七年级数学下册 《第六章 变量之间的关系》水平测试题(1) 北师大版
北师大版七年级数学下册第六章单元测试题(含答案)

第六章概率初步一、填空题(本大题共6小题,每小题4分,共24分)1.一个在不透明的盒子中装有除颜色外其他都一样的5个红球,3个蓝球和2个白球,它们已经被搅匀了,下列三种事件是必然事件、随机事件,还是不可能事件、(1)从盒子中任取4个球,全是蓝球。
(2)从盒子中任取3个球,只有蓝球和白球,没有红球。
(3)从盒子中任取9个球,恰好红、蓝、白三种颜色的球都有。
2.初一(3)班共有学生50人,其中男生有21人,女生29人,若在此班上任意找一名学生,找到男生的可能性比找到女生的可能性(填“大”或“小”).3.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是.4.在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是.5.某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到绿灯的概率是.6.有一个质地均匀的正二十面体形状的骰子,其中1个面标有“1”,2个面标有“2”,3个面标有“3”,4个面标有“4”,5个面标有“5”,其余的面标有“6”,将这个骰子掷出后,朝正上方的数字为“6”的概率是________,数字________朝正上方的可能性最大.二、选择题(本大题共12小题,共36分,每小题只有一个正确选项)7.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是().A.B.C.D.8.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为,则原来盒里有白色棋子()A.1颗B.2颗C.3颗D.4颗9.如图,从A地到C地,可供选择的方案是走水路、走陆路、走空中,从A地到B地有两条水路、两条陆路,从B 地到C地有3条陆路可供选择,走空中,从A地不经B地直线到C地,则从A地到C地可供选择的方案有()A.20种B.8种C.5种D.13种10.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球,下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球11.如图,转动转盘,指向阴影部分的可能性为a,指向空白部分的可能性为b,则()A.a>bB.a<bC.a=bD.无法确定12.下列事件中,随机事件是()A.没有水分,种子仍能发芽B.等腰三角形两个底角相等C.从13张红桃扑克牌中任抽一张,是红桃AD.从13张方块扑克牌中任抽一张,是红桃1013.从一副扑克牌中则下列事件中可能性最大的是()A.抽出一张红心B.抽出一张红色老KC.抽出一张梅花JD.抽出一张不是Q的牌14.在相同条件下重复试验,若事件A发生的概率是,下列陈述中,正确的是()A.事件A 发生的频率是B.反复大量做这种试验,事件A 只发生了7次C.做100次这种试验,事件A 一定发生7次D.做100次这种试验,事件A 可能发生7次15.下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a 是实数,|a|≥0”是不可能事件16.2019年枣庄市初中学业水平实验操作考试.要求每名学生从物理.化学.生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是()A .B .C .D .17.如图,正方形网格中,5个阴影小正方形是一个正方体表面展开图的一部分.现从其余空白小正方形中任取一个涂上阴影,则图中六个阴影小正方形能构成这个正方体的表面展开图的概率是()A.47B.37C.27D.1718.以下有四个事件:①抛一枚匀质硬币,正面朝上;②掷一枚匀质骰子,所得的点数为3;③从一副54张扑克牌中任意抽出一张恰好为红桃;④从装有1个红球,2个黄球的袋中随意摸出一个球,这两种球除颜色外其他都相同,结果恰好是红球.按概率从小到大顺序排列的结果是()A .①<②<③<④B .②<③<④<①C .②<①<③<④D .③<②<①<④三.解答题(共7小题共60分)19.(6分)小明购买双色球福利彩票时,两次分别购买了1张和100张,均未获奖,于是他说:“购买1张和100张中奖的可能性相等。
数学北师大版七年级下册用关系式表示变量间的关系

400 cm3 。 3
议一议(P67)
(1)家居用电的二氧化碳排放量可以用 y = 0.785x 关系式表示为_____________ ,
其中的字母表示:
y 为家居用电的二氧化 碳排放量 ; x 为耗电量 。
(2)在上述关系式中,耗电量每增加 1 KW· h,二氧化碳排放量增加 0.785kg ___________ 。当耗电量 从1 KW· h增加到100 KW· h时,二氧化碳排 0.785kg 增加 放量从_______ 78.5kg 到_________ 。
(3)小明家本月用电大约110 KW· h、 天然气20m3、自来水5t、油耗75L,请 你计算一下小明家这几项的二氧化碳 总排放量。
0.785 110
0.19 20
2.7 75
0.91 5
ห้องสมุดไป่ตู้
297.2kg
随堂练习(P67)
1、在地球某地,温度T(℃)与高度d(m)
来表示,根据这个关系式,当
面积 y y=3x表示了 三角形底边长 _ x 和_________
之间的关系,它是变量 的关系式。
y
随
x
变化
y = 3x
因变量 含自变量代数式 自变量的取值要符合实际
7 cm 当三角形的面积为21cm2时,底边长为______
自学检测一
1.将一个长为20cm,宽为10cm的长方形的四个角, 分别剪去大小相等的正方形,若被剪去正方形
B
(2)如果三角形底边BC长为x(cm)
C
那么三角形的面积y(cm2)可以表示为 (3)当底边长从12cm变化到3cm时,
y=3x
.
