答案为:515.【点睛】考查了要求学生通过观察,分析、归纳发现其中的规律,解题关键是找出①②中各数间的规律.14.【分析】设点C表示的数是x,再根据中点坐标公式即可得出x的值.【详解】解:设点C表示的数是x,∵数轴上1、的点分别表示A、B,且点A是BC的中点,根据中点坐标公式可得:,解得:,故答案解析:2【分析】设点C表示的数是x,再根据中点坐标公式即可得出x的值.【详解】解:设点C表示的数是x,∵数轴上1的点分别表示A、B,且点A是BC的中点,,解得:,根据中点坐标公式可得:=12故答案为:【点睛】本题考查的是实数与数轴,熟知数轴上的点与实数是一一对应关系是解答此题的关键.15.25【分析】利用平方根定义即可求出这个数.【详解】设这个数是x(x≥0),所以x=(-5)2=25.【点睛】本题解题的关键是掌握平方根的定义.解析:25【分析】利用平方根定义即可求出这个数.【详解】设这个数是x(x≥0),所以x=(-5)2=25.【点睛】本题解题的关键是掌握平方根的定义.16.【分析】根据公式代入计算即可得到答案.【详解】∵a⊗b=a2﹣2b+1,∴2⊗(﹣6)=22﹣2×(﹣6)+1=4+12+1=17.故答案为:17.【点睛】此题考查新定义计算公式,正解析:【分析】根据公式代入计算即可得到答案.【详解】∵a⊗b=a2﹣2b+1,∴2⊗(﹣6)=22﹣2×(﹣6)+1=4+12+1=17.故答案为:17.【点睛】此题考查新定义计算公式,正确理解公式并正确计算是解题的关键.17.-11或-12【分析】根据题意可知,,再根据新定义即可得出答案.【详解】解:由题意可得:∴∴的值为-11或-12.故答案为:-11或-12.【点睛】本题考查的知识点是有理数比较大小解析:-11或-12【分析】根据题意可知65a -≤<-,12210a -≤<-,再根据新定义即可得出答案.【详解】解:由题意可得:65a -≤<-∴12210a -≤<-∴[]2a 的值为-11或-12.故答案为:-11或-12.【点睛】本题考查的知识点是有理数比较大小,理解题目的新定义,根据新定义得出a 的取值范围是解此题的关键.18.【分析】根据非负数的性质列方程求出a 、b 的值,然后代入代数式进行计算即可得解.【详解】解:∵,∴2a+1=0,b −1=0,∴a=,b =1,∴,故答案为:.【点睛】本题考查了非负数 解析:54【分析】根据非负数的性质列方程求出a 、b 的值,然后代入代数式进行计算即可得解.【详解】解:∵2(21)0a +=,∴2a +1=0,b−1=0,∴a =12-,b =1, ∴222004200411511244a b ⎛⎫+=-+=+= ⎪⎝⎭,故答案为:54.【点睛】本题考查了非负数的性质,几个非负数的和为0时,这几个非负数都为0.19.【分析】观察分析可得,,,则将此规律用含自然数n(n≥1)的等式表示出来是【详解】由分析可知,发现的规律用含自然数n(n≥1)的等式表示出来是故答案为:【点睛】本题主要考查二次根式,找(1)n n=+≥【分析】=(2=+(3=+n(n≥1)的等式表示出来是(1)n n=+≥【详解】由分析可知,发现的规律用含自然数n(n≥1)的等式表示出来是(1)n n=+≥(1)n n=+≥【点睛】本题主要考查二次根式,找出题中的规律是解题的关键,观察各式,归纳总结得到一般性规律,写出用n表示的等式即可.20.1【分析】先根据绝对值的非负性、算术平方根的非负性求出x、y的值,再代入计算有理数的乘方即可.【详解】由绝对值的非负性、算术平方根的非负性得:解得则故答案为:1.【点睛】本题考查了解析:1【分析】先根据绝对值的非负性、算术平方根的非负性求出x 、y 的值,再代入计算有理数的乘方即可.【详解】由绝对值的非负性、算术平方根的非负性得:2030x y +=⎧⎨-=⎩解得23x y =-⎧⎨=⎩则201220122012()(23)11x y +=-+==故答案为:1.【点睛】本题考查了绝对值的非负性、算术平方根的非负性、有理数的乘方运算,利用绝对值的非负性、算术平方根的非负性求解是常考知识点,需重点掌握.三、解答题21.(1)x 7-1;(2)x n+1-1;(3)51312-. 【分析】 (1)仿照已知等式写出答案即可;(2)先归纳总结出规律,然后按规律解答即可;(3)先利用得出规律的变形,然后利用规律解答即可.【详解】解:(1)根据题意得:(x -1)(x 6+x 5+x 4+x 3+x 2+x+1)=x 7-1;(2)根据题意得:(x-1)(x"+x"-1+.…+x+1)=x"+1-1;(3)原式=12×(3-1)(1+3+32+···+349+350)= 12×(x 50+1-1)=51312- 故答案为:(1)x 7-1;(2)x n+1-1;(3)51312-. 【点睛】 本题考查了平方差公式以及规律型问题,弄清题意、发现数字的变化规律是解答本题的关键.22.(1)①21,②6,m n +;(2)35b =;(3)65a =【分析】(1)①由“奇异数”的定义可得;②根据定义计算可得;(2)由f (10m+n )=m+n ,可求k 的值,即可求b ;(3)根据题意可列出等式,可求出x 、y 的值,即可求a 的值.【详解】解:(1)①∵对任意一个两位数a ,如果a 满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“奇异数”.∴“奇异数”为21;②f (15)=(15+51)÷11=6,f (10m+n )=(10m+n+10n+m )÷11=m+n ;(2)∵f (10m+n )=m+n ,且f (b )=8∴k+2k-1=8∴k=3∴b=10×3+2×3-1=35;(3)根据题意有()f a x y =+∵()510a f a -=∴()10510x y x y +-+=∴5410x y -=∵x 、y 为正数,且x≠y∴x=6,y=5∴a=6×10+5=65故答案为:(1)①21,②6,m n +;(2)35b =;(3)65a =【点睛】本题考查了新定义下的实数运算,能理解“奇异数”定义是本题的关键.23.初步探究(1)12;—8;(2)C ;深入思考(1)213;415;28;(2)21n a -;(3)—1. 【解析】试题分析:理解除方运算,利用除方运算的法则和意义解决初步探究,通过除方的法则,把深入思考的除方写成幂的形式解决(1),总结(1)得到通项(2).根据法则计算出(3)的结果.试题解析:概念学习(1)2③=2÷2÷2=,(﹣)⑤=(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)=1÷(﹣)÷(﹣)÷(﹣)=(﹣2)÷(﹣)÷(﹣)=﹣8故答案为,﹣8;(2)A、任何非零数的圈2次方就是两个相同数相除,所以都等于1;所以选项A正确;B、因为多少个1相除都是1,所以对于任何正整数n,1ⓝ都等于1;所以选项B正确;C、3④=3÷3÷3÷3=,4③=4÷4÷4=,则 3④≠4③;所以选项C错误;D、负数的圈奇数次方,相当于奇数个负数相除,则结果是负数,负数的圈偶数次方,相当于偶数个负数相除,则结果是正数.所以选项D正确;本题选择说法错误的,故选C;深入思考:(1)(﹣3)④=(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)=1×()2=;5⑥=5÷5÷5÷5÷5÷5=1×()4=;(﹣)⑩=(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)=1×2×2×2×2×2×2×2×2=28;故答案为,,28.(2)aⓝ=a÷a÷a…÷a=1÷a n﹣2=.(3):24÷23+(﹣8)×2③=24÷8+(﹣8)×=3﹣4=﹣1.【点睛】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序.24.(1)得正,再把绝对值相加;得负,再把绝对值相加;等于这个数的绝对值;(2)-23;(3)a=-5 2【分析】(1)通过观察表中各算式,然后从两数的符号关系或是否有0出发归纳出☆运算的法则;(2)根据(1)归纳的☆运算的法则进行计算,注意先算括号内的,再与括号外的计算;(3)根据(1)归纳出的运算法则对a的取值进行分类讨论即可得到答案.【详解】(1)由表中各算式,可以得到:同号得正,再把绝对值相加; 异号得负,再把绝对值相加;特别地,0和任何数进行☆运算,或任何数和0进行☆运算,结果等于这个数的绝对值; (2)由(1)归纳的☆运算的法则可得:原式=(﹣11)☆|-12|=(﹣11)☆12= -(|(﹣11)|+|12|)= -23;(3)①当a=0时,左边=()22012213⨯--=⨯-=☆,右边=8,两边不相等,∴a≠0; ②当a>0时,2×(﹣2☆a)﹣1=2×[-(2+a )]﹣1=8,可解得132a =-(舍去), ③当a<0时,2×(﹣2☆a)﹣1=2×(|﹣2|+|a|)﹣1=8,可解得a=52-, 综上所述:a=-52. 【点睛】本题考查新定义的实数运算,通过观察实例归纳出运算规律是解题关键.25.(11;(2【分析】(1)根据立方根、绝对值、乘方进行运算即可; (2)利用平方根、立方根的定义求出x 、y 的值,再利用算术平方根的定义即可解答【详解】解:(1)原式=1334-+-++=(2)∵21x -的平方根为2±,21x y +-的立方根为2-∴2x 142x y 18-=⎧⎨+-=-⎩∴5x 2y 12⎧=⎪⎨⎪=-⎩ ∴52=2+12=172-⨯x y ∴2x y -【点睛】本题考查了绝对值、乘方、平方根、立方根、算术平方根的定义,解题的关键是掌握计算的方法,准确的进行化简求值.26.(1)a=﹣1,b=5,c=﹣2,数轴详见解析;(2)6;(3)运动4秒后,点Q 可以追上点P ;(4)M 对应的数为2或﹣223. 【解析】【分析】(1)根据题意易得a ,b ,c 的值,然后在数轴上表示出来即可;(2)当M点在线段AB上时,M点到AB两点距离之和的最小值为AB的长;(3)用AB的长度除以点Q与点P的速度差即可得解;(4)分析M点在不同的位置时,所得到的M的值即可.【详解】(1)∵a是最大的负整数,∴a=﹣1,∵b是多项式2m2n﹣m3n2﹣m﹣2的次数,∴b=3+2=5,∵c是单项式﹣2xy2的系数,∴c=﹣2,如图所示:(2)当M点在线段AB上时,M点到AB两点距离之和的最小值为5﹣(﹣1)=6;(3)∵动点P、Q同时从A、B出发沿数轴负方向运动,点P的速度是每秒12个单位长度,点Q的速度是每秒2个单位长度,∴AB=6,两点速度差为:2﹣12,∴6÷(2﹣12)=4,答:运动4秒后,点Q可以追上点P;(4)存在点M,使P到A、B、C的距离和等于10,当M在AB之间,则M对应的数是2,当M在C点左侧,则M对应的数是:﹣22 3 .综上所述,M对应的数为2或﹣223.【点睛】本题主要考查实数与数轴,数轴上两点之间的距离.解此题的关键在于根据题意准确画出数轴上各点所表示的数.。