36 2变化到____cm 2 9 三角形的面积从______cm
北师大版七年级数学下册第六章学情评估附答案 (3)

北师大版七年级数学下册第六章学情评估一、选择题(每题3分,共30分)1.下列事件属于必然事件的是( )A.太阳从西边升起B.若今天星期一,则明天星期二C.两条直线被第三条直线所截,同位角相等D.抛掷1枚质地均匀的骰子,出现5点向上2.下列成语中,描述的事件是不可能事件的是( )A.守株待兔B.猴子捞月C.旭日东升D.水涨船高3.在一个不透明的口袋里,装有仅颜色不同的黑球、白球若干个,某小组做摸球试验:将球搅匀后从中随机摸出一个,记下颜色,再放入袋中,不断重复,下表是试验中的几组数据,则摸到白球的概率约是( )A.0.4 B.0.5 C.0.6 D.0.74.有4张正面分别写有1、3、4、6的卡片,除数字外其他完全相同.将卡片的背面朝上并洗匀,从中抽取一张,抽到的数是奇数的概率为( )A.14B.12C.34D.15.下列说法正确的是( )A.概率很小的事情不可能发生B.抛掷一枚质地均匀的硬币1 000次,正面朝上的次数一定是500次C.从1、2、3、4、5中任取一个数是偶数的可能性比较大D.在13名同学中,至少有两人的出生月份相同是必然事件6.下列试验中,结果具有“等可能性”的是( )A.掷一枚质地均匀的骰子B.篮球运动员定点投篮C.掷一个矿泉水瓶盖D.从装有若干个小球的透明袋子中摸球7.如图是一个可自由转动的转盘,转动转盘一次,当转盘停止转动时,指针落在数字“Ⅳ”所示区域内的概率是( )A.13B.16C.14D.388.小明和小亮做游戏,先是各自背着对方在纸上写一个正整数,然后都拿给对方看.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;若两个人所写的数一个是奇数,另一个是偶数,则小亮获胜.这个游戏( )A.对小明有利B.对小亮有利C.公平D.无法确定对谁有利9.已知粉笔盒里有8支红色粉笔和n支白色粉笔,每支粉笔除颜色外均相同,现从中任取一支粉笔,取出红色粉笔的概率是25,则n的值是( )A.10 B.12 C.13 D.1410.一个小钢球在如图所示的区域内运动,三个圆的半径分别为r,2r,3r,则小钢球停止在蓝色区域的概率为( )A.19B.13C.49D.59(第10题) (第15题)二、填空题(每题3分,共15分)11.生活中,为了强调某件事情一定会发生,有人会说“这件事百分之二百会发生”,这句话是______的.(填“正确”或“错误” )12.在不透明袋子中装有2个黑球、3个白球,这些球除了颜色外无其他差别.从袋子中随机摸出1个球,“摸出黑球”的概率是______.13.事件A 发生的概率为125,大量重复地做这种试验,事件A 平均每1 000次发生的次数是______.14.有5张相同的卡片,卡片正面分别标有-2,|-3|,(-2)2,-⎝ ⎛⎭⎪⎫140,(-1)-2,将卡片背面朝上,从中随机抽取1张,则抽取的卡片正面上的数是正数的概率为______.15.如图,是一张三角形纸板,其中AD =DF ,BE =ED ,EF =FC ,一只蚂蚁在这张纸板上自由爬行,则蚂蚁爬到阴影部分的概率为______. 三、解答题(一)(每题8分,共24分)16.下面的事件各属于随机事件、必然事件、不可能事件中的哪一类? (1)明年8月5日广东沿海没有台风;(2)抛掷一枚质地均匀的硬币,硬币落地时正面朝上; (3)投出铅球后,经过一段时间铅球落到地面上; (4)从一副扑克牌中任意抽出两张,都是“红桃A ”; (5)买一张电影票,排号和座位号都是奇数.17.手机微信抢红包有多种玩法,其中一种为“拼手气红包”,用户设定好总金额以及红包个数后,可以随机生成不等金额的红包.现有一用户设定“拼手气红包”的红包个数为4,且随机被甲、乙、丙、丁四人抢到.(1)以下说法正确是__________.A.甲抢到的红包金额一定最多B.乙抢到的红包金额一定最多C.丙抢到的红包金额一定最多D.丁不一定抢到金额最少的红包(2)若这四个红包的金额分别为35元、33元、20元、12元,则甲抢到红包的金额超过30元的概率是多少?18.在一个不透明的袋子中装有2个黄球,3个黑球和5个红球,它们除颜色外其他都相同.