抽考七年级数学试卷及答案

一、选择题(每题3分,共30分)1. 下列数中,既是质数又是合数的是()A. 4B. 6C. 8D. 92. 下列图形中,对称轴最多的是()A. 等边三角形B. 长方形C. 正方形D. 圆3. 如果一个数的平方根是±3,那么这个数是()A. 9B. 27C. 81D. 2434. 下列哪个不是实数()A. √4B. -√4C. √(-4)D. 25. 下列哪个数是偶数()A. 0.5B. 1.5C. 2.5D. 3.56. 下列哪个数是负数()A. -3/2B. -2/3C. 3/2D. 2/37. 下列哪个数是整数()A. 0.25B. 0.5C. 1.5D. 2.58. 下列哪个数是无理数()A. √9B. √16C. √25D. √369. 下列哪个数是正数()A. -1B. 0C. 1D. -210. 下列哪个数是实数()A. √-1B. √0C. √1D. √-2二、填空题(每题3分,共30分)11. 2的平方根是______,3的平方根是______。

12. 下列数的倒数分别是:1/2的倒数是______,2的倒数是______。

13. 下列数的相反数分别是:-3的相反数是______,3的相反数是______。

14. 下列数的绝对值分别是:-5的绝对值是______,5的绝对值是______。

15. 下列数的平方分别是:2的平方是______,3的平方是______。

16. 下列数的立方分别是:2的立方是______,3的立方是______。

17. 下列数的乘积分别是:2×3的乘积是______,3×2的乘积是______。

18. 下列数的和分别是:2+3的和是______,3+2的和是______。

19. 下列数的差分别是:2-3的差是______,3-2的差是______。

20. 下列数的积分别是:2×3的积是______,3×2的积是______。

七年级下册抽考试卷数学

一、选择题(每题2分,共20分)1. 下列各数中,不是有理数的是()A. 0.5B. 3.14C. √2D. -1/32. 下列等式中,正确的是()A. (-2)^3 = -8B. (-2)^2 = -4C. (-2)^3 = 8D. (-2)^2 = 43. 已知x^2 - 3x + 2 = 0,则x的值为()A. 1B. 2C. 1或2D. 无法确定4. 下列各数中,绝对值最大的是()A. -3B. 2C. 1/2D. 05. 下列函数中,y是x的一次函数的是()A. y = x^2 + 1B. y = 2x - 3C. y = √xD. y = 1/x6. 已知a、b是方程x^2 - 4x + 3 = 0的两个根,则a + b的值为()A. 1B. 2C. 3D. 47. 下列各数中,有最小正整数解的是()A. x^2 - 2x - 3 = 0B. x^2 - 5x + 6 = 0C. x^2 + 2x - 3 = 0D. x^2 - 4x + 3 = 08. 已知a、b、c是方程x^2 - 3x + 2 = 0的三个根,则a^2 + b^2 + c^2的值为()A. 1B. 2C. 3D. 49. 下列各数中,不是偶数的是()A. 2B. 3C. 4D. 610. 下列各数中,不是无理数的是()A. √2B. √3C. √5D. √4二、填空题(每题2分,共20分)11. (2分)若a、b是方程x^2 - 4x + 3 = 0的两个根,则a + b的值为______。

12. (2分)若a、b、c是方程x^2 - 5x + 6 = 0的三个根,则a^2 + b^2 + c^2的值为______。

13. (2分)下列函数中,y是x的一次函数的是______。

14. (2分)下列各数中,绝对值最大的是______。

15. (2分)下列各数中,有最小正整数解的是______。

16. (2分)下列各数中,不是偶数的是______。

七年级数学第二学期 第二次质量检测测试卷含解析

七年级数学第二学期 第二次质量检测测试卷含解析一、选择题1.设记号*表示求a 、b 算术平均数的运算,即*2a ba b +=,则下列等式中对于任意实数a ,b ,c 都成立的是( ).①(*)()*()a b c a b a c +=++;②*()()*a b c a b c +=+; ③*()(*)(*)a b c a b a c +=+;④(*)(*2)aa b c b c c+=+. A .①②③B .①②④C .①③④D .②④2.对于每个正整数n ,设()f n 表示(1)n n +的末位数字.例如:(1)2f =(12⨯的末位数字),(2)6f =(23⨯的末位数字),(3)2f =(34⨯的末位数字),…则(1)(2)(3)(2019)f f f f ++++的值为( )A .4040B .4038C .0D .40423.如图,网格中的每个小正方形的边长为1,则图中正方形ABCD 的边长是( )A .2B .5C .6D .34.下面说法错误的个数是( )①a -一定是负数;②若||||a b =,则a b =;③一个有理数不是整数就是分数;④一个有理数不是正数就是负数. A .1个B .2个C .3个D .4个5.如图,数轴上的点E ,F ,M ,N 表示的实数分别为﹣2,2,x ,y ,下列四个式子中结果一定为负数是( )A .x +yB .2+yC .x ﹣2D .2+x6.下列命题中,是真命题的有( )①两条直线被第三条直线所截,同位角的角平分线互相平行; ②立方根等于它本身的数只有0; ③两条边分别平行的两个角相等; ④互为邻补角的两个角的平分线互相垂直 A .4个B .3个C .2个D .1个7.若a 是16的平方根,b 是64的立方根,则a+b 的值是( ) A .4B .4或0C .6或2D .68.若m 、n 满足()21150m n -+-=,则m n +的平方根是( ) A .4±B .2±C .4D .29.在实数13-,0.7,34,π,16中,无理数有( )个. A .1B .2C .3D .410.比较552、443、334的大小( ) A .554433234<<B .334455432<<C .553344243<<D .443355342<<二、填空题11.一个数的平方为16,这个数是 . 12.若实数a 、b 满足240a b ++-=,则ab=_____. 13.用⊕表示一种运算,它的含义是:1(1)(1)xA B A B A B ⊕=++++,如果5213⊕=,那么45⊕= __________. 14.若23(2)0y x -+-=,则y x -的平方根_________.15.写出一个大于3且小于4的无理数:___________. 16.已知72m =-,则m 的相反数是________.17.对于实数a ,我们规定:用符号[]a 表示不大于[]a 的最大整数,称为a 的根整数,例如:,如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次: 10]33]1=→=这时候结果为1.则只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是__________. 18.定义:对于任意数a ,符号[]a 表示不大于a 的最大整数.例如:[][][]3.93,55,4π==-=-,若[]6a =-,则[]2a 的值为______.19.11133+=112344+=113455+=,……请你将发现的规律用含自然数n (n≥1)的等式表示出来__________________.20.如图所示的运算程序中,若开始输入的x 值为7,我们发现第1次输出的结果为10,第2次输出的结果为5,……,第2019次输出的结果为_____.三、解答题21.先阅读第()1题的解法,再解答第()2题:()1已知a ,b 是有理数,并且满足等式253a 2b 3a 3=+,求a ,b 的值. 解:因为253a 2b 3a 3-=+所以()253a 2b a 33=-所以2b a 52a 3-=⎧⎪⎨-=⎪⎩解得2a 313b 6⎧=⎪⎪⎨⎪=⎪⎩()2已知x ,y 是有理数,并且满足等式2x 2y 2y 1742--=-x y +的值.22.先阅读下面的材料,再解答后面的各题:现代社会会保密要求越来越高,密码正在成为人们生活的一部分,有一种密码的明文(真实文)按计算机键盘字母排列分解,其中,,,,,Q W E N M 这26个字母依次对应1,2,3,,25,26这26个自然数(见下表).Q W E R T Y U I O P A S D 1 2 3 4 5 6 7 8 9 10 11 12 13 F G H J K L Z X C V B N M 14151617181920212223242526给出一个变换公式:(126,3)3217(126,31)318(126,32)3J J J xx x x x x x x x x x x x x x ⎧=≤≤⎪⎪+⎪=+≤≤⎨⎪+⎪=+≤≤⎪⎩是自然数,被整除是自然数,被除余是自然数,被除余将明文转成密文,如4+24+17=193⇒,即R 变为L :11+111+8=123⇒,即A 变为S .将密文转成成明文,如213(2117)210⇒⨯--=,即X 变为P :133(138)114⇒⨯--=,即D 变为F .(1)按上述方法将明文NET 译为密文.(2)若按上方法将明文译成的密文为DWN ,请找出它的明文. 23.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯ , 将以上三个等式两边分别相加得:11111111112233422334++=-+-+-⨯⨯⨯=13144-= (1)猜想并写出:1n(n 1)+ = .(2)直接写出下列各式的计算结果:①1111...12233420152016++++⨯⨯⨯⨯= ; ②1111...122334(1)n n ++++⨯⨯⨯⨯+= ; (3)探究并计算:1111 (24466820142016)++++⨯⨯⨯⨯. 24.七年某班师生为了解决“22012个位上的数字是_____”这个问题,通过观察、分析、猜想、验证、归纳等活动,从而使问题得以解决,体现了从特殊到一般的数学思想方法.师生共同探索如下: (1)认真填空,仔细观察.因为21=2,所以21个位上的数字是2 ; 因为22=4,所以22个位上的数字是4; 因为23=8,所以23个位上的数字是8; 因为24= _____ ,所以24个位上的数字是_____; 因为25= _____ ,所以25个位上的数字是_____; 因为26= _____ ,所以26个位上的数字是_____;(2)小明是个爱动脑筋的学生,他利用上述方法继续探索,马上发现了规律,于是猜想:210个位上的数字是4,你认为对吗?(3)利用上述得到的规律,可知:22012个位上的数字是_____;(4)利用上述研究数学问题的思想与方法,试求:32013个位上的数字是_____. 25.观察下列两个等式:112-2133=⨯+,225-5133=⨯+,给出定义如下:我们称使等式 1a b ab -=+ 成立的一对有理数a ,b 为“共生有理数对”,记为(a ,b ),如:数对(2,13),(5,23),都是“共生有理数对”.(1)数对(-2,1),(3,12)中是“共生有理数对”吗?说明理由. (2)若(m ,n )是“共生有理数对”,则(-n ,-m )是“共生有理数对”吗?