(1)将袋子中的球摇匀后,求从袋子中随机摸出一个球是黄球的概率;(2)若向这个袋子再加入5个红球,求从袋子中随机摸出一个球,摸到不是红球的概率.四、解答题(二)(每题9分,共27分)19.现有四根长度为2cm,3cm,4cm,5cm的木棒,小明任意取一根木棒,能与手中长度为3cm,6cm的木棒拼成一个三角形木框的概率是多少?20.“草莓音乐节”组委会设置了甲、乙、丙三种门票,初一二班购买了甲种门票3张,乙种门票7张,丙种门票10张,班长采取在全班同学中随机抽取的方式来确定观众名单,且每名同学只有一次机会,已知该班有50名学生,请根据题意解决以下问题:(1)该班某名学生恰能去参加“草莓音乐节”活动的概率是多少?(2)该班同学强烈呼吁甲种门票太少,要求每人抽到甲种门票的概率要达到20%,则还要购买甲种门票多少张?21.小蒙设计了两个抽奖游戏,游戏一是转盘游戏,如图,转盘被等分成了4个扇形,共有红、黄和蓝三种颜色,自由转动转盘,指针停在红色时会得到奖励;游戏二是摸球游戏,袋子里有2个红球、2个黄球和1个蓝球,每个球除颜色外其他都相同,任意摸出一个球,摸到红球会得到奖励.小雨要参加抽奖游戏,应选择参加哪一个游戏获得奖励的可能性比较大?请说明理由.五、解答题(三)(每题12分,共24分)22.“校园手机”现象越来越受到社会的关注.九(1)班学生在“统计实习”实践活动中随机调查了学校若干名学生家长对“中学生带手机到学校”现象的态度,统计整理并制作了如下的统计图.(1)在图②中,AB是圆O的直径,求这次被调查的家长总人数,并补全图①;(2)求图②中表示家长“基本赞成”的圆心角的度数;(3)从这次接受调查的家长中,随机抽取一名,恰好是“无所谓”态度的家长的概率是多少?23.如图,端午节期间,某商场为了吸引顾客,设立了一个可以自由转动的转盘,并规定顾客每购买200元商品,就能获得一次转动转盘的机会,如果转盘停止后,指针对准红色、黄色、绿色的区域,顾客就可以分别获得50元、20元、10元的奖金,对准无色区域则无奖金(转盘被等分成16个扇形).(1)王老师购买了210元的商品,他获得奖金的概率是多少?(2)张老师购买了370元的商品,他获得20元奖金的概率是多少?(3)现商场想调整获得10元奖金的概率为14,其他金额的获奖率不变,则需要将多少个无色区域涂上绿色?答案一、1.B 2.B 3.C 4.B 5.D 6.A 7.D 8.C 9.B10.B 提示:蓝色区域的面积为π(2r)2-πr2=3πr2,总面积为π(3r)2=9πr2,则小钢球停止在蓝色区域的概率为3πr29πr2=13.故选B.二、11.错误12.2513.40 14.3515.17三、16.解:(1)(2)(5)属于随机事件,(3)属于必然事件,(4)属于不可能事件.17.解:(1)D(2)一共有4种可能出现的结果,其中红包的金额超过30元的有2种,所以甲抢到红包的金额超过30元的概率是24=12.18.解:(1)因为不透明的袋子中装有2个黄球,3个黑球和5个红球,所以从袋子中随机摸出一个球是黄球的概率是22+3+5=15.(2)因为向这个袋子再加入5个红球,所以红球共有10个,球的总数为2+3+5+5=15(个),所以从袋子中随机摸出一个球,摸到不是红球的概率是15-1015=13.四、19.解:因为小明手中两根木棒的长度分别为3cm和6cm,所以易得第三边的长度应满足大于3cm,小于9cm.所以能与小明手中两根木棒拼成三角形的木棒的长度是4cm或5cm,所以能与长度为3cm,6cm的木棒拼成一个三角形木框的概率是24=12.20.解:(1)因为该班有50名学生,且每名同学抽中的可能性相等,三种门票共有3+7+10=20(张),所以该班某名学生恰能去参加“草莓音乐节”活动的概率是2050=25.(2)设还要购买甲种门票x张,则根据题意得3+x 50=20%,解得x=7.答:还要购买甲种门票7张.21.解:游戏一:由于转盘被等分成了4个扇形,红色占2个,因此指针停在红色的概率为24=12.游戏二:袋子里有2个红球、2个黄球和1个蓝球,摸出一个球是红色的概率为22+2+1=25,因为12>25,所以应选择参加游戏一获得奖励的可能性较大.五、22.解:(1)由于AB是圆O的直径,所以“不赞成”占被调查总人数的50%,所以这次调查的家长总人数为200÷50%=400(人).“非常赞成”的人数为400×26%=104(人),“基本赞成”的人数为400-200-104-16=80(人),补全的统计图如下.(2)360°×80400=72°.答:题图②中表示家长“基本赞成”的圆心角的度数为72°.(3)在这次被调查的400名家长中,“无所谓”态度的家长有16名,所以恰好是“无所谓”态度的家长的概率是16400=125.23. 解:(1)王老师购买了210元的商品,能获得一次转动转盘的机会,获得奖金的概率是616=38.(2)张老师购买了370元的商品,能获得一次转动转盘的机会,获得20元奖金的概率是216=18.(3)设需要将x个无色区域涂上绿色,则由题意得x+316=14,解得x=1.所以需要将1个无色区域涂上绿色.北师大版七年级数学下册期中学情评估一、选择题(每题3分,共30分)1.计算:(-3)-1=( )A.-3 B.3 C.13D.-132.下列各图中,∠1与∠2是对顶角的是( )3.某颗粒物的直径约为0.000 001 8米,用科学记数法表示该颗粒物的直径为( )A.0.18×10-5米B.1.8×10-5米C.1.8×10-6米D.18×10-5米4.下列运算正确的是( )A.(a2)3=a6B.a3·a4=a12C.a8÷a4=a2D.(-3a2)2=6a45.如图,点E在BC的延长线上,下列条件不能判断AB∥CD的是( )A.∠BAC=∠ACDB.∠DCE=∠BC.∠B+∠BCD=180°D.∠B+∠BAD=180°6.下列算式不能运用平方差公式计算的是( )A.(x+a)(x-a)B.(x+2a)(-2a+x)C.(a+b)(-a-b)D.(-x-b)(x-b)7.洗衣机在洗涤衣服时,每浆洗一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水).在这三个过程中,洗衣机内的水量y(升)与浆洗一遍的时间x(分)之间关系的图象大致为( )8.已知在弹簧的承受范围内,弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)间有下表的关系,下列说法不正确的是( )x/kg0123 4y/cm2022242628A.x与y都是变量,且x是自变量,y是因变量B.所挂物体的质量为2 kg时,弹簧的长度为24 cmC.弹簧不挂物体时的长度为0 cmD.在弹性限度内,所挂物体的质量每增加1 kg,弹簧的长度增加2 cm 9.观察如图所示的图形,下列说法正确的个数是( )①过点A有且只有一条直线与直线BD平行;②平面内,过点A有且只有一条直线AC垂直于直线BD;③线段AC的长是点A到直线BD的距离;④线段AB、AC、AD中,线段AC最短,根据是两点之间,线段最短.A.1个B.2个C.3个D.4个(第9题) (第10题)10.如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=n°,则下列结论:①∠COE=90°-12n°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正确的有( )A.①②③B.①②④C.①③④D.①②③④二、填空题(每题3分,共15分)11.小明家离学校3千米,上学时小明骑自行车以10千米/时的速度骑了x小时,这时离学校还有y千米.写出y与x之间的关系式:__________________.12.一个角的补角与这个角的余角的差是 ______ °.13.已知2x=6,4y=7,那么2x+2y的值是______.14.若代数式x2-6x+k是完全平方式,则k=______.15.如图①,在某个底面积为20 cm2的盛水容器内,有一个实心圆柱体铁块,现在匀速持续地向容器内注水,容器内水的高度y(cm)和注水时间x(s)之间的关系满足如图中的图象,则水流速度是______cm3/s.三、解答题(一)(每题8分,共24分)16.先化简,再求值:[(ab+2)(ab-2)-2a2b2+4]÷2ab,其中a=1,b=-2.17.如图所示,点B、E分别在AC、DF上,BD、CE均与AF相交,∠1=∠2,∠C =∠D.(1)BD和CE平行吗?请说明理由;(2)∠A和∠F相等吗?请说明理由.18.