说明理由.26.已知32x y --的算术平方根是3,26x y +-的立方根是的整数部分是z ,求42x y z ++的平方根.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】①中(*)2b c a b c a ++=+,()*()22a b a c b ca b a c a ++++++==+,所以①成立;②中*()2a b c a b c +++=,()*2a b c a b c +++=,所以②成立; ③中()()*(*)*222a b a c b ca b a c a a b c ++++=+=+=+,所以③不成立; ④中(*)2a b a b c c ++=+,22(*2)22222a abc a b c a b b c c +++++=+==+,所以④成立. 故选B.2.A解析:A 【分析】首先根据已知得出规律,f (1)=2(1×2的末位数字),f (2)=6(2×3的末位数字),f (3)=2(3×4的末位数字),f (4)=0,f (5)=0,f (6)=2,f (7)=6,f (8)=2,f (9)=0,…,找出规律,进而求出即可. 【详解】解:∵f (1)=2(1×2的末位数字),f (2)=6(2×3的末位数字),f (3)=2(3×4的末位数字),f (4)=0,f (5)=0,f (6)=2,f (7)=6,f (8)=2,f (9)=0, …,∴每5个数一循环,分别为2,6,2,0,0…, ∴2019÷5=403…4,∴f (1)+f (2)+f (3)+…+f (2019) =2+6+2+0+0+2+6+2+…+2+6+2+0 =403×(2+6+2)+10=4040 故答案为:A . 【点睛】此题主要考查了数字变化规律,根据已知得出数字变化以及求出f (1)+f (2)+f (3)+…+f (2019)=403×(2+6+2)+10是解题关键.3.B解析:B 【分析】由图可知;正方形面积为5.再由正方形的面积等于边长的平方依据算术平方根定义即可得出答案. 【详解】解:由图可知,正方形面积= 133-421=52⨯⨯⨯⨯,∴正方形边长 故选:B . 【点睛】本题考查勾股定理,无理数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4.C解析:C 【分析】①举例说明命题错误;②举例说明命题错误;③根据有理数的概念判断即可;④根据有理数的概念判断即可. 【详解】①当a≤0时,-a≥0,故-a 一定是负数错误;②当a=2,b=-2时, ||||a b = ,但是a≠b ,故②的说法错误; ③一个有理数不是整数就是分数,此选项正确;④一个有理数不是正数就是负数还有可能是0,故④的说法错误. 所以错误的个数是3个. 故答案为C 【点睛】本题考查了有理数的概念,熟练掌握概念是解题的关键.5.C解析:C 【分析】根据点E ,F ,M ,N 表示的实数的位置,计算个代数式即可得到结论. 【详解】解:∵﹣2<0<x <2<y ,∴x+y>0,2+y>0,x﹣2<0,2+x>0,故选:C.【点睛】本题考查了实数,以及实数与数轴,弄清题意是解本题的关键.6.D解析:D【分析】利用平行线的性质、立方根及互补的定义分别判断后即可确定正确的选项.【详解】解:①两条平行直线被第三条直线所截,同位角的角平分线互相平行,故错误,是假命题;②立方根等于它本身的数有0,±1,故错误,是假命题;③两条边分别平行的两个角相等或互补,故错误,是假命题;④互为邻补角的两个角的平分线互相垂直,正确,是真命题,真命题有1个,故选:D.【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、立方根及互补的定义等知识,难度不大.7.C解析:C【分析】由a a=±2,由b b=4,由此即可求得a+b的值.【详解】∵a∴a=±2,∵b∴b=4,∴a+b=2+4=6或a+b=-2+4=2.故选C.【点睛】本题考查了平方根及立方根的定义,根据平方根及立方根的定义求得a=±2、 b=4是解决问题的关键.8.B解析:B【分析】根据非负数的性质列式求出m、n,根据平方根的概念计算即可.由题意得,m-1=0,n-15=0,解得,m=1,n=15,+=4,则m n4的平方根的±2,故选B.【点睛】考查的是非负数的性质、平方根的概念,掌握非负数之和等于0时,各项都等于0是解题的关键.9.B解析:B【分析】根据无理数的定义判断即可.【详解】1-,0.7,16=4,是有理数,34和π是无理数,3故选:B.【点睛】本题主要考查无理数的定义,熟练掌握定义是关键.10.C解析:C【分析】根据幂的乘方,底数不变指数相乘都转换成指数是11的幂,再根据底数的大小进行判断即可【详解】解:255=(25)11=3211,344=(34)11=8111,433=(43)11=6411,∵32<64<81,∴255<433<344.故选:C.【点睛】本题考查了幂的乘方的性质,解题的关键在于都转化成以11为指数的幂的形式.二、填空题11.【详解】解:这个数是解析:解:2(4)16,±=∴这个数是4±12.﹣ 【解析】根据题意得:a+2=0,b-4=0,解得:a=-2,b=4,则=﹣.故答案是﹣.解析:﹣12【解析】根据题意得:a+2=0,b-4=0,解得:a=-2,b=4,则a b =﹣12.故答案是﹣12. 13.【分析】按照新定义的运算法先求出x ,然后再进行计算即可. 【详解】 解:由 解得:x=8故答案为. 【点睛】本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的 解析:1745【分析】按照新定义的运算法先求出x ,然后再进行计算即可. 【详解】 解:由1521=21(21)(11)3x ⊕=++++ 解得:x=818181745==45(41)(51)93045⊕=+++++ 故答案为1745. 【点睛】本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的值.14.【分析】根据算术平方根的性质及乘方的性质解答,得到y=3,x=2,再进行计算即可.解:,且, ∴y-3=0,x-2=0, . .的平方根是. 故答案为:. 【点睛】 此题考查算术平 解析:±1【分析】根据算术平方根的性质及乘方的性质解答,得到y=3,x=2,再进行计算即可. 【详解】解:23(2)0y x -+-=20,(2)0x -≥,∴y-3=0,x-2=0,3,2y x ∴==.1y x ∴-=.y x ∴-的平方根是±1.故答案为:±1. 【点睛】此题考查算术平方根的性质及乘方的性质,求一个数的平方根,根据算术平方根的性质及乘方的性质求出x 与y 的值是解题的关键.15.如等,答案不唯一. 【详解】本题考查无理数的概念.无限不循环小数叫做无理数.介于和之间的无理数有无穷多个,因为,故而9和16都是完全平方数,都是无理数.解析:π等,答案不唯一. 【详解】本题考查无理数的概念.无限不循环小数叫做无理数.介于3和4之间的无理数有无穷多个,因为2239,416==,故而9和16,15都是无理数.16.【分析】根据相反数的定义即可解答. 【详解】 解:的相反数是, 故答案为:. 【点睛】本题考查了求一个数的相反数以及实数,解题的关键是熟知只有符号不同的两个数是相反数.解析:2【分析】根据相反数的定义即可解答.【详解】解:m 的相反数是2)2-=,故答案为:2【点睛】本题考查了求一个数的相反数以及实数,解题的关键是熟知只有符号不同的两个数是相反数.17.255【分析】根据材料的操作过程,以及常见的平方数,可知分别求出255和256进行几次操作,即可得出答案.【详解】解:∴对255只需要进行3次操作后变成1,∴对256需要进行4次操作解析:255【分析】根据材料的操作过程,以及常见的平方数,可知分别求出255和256进行几次操作,即可得出答案.