作图题(保留作图痕迹,不写作图过程):(1)在如图所示的方格纸中不用量角器与三角尺,仅用直尺.①经过点P,画直线PQ平行于AB所在直线.②过点C,画直线CN垂直于CB所在直线.(2)尺规作图:已知∠ACB,求作:∠A′C′B′,使∠A′C′B′=∠ACB.四、解答题(二)(每题9分,共27分)19.亮亮计算一道整式乘法的题(3x-m)·(2x-5),由于亮亮在解题过程中,抄错了第一个多项式中m前面的符号,把“-”写成了“+”,得到的结果为6x2-5x-25.(1)求m的值;(2)计算这道整式乘法的正确结果.20.为了解某种品牌汽车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表:汽车行驶时间t(h)0123…油箱剩余油量Q(L)100948882…(1)根据上表的数据,请你写出Q与t的关系式;(2)该品牌汽车的油箱有50L油,若以100km/h的速度匀速行驶,该车最多能行驶多远?21.小明骑单车上学,当他骑了一段路后,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次上学所用的时间与离家距离的关系示意图.根据图中的信息回答下列问题:(1)小明家到学校的距离是______米;(2)小明在书店停留了______分钟;(3)本次上学途中,小明一共行驶了____米,一共用了______分钟;(4)若骑单车的速度超过300米/分就超过了安全限度.在整个上学途中小明的最快车速是多少米/分?速度是否在安全限度内?五、解答题(三)(每题12分,共24分)22.如图①的两个长方形可以按不同的形式拼成图②和图③两个图形.(1)在图②中的阴影部分的面积S1可表示为____________;(写成多项式乘法的形式);在图③中的阴影部分的面积S2可表示为______;(写成两数平方差的形式)(2)比较图②与图③的阴影部分面积,可以得到的等式是______;A.(a+b)2=a2+2ab+b2B.(a+b)(a-b)=a2-b2C.(a-b)2=a2-2ab+b2(3)请利用所得等式解决下面的问题:①已知4m2-n2=12,2m+n=4,则2m-n=______;②计算(2+1)(22+1)(24+1)(28+1)+…+(232+1)+1的值,并写出该值的个位数字是多少.23.【阅读理解】两条平行线间的拐点问题经常可以通过作一条直线的平行线进行转化.例如:如图①,MN∥PQ,点C、B分别在直线MN、PQ上,点A在直线MN、PQ之间.试说明:∠CAB=∠MCA+∠PBA.解:如图①,过点A作AD∥MN,因为MN∥PQ,AD∥MN,所以AD∥MN∥PQ,所以∠MCA=∠DAC,∠PBA=∠DAB,所以∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,即∠CAB=∠MCA+∠PBA.【类比应用】若直线AB∥CD,P为平面内一点,连接PA、PD.(1)如图②,若∠A=50°,∠D=150°,求∠APD的度数;(2)如图③,设∠PAB=∠α、∠CDP=∠β,则∠α、∠β、∠P之间的数量关系为__________________;【联系拓展】如图④,直线AB∥CD,P为平面内一点,连接PA、PD.AP⊥PD,DN平分∠PDC,若∠PAN+12∠PAB=∠P,运用(2)中的结论,直接写出∠N的度数.答案一、1.D 2.B 3.C 4.A 5.D 6.C 7.D 8.C 9.C 10.A二、11.y =3-10x 12.90 13.42 14. 915.403提示:由题图可知,5s 时,水面刚好到达实心圆柱体铁块顶端,5s 后水面高度不受实心圆柱体铁块影响, 则水流速度为(15-11)×2011-5=403(cm 3/s).故答案为403. 三、16.解:原式=(a 2b 2-4-2a 2b 2+4)÷2ab=(-a 2b 2)÷2ab =-12ab .当a =1,b =-2时,原式=-12×1×(-2)=1.17.解:(1)平行.理由:因为∠1=∠2,∠2=∠3,所以∠1=∠3,所以BD ∥CE .(2)相等.理由:因为BD ∥CE ,所以∠C =∠DBA , 又因为∠C =∠D ,所以∠DBA =∠D , 所以DF ∥AC ,所以∠A =∠F . 18.