【详解】解:25515,3,1,⎡⎤===⎣⎦ ∴对255只需要进行3次操作后变成1,25616,4,2,1,⎡⎤====⎣⎦ ∴对256需要进行4次操作后变成1,∴只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是255; 故答案为:255.【点睛】本题考查了估算无理数的大小应用,主要考查学生的阅读能力和猜想能力,同时也要考了一个数的平方数的计算能力.18.-11或-12根据题意可知,,再根据新定义即可得出答案.【详解】解:由题意可得:∴∴的值为-11或-12.故答案为:-11或-12.【点睛】本题考查的知识点是有理数比较大小解析:-11或-12【分析】根据题意可知65a -≤<-,12210a -≤<-,再根据新定义即可得出答案.【详解】解:由题意可得:65a -≤<-∴12210a -≤<-∴[]2a 的值为-11或-12.故答案为:-11或-12.【点睛】本题考查的知识点是有理数比较大小,理解题目的新定义,根据新定义得出a 的取值范围是解此题的关键.19.【分析】观察分析可得,,,则将此规律用含自然数n(n≥1)的等式表示出来是【详解】由分析可知,发现的规律用含自然数n(n≥1)的等式表示出来是故答案为:【点睛】本题主要考查二次根式,找(1)n n =+≥ 【分析】=(2=+(3=+n(n ≥1)的等式表示出来是(1)n n =+≥由分析可知,发现的规律用含自然数n(n≥1)的等式表示出来是(1)n n=+≥(1)n n=+≥【点睛】本题主要考查二次根式,找出题中的规律是解题的关键,观察各式,归纳总结得到一般性规律,写出用n表示的等式即可.20.1【分析】分别求出第1次到第7次的输出结果,发现从第4次输出的结果开始,每三次结果开始循环一次,则可确定第2019次输出的结果与第6次输出的结果相同.【详解】解:x=7时,第1次输出的结果为解析:1【分析】分别求出第1次到第7次的输出结果,发现从第4次输出的结果开始,每三次结果开始循环一次,则可确定第2019次输出的结果与第6次输出的结果相同.【详解】解:x=7时,第1次输出的结果为10,x=10时,第2次输出的结果为1105 2⨯=,x=5时,第3次输出的结果为5+3=8,x=8时,第4次输出的结果为184 2⨯=,x=4时,第5次输出的结果为142 2⨯=,x=2时,第6次输出的结果为121 2⨯=,x=1时,第7次输出的结果为1+3=4,……,由此发现,从第4次输出的结果开始,每三次结果开始循环一次,∵(2019﹣3)÷3=672,∴第2019次输出的结果与第6次输出的结果相同,∴第2019次输出的结果为1,故答案为:1.【点睛】本题考查了程序框图和与实数运算相关的规律题;根据题意,求出一部分输出结果,从而发现结果的循环规律是解题的关键.三、解答题21.x y 9+=或x y 1+=-.【分析】利用等式左右两边的有理数相等和二次根式相同,建立方程组,然后解方程即可.【详解】因为2x 2y 17--=-所以()2x 2y 17-=- 所以2x 2y 17y 4-=⎧=⎨⎩, 解得{x 5y 4==或{x 5y 4=-=,所以x y 9+=或x y 1+=-.【点睛】本题是一个阅读题目,主要考查了实数的运算,其中关键是理解解方程组的思路就是消元.对于阅读理解题要读懂阅读部分,然后依照同样的方法和思路解题.22.(1)N,E,T 密文为M,Q,P;(2)密文D,W,N 的明文为F,Y ,C .【分析】(1) 由图表找出N,E,T 对应的自然数,再根据变换公式变成密文.(2)由图表找出N=M,Q,P 对应的自然数,再根据变换.公式变成明文.【详解】解:(1)将明文NET 转换成密文:2522517263N M +→→+=→ 3313E Q →→=→ 5158103T P +→→+=→ 即N,E,T 密文为M,Q,P;(2)将密文D,W,N 转换成明文:()133138114D F →→⨯--=→2326W Y →→⨯=→253(2517)222N C →→⨯--=→即密文D,W,N 的明文为F,Y ,C .【点睛】本题考查有理数的混合运算,此题较复杂,解答本题的关键是由图表中找到对应的数或字母,正确运用转换公式进行转换.23.(1)111n n -+;(2)①20152016;②1n n +;(3)10074032. 【分析】(1)观察所给的算式可得:分子为1,分母为两个相邻整数的分数可化为这两个整数的倒数之差,由此即可解答;(2)根据所得的规律把各分数进行转化,再进行分数的加减运算即可解答;(3)先提取14,类比(2)的运算方法解答即可. 【详解】 (1)()11n n + =111n n -+; (2)①1111...12233420152016++++⨯⨯⨯⨯=11111122334-+-+-+…+1120152016-=112016-=20152016; ②()1111...1223341n n ++++⨯⨯⨯⨯+=11111122334-+-+-+…+111n n -+=111n -+=1n n +; (3)1111 (24466820142016)++++⨯⨯⨯⨯ =14(1111 (12233410071008)++++⨯⨯⨯⨯), =14(11111122334-+-+-+…+1110071008-), =14(111008-), =14×10071008=10074032. 【点睛】 本题考查了有理数的运算,根据题意找出规律是解决问题的关键.24.(1)16,6;32,2;64,4;(2)对;(3)6;(4)3.【分析】(1)利用乘方的概念分别求出24、25、26的结果,即可解决;(2)算出210的结果,即可知道个位数是多少,即可解决;(3)按照上述规律,以4为周期,个位数重复2、4、8、6,故2012中刚好有503组,故能得出答案;(4)分别求出31,32,33,34,找出规律,个位数重复3,9,7,1,2013中是4的503倍,而且余1,故得出结论.【详解】解:(1)∵24=16、25=32、26=64∴24的个位数为6;25的个位数为2;26的个位数为4;(2)∵210=1024∴个位数是4,该说法对(3)可以知道规律,以4为周期,各位数重复2、4、8、6,故2012中刚好有503组,故22012个位数刚好为6;(4)∵31=3,32=9,33=27,34=81,35=243;∴个位数重复3,9,7,1∵2013中是4的503倍,而且余1∴个位数为3.【点睛】本题主要考查了乘方的运算以及找规律,熟练乘方的运算以及找出规律是解决本题的关键.25.(1) (−2,1)不是“共生有理数对”,13,2⎛⎫⎪⎝⎭是“共生有理数对”;理由见详解.(2)(−n,−m)是“共生有理数对”,理由见详解.【分析】(1)根据“共生有理数对”的定义即可判断;(2)根据“共生有理数对”的定义即可判断;【详解】(1)−2−1=−3,−2×1+1=1,∴−2−1≠−2×1+1,∴(−2,1)不是“共生有理数对”,∵1515 3,312222 -=⨯+=,∴1133122-=⨯+,∴(13,2)是“共生有理数对”;(2)是.理由:− n−(−m)=−n+m,−n⋅(−m)+1=mn+1∵(m,n)是“共生有理数对”∴m−n=mn+1∴−n+m=mn+1∴(−n,−m)是“共生有理数对”,【点睛】考查有理数的混合运算,整式的加减—化简求值,等式的性质,读懂题目中“共生有理数对”的定义是解题的关键.26.6±【分析】根据算术平方根、立方根的定义列出二元一次方程组,之后对方程组进行求解,得到x 和y 的值,再根据题意得到z 的值,即可求解本题.【详解】解:由题意可得3x 29268y x y --=⎧⎨+-=⎩, 解得54x y =⎧⎨=⎩,36<<67∴<<,6z ∴=,424542636∴++=⨯++⨯=x y z ,故42x y z ++的平方根是6±.【点睛】本题考查了平方根、立方根、算术平方根,解决本题的关键是熟记平方根、立方根、算术平方根的定义.。

人教版七年级第二学期 第二次 自主检测数学试题含答案

人教版七年级第二学期 第二次 自主检测数学试题含答案一、选择题1.对于实数a ,我们规定,用符号a ⎡⎤⎣⎦表示不大于a 的最大整数,称a ⎡⎤⎣⎦为a 的根整数,例如:93⎡⎤=⎣⎦,103⎡⎤=⎣⎦.我们可以对一个数连续求根整数,如对5连续两次求根整数:5221.若对x 连续求两次根整数后的结果为1,则满足条件的整数x 的最大值为( ) A .5 B .10C .15D .16 2.现定义一种新运算:a ★b=ab+a-b ,如:1★3=1×3+1-3=1,那么(-2)★5的值为( ) A .17B .3C .13D .-17 3.若2(1)|2|0x y -++=,则x y +的值等于( )A .-3B .3C .-1D .1 4.已知122=,224=,328=,4216=,5232=,……,根据这一规律,20192的个位数字是( )A .2B .4C .8D .6 5.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是( )A .2个B .3个C .4个D .5个6.4的平方根是( )A .2B .2±C .±2D .2 7.有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④17-是17的平方根.其中正确的有( )A .0个B .1个C .2个D .3个8.如图,数轴上表示实数3的点可能是( )A .点PB .点QC .点RD .点S9.有下列说法:(1164;(2)绝对值等于它本身的数是非负数;(3)某中学七年级有12个班,这里的12属于标号;(4)实数和数轴上的点一一对应;(5)一个有理数与一个无理数之积仍为无理数;(6)如果a ≈5.34,那么5.335≤a <5.345,其中说法正确的有( )个A .2B .3C .4D .510.比较552、443、334的大小( ) A .554433234<< B .334455432<< C .553344243<<D .443355342<< 二、填空题11.若x +1是125的立方根,则x 的平方根是_________.12.已知M 是满足不等式36a -<<的所有整数的和,N 是满足不等式x ≤372-的最大整数,则M +N 的平方根为________.13.如果一个有理数a 的平方等于9,那么a 的立方等于_____.14.观察下列各式:(1)123415⨯⨯⨯+=;(2)2345111⨯⨯⨯+=;(3)3456119⨯⨯⨯+=;根据上述规律,若121314151a ⨯⨯⨯+=,则a =_____.15.一个数的立方等于它本身,这个数是__.16.49的平方根是________,算术平方根是______,-8的立方根是_____.17.规定用符号[]x 表示一个实数的整数部分,如[3.65]3,31⎡⎤==⎣⎦,按此规定113⎡⎤-=⎣⎦_____. 18.如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达O '点,那么O '点对应的数是______.你的理由是______.19.34330035.12=30.3512x =-,则x =_____________.20.若一个正数的平方根是21a +和2a +,则这个正数是____________.三、解答题21.如图,长方形ABCD 的面积为300cm 2,长和宽的比为3:2.在此长方形内沿着边的方向能否并排裁出两个面积均为147cm 2的圆(π取3),请通过计算说明理由.22.观察下列三行数:(1)第①行的第n 个数是_______(直接写出答案,n 为正整数)(2)第②、③行的数与第①行相对应的数分别有什么关系?(3)取每行的第9个数,记这三个数的和为a ,化简计算求值:(5a 2-13a-1)-4(4-3a+54a 2) 23.计算(1)+|-5|364-1)2020(2231627332|(5)-+-24.1x +2y -z 是64的方根,求x y z -+的平方根25.定义:若两个有理数a ,b 满足a +b =ab ,则称a ,b 互为特征数.(1)3与 互为特征数;(2)正整数n (n >1)的特征数为 ;(用含n 的式子表示)(3)若m ,n 互为特征数,且m +mn =-2,n +mn =3,求m +n 的值.26.对非负实数x “四舍五入”到各位的值记为x <>.即:当n 为非负整数时,如果12n x -≤<1n 2+,则x n <>=;反之,当n 为非负整数时,如果x n <>=,则1122n x n -<+≤. 例如: 00.480<>=<>=,0.64 1.491, 3.5 4.124<>=<>=<>=<>=.(1)计算: 1.87<>= ;= ;(2)①求满足12x <->=的实数x 的取值范围, ②求满足43x x <>=的所有非负实数x 的值; (3)若关于x 的方程21122a x x -<>+-=-有正整数解,求非负实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】对各选项中的数分别连续求根整数即可判断得出答案.【详解】解:当x=5时,5221,满足条件;当x=10时,10331,满足条件;当x=15时,15331,满足条件;当x=16时,16442,不满足条件;∴满足条件的整数x的最大值为15,故答案为:C.【点睛】本题考查了无理数估算的应用,主要考查学生的阅读能力和理解能力,解题的关键是读懂题意.2.D解析:D【分析】根据新运算的定义即可得到答案.【详解】∵a★b=ab+a﹣b,∴(﹣2)★5=(﹣2)×5﹣2﹣5=﹣17.故选D.【点睛】本题考查了基本的知识迁移能力,运用新定义,求解代数式即可,要灵活运用所学知识,要认真掌握.3.C解析:C【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】根据题意得,x-1=0,y+2=0,解得x=1,y=-2,所以x+y=1-2=-1.故选:C.【点睛】此题考查绝对值和算术平方根的非负数的性质,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.4.C解析:C【分析】通过观察122=,224=,328=,4216=,,5232=…知,他们的个位数是4个数一循环,2,4,8,6,…因为2019÷4=504…3,所以20192的个位数字与32的个位数字相同是8.【详解】解:仔细观察122=,224=,328=,4216=,,5232=…;可以发现他们的个位数是4个数一循环,2,4,8,6,…∵2019÷4=504…3,∴20192的个位数字与32的个位数字相同是8.故答案是:8.【点睛】本题考查了尾数特征,解题的关键是根据已知条件,找出规律:2的乘方的个位数是每4个数一循环,2,4,8,6,….5.B解析:B【分析】根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数, 进行判断即可.【详解】①正确;②在两直线平行的条件下,内错角相等,②错误;③正确;④反例:两个无理数π和-π,和是0,④错误;⑤坐标平面内的点与有序数对是一一对应的,正确;故选:B .【点睛】本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.6.B解析:B【分析】【详解】2,.【点睛】7.B解析:B【详解】解:①实数和数轴上点一一对应,本小题错误;②π不带根号,但π是无理数,故本小题错误;③负数有立方根,故本小题错误;④17的平方根,本小题正确,正确的只有④一个,故选B.8.A解析:A【分析】的点可能是哪个.【详解】∵12,的点可能是点P.故选A.【点睛】此题主要考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.9.B解析:B【分析】根据算术平方根的定义、绝对值的性质、数轴的意义实数的运算及近似数的表示方法逐一判断即可得答案.【详解】,4的算术平方根是22,故(1)错误,绝对值等于它本身的数是非负数;故(2)正确,某中学七年级共有12个班级,是对于班级数记数的结果,所以这里的12属于记数,故(3)错误,实数和数轴上的点一一对应;故(4)正确,0与无理数的乘积为0,0是有理数,故(5)错误,如果a≈5.34,那么5.335≤a<5.345,故(6)正确,综上所述:正确的结论有(2)(4)(6),共3个,【点睛】本题考查算术平方根的定义、实数的运算、绝对值的性质及近似数的表示方法,熟练掌握相关性质及运算法则是解题关键.10.C解析:C【分析】根据幂的乘方,底数不变指数相乘都转换成指数是11的幂,再根据底数的大小进行判断即可【详解】解:255=(25)11=3211,344=(34)11=8111,433=(43)11=6411,∵32<64<81,∴255<433<344.故选:C.【点睛】本题考查了幂的乘方的性质,解题的关键在于都转化成以11为指数的幂的形式.二、填空题11.±2【分析】先根据立方根得出x的值,然后求平方根.【详解】∵x+1是125的立方根∴x+1=,解得:x=4∴x的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根,注意一个正解析:±2【分析】先根据立方根得出x的值,然后求平方根.【详解】∵x+1是125的立方根∴x=4∴x的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根,注意一个正数的平方根有2个,算术平方根只有1个.12.±2【分析】首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.【详解】解:∵M是满足不等式-的所有整数a的和,∴M=-1+0+1+2=2,∵N是满足不等式x≤的解析:±2【分析】首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.【详解】<<a的和,解:∵M a∴M=-1+0+1+2=2,∵N是满足不等式x∴N=2,∴M+N=±2.故答案为:±2.【点睛】此题主要考查了估计无理数的大小,得出M,N的值是解题关键.13.±27【分析】根据a的平方等于9,先求出a,再计算a3即可.【详解】∵(±3)2=9,∴平方等于9的数为±3,又∵33=27,(-3)3=-27.故答案为±27.【点睛】本题考查了解析:±27【分析】根据a的平方等于9,先求出a,再计算a3即可.【详解】∵(±3)2=9,∴平方等于9的数为±3,又∵33=27,(-3)3=-27.故答案为±27.【点睛】本题考查了平方根及有理数的乘方.解题的关键是掌握平方根的概念及有理数乘方的法则. 14.181【分析】观察各式得出其中的规律,再代入求解即可.【详解】由题意得将代入原式中故答案为:181.【点睛】本题考查了实数运算类的规律题,掌握各式中的规律是解题的关键.解析:181【分析】n=求解即可.观察各式得出其中的规律,再代入12【详解】由题意得()31=⨯++n nn=代入原式中将12a==⨯+=12151181故答案为:181.【点睛】本题考查了实数运算类的规律题,掌握各式中的规律是解题的关键.15.0或±1.【分析】根据立方的定义计算即可.【详解】解:∵(﹣1)3=﹣1,13=1,03=0,∴一个数的立方等于它本身,这个数是0或±1.故答案为:0或±1.【点睛】本题考查了乘方的解析:0或±1.【分析】根据立方的定义计算即可.【详解】解:∵(﹣1)3=﹣1,13=1,03=0,∴一个数的立方等于它本身,这个数是0或±1.故答案为:0或±1.【点睛】本题考查了乘方的定义,熟练掌握立方的定义是解题关键,注意本题要分类讨论,不要漏数.16.±7 7 -2【解析】试题解析:∵(±7)2=49,∴49的平方根是±7,算术平方根是7;∵(-2)3=-8,∴-8的立方根是-2.解析:±77-2【解析】试题解析:∵(±7)2=49,∴49的平方根是±7,算术平方根是7;∵(-2)3=-8,∴-8的立方根是-2.17.-3【分析】先确定的范围,再确定的范围,然后根据题意解答即可.【详解】解:∵3<<4∴-3<<-2∴-3故答案为-3.【点睛】本题考查了无理数整数部分的有关计算,确定的范围是解答本解析:-3【分析】1⎡⎣的范围,然后根据题意解答即可.【详解】解:∵34∴-3<1--2∴1⎡=⎣-3故答案为-3.【点睛】18.π 圆的周长=π•d=1×π=π【分析】直径为1个单位长度的圆从原点沿数轴向右滚动一周,说明OO′之间的距离为圆的周长=π,由此即可确定O′点对应的数.【详解】因为圆的周长为π解析:π圆的周长=π•d=1×π=π【分析】直径为1个单位长度的圆从原点沿数轴向右滚动一周,说明OO′之间的距离为圆的周长=π,由此即可确定O′点对应的数.【详解】因为圆的周长为π•d=1×π=π,所以圆从原点沿数轴向右滚动一周OO'=π.故答案为:π,圆的周长=π•d=1×π=π.【点睛】此题考查实数与数轴,解题关键在于注意:确定点O′的符号后,点O′所表示的数是距离原点的距离.19.-0.0433【分析】三次根式变化规律为:三次根号内的式子扩大或缩小1000倍,则得到的结果扩大或缩小10倍,根据规律可得x的值.【详解】从35.12变为-0.3512,缩小了100倍,且添解析:-0.0433【分析】三次根式变化规律为:三次根号内的式子扩大或缩小1000倍,则得到的结果扩大或缩小10倍,根据规律可得x的值.【详解】从35.12变为-0.3512,缩小了100倍,且添加了“-”∴根据规律,三次根式内的式子应该缩小1000000倍,且添加“-”故答案为:-0.0433【点睛】本题考查三次根式的规律,二次根式规律类似:二次根号内的式子扩大或缩小100倍,则得到的结果扩大或缩小10倍.20.1【分析】一个正数有两个平方根,它们互为相反数,由此即可列式2a+1+a+2=0,求出a 再代回一个根再平方即可得到该正数.【详解】由题意得2a+1+a+2=0,解得a=-1,∴a+2=1解析:1【分析】一个正数有两个平方根,它们互为相反数,由此即可列式2a+1+a+2=0,求出a 再代回一个根再平方即可得到该正数.【详解】由题意得2a+1+a+2=0,解得a=-1,∴a+2=1,∴这个正数是22(2)11a +==,故答案为:1.【点睛】此题考查平方根的性质:一个正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根. 三、解答题21.不能,说明见解析.【分析】根据长方形的长宽比设长方形的长DC 为3xcm ,宽AD 为2xcm ,结合长方形ABCD 的面积为300cm 2,即可得出关于x 的一元二次方程,解方程即可求出x 的值,从而得出AB 的长,再根据圆的面积公式以及圆的面积147cm 2 ,即可求出圆的半径,从而可得出两个圆的直径的长度,将其与AB 的长进行比较即可得出结论.【详解】解:设长方形的长DC 为3xcm ,宽AD 为2xcm .由题意,得 3x•2x=300,∵x >0,∴x =∴AB=,BC=cm .∵圆的面积为147cm 2,设圆的半径为rcm ,∴πr 2=147,解得:r=7cm .∴两个圆的直径总长为28cm .∵382428<=⨯=<,∴不能并排裁出两个面积均为147cm 2的圆.22.(1)-(-2)n ;(2)第②行数等于第①行数相应的数减去2;第③行数等于第①行数相应的数除以(-2);(3)-783【分析】第一个有符号交替变化的情况时,可以考虑在你所找到的规律代数式中合理的加上负号,并检验计算结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学第二学期抽考试题
(时间60分钟,满分100分)
一、选择题(4×8=32)
1.点P 的横坐标是-3,点P 到x 轴的距离为5,则点P 的坐标为 ( ) A.(5,-3)或(-5,-3) B.(-3,5)或(-3,-5) C.(-3, 5) D.(-3,-5)
2.下列说法中,错误的是( )
A.一个三角形的三个内角中,至少有一个角不大于60°
B.有一个外角是锐角的三角形是钝角三角形
C.锐角三角形中,两个角的和小于直角
D.直角三角形中有一个外角等于和它相邻的内角
3.如果x y =3
2,并且x+3y=27,则x ,y 中较小的是 ( )
A.12
B.9
C.6
D.3
4.a 与b 的和的1
3是非正数,用不等式表示为( )
A.a+3b <0
B.a+b 3≤0
C.13(a+b)<0
D.13
(a+b)≤0
5.不等式-1<1-k ≤3的解集为 ( ) A.-2≤k ≤2 B.-3≤k <1 C.-2<k ≤2 D.-2≤k <2
6.汽车站A 到火车站F 有四条不同的路线,如右图所示, 其中路程最短的是( ) A.AB → BMF →EF
B.AB →BE →EF
C.ABC →CEF
D.ABCD →DE →EF
7.如图所示,直线l 与∠O 的两边分别交于点A 、B , 则图中以O 、A 、B 为端点的射线的条数总和是( )
A.5
B.6
C.7
D.8
8.李老师特制了4个同样的立方块,并将铁门如下图a 放置,然后又如下图b 放置,则下图b 中四个底面正方形中的点数之和为( ) A.11 B.13 C.14 D.16
二、填空题(4×8=32) 1.“过直线l 外一点P ,画直线AB 、CD 都与l 平行”这种说法是否正确?_______.说说你的理由__________________________________________.
汽车站 A
B l
O
2.如下图所示,直线AB ∥CD ,∠1=75°,则∠2=______.
3.如图所示,∠1+∠2+∠3+∠4=______.
4.当x 取-1,0时,代数式ax 2+bx -a 的值分别是2,-3, 则a =_____,b =______.
5.若不等式|x+3|>2,则x 的值为______.
6.如右图所示,有一只蜗牛从直角坐标系的原点
向y 轴正方向出发,它前进1cm 后,右转90再前进1cm 后,左转90°,再前进1cm 后,右转90°,……当它走到P(n,n)时,左边碰到障
碍物,就直行1cm ,再右转90°,前进1cm ,
再左转90°,前进1cm ,……最后回到x 轴 上,则蜗牛所走过的路程s 为______cm.
8.我国著名的田径运动员刘翔以12秒88创下跨栏世界记录后,专家组将刘翔历次比赛和训练时的图象与数据输入电脑后分析,显示出他跨过10栏(相邻两个栏间的距离相等)的每个“栏周期”(跨过相邻两个栏所用的时间)都不超过1秒,最块的一个“栏周期”达到了惊人的0.96秒.从起跑到第一个栏的距离为13.72米,刘翔此段的最好成绩是2.5秒;最后一个栏到终点线的距离为14.02米,刘翔在此段的最好成绩是1.4秒.
根据上述数据计算,相邻两个栏间的距离是____米;在理论上,刘翔110米跨栏的最好成绩可以达到______秒. 三、(8分)
如图所示,在四边形ABCD 中,∠A =104°-∠2,∠ABC =76°+∠2,BD ⊥CD 于D ,EF ⊥CD 于F ,能辨认∠1=∠2吗?试说明理由.
A
B C D M N 1 2
B C
四、(8分)列方程组解应用题
在某校举办的足球比赛中规定:胜一场得3分,平一场得1分,负一场得0分,某班足球队参加了12场比赛,共得22分;已知这个足球队输了2场,那么此队胜几场?平几场?
五、(10分)如下图所示,已知∠1=∠2,EF⊥AD于P,它延长后交BC延长线于
M.求证:∠M=1
2(∠ACB-∠ABC).
A
六、(10分)一位小朋友拿10元钱去买一盒饼干和一袋牛奶,售货员阿姨告诉他用10元钱买一盒饼干是够的,但要再买一袋牛奶就不够了!因为今天是儿童节,阿姨给小朋友买的饼干打9折,这样买这两样东西还剩8角钱.(饼干的标价是整数元)试求出饼干和牛奶的标价各是多少?。

相关文档
最新文档