解:(1)如图.(2)如图.四、19.解:(1)根据题意可得,(3x+m)(2x-5)=6x2-15x+2mx-5m=6x2-(15-2m)x-5m,所以-5m=-25,解得m=5.(2)(3x-5)(2x-5)=6x2-15x-10x+25=6x2-25x+25. 20.解:(1)由题意得汽车每行驶1h,油量减少6L,则剩余油量为Q=100-6t.(2)50÷6×100=2 5003(km),答:该车最多能行驶2 5003km.21.解:(1)1 500 (2)4 (3)2 700;14(4)当时间在0~6分钟内时,速度为1 200÷6=200(米/分),当时间在6~8分钟内时,速度为(1 200-600)÷(8-6)=300(米/分),当时间在12~14分钟内时,速度为(1 500-600)÷(14-12)=450(米/分),因为450>300>200,所以在整个上学途中小明的最快车速为450米/分,速度不在安全限度内.五、22.解:(1)(a+b)(a-b);a2-b2(2)B(3)①3②原式=(2-1)(2+1)(22+1)(24+1)(28+1)+…+(232+1)+1=(22-1)(22+1)(24+1)(28+1)+…+(232+1)+1=(24-1)(24+1)(28+1)+…+(232+1)+1=…=264-1+1=264,而21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,其个位数字2,4,8,6重复出现,而64÷4=16,于是“2,4,8,6”经过16次循环,因此264的个位数字为6.23.解:(1)如图①,过点P作PE∥AB,因为AB∥CD, PE∥AB,所以AB∥PE∥CD,所以∠APE=∠A=50°,∠DPE+∠D=180°,所以∠DPE= 180°-150°=30°.所以∠APD=∠APE+∠DPE= 50°+30°=80°.(2)∠α+∠β-∠P=180°【联系拓展】∠N的度数为45°. 提示:如图②,设PD交AN于点O,因为AP⊥PD,所以∠APO=90°,所以∠POA+∠PAN= 90°,因为∠PAN+12∠PAB=∠APD,所以∠PAN+12∠PAB= 90°,所以∠POA=12∠PAB,因为∠POA=∠NOD,所以∠NOD=12∠PAB,因为DN平分∠PDC,所以∠ODN=12∠PDC,所以∠AND= 180°-∠NOD-∠ODN= 180°-12(∠PAB+∠PDC),由(2)得∠CDP+∠PAB-∠APD= 180°,所以∠CDP+∠PAB= 180°+∠APD,所以∠AND= 180°-12(∠PAB+∠PDC)= 180°-12(180°+∠APD)= 180°-12(180°+90°)= 45°.21。
(常考题)北师大版初中数学七年级数学下册第三单元《变量之间的关系》检测卷(含答案解析)

一、选择题1.一个长方形的周长为30,则长方形的面积y 与长方形一边长x 的关系式为( ) A .y=x(15-x)B .y=x(30-x)C .y=x(30-2x)D .y=x(15+x)2.长方形的周长为24cm ,其中一边长为()x cm ,面积为2ycm 则长方形中y 与x 的关系式为( ) A .2yx B .2(12)y x =- C .(12)y x x =- D .2(12)y x =-3.对于关系式y =3x +5,下列说法:①x 是自变量,y 是因变量;②x 的数值可以任意选择;③y 是变量,它的值与x 无关;④这个关系式表示的变量之间的关系不能用图象表示;⑤y 与x 的关系还可以用表格和图象表示,其中正确的是( ) A .①②③ B .①②④C .①③⑤D .①②⑤4.某商店进了一批玩具,出售时要在进价的基础上加一定的利润,其销售个数x 与售价y如下表: 个数x/个 1 2 3 4 … 售价y/元8+0.316+0.624+0.932+1.2…下列用销售个数x 表示售价y 的关系式中,正确的是 ( ) A .y=(8+0.3)x B .y=8x+0.3C .y=8+0.3xD .y=8+0.3+x5.已知△ABC 的底边BC 上的高为8 cm ,当底边BC 从16 cm 变化到5 cm 时,△ABC 的面积 ( )A .从20 cm 2变化到64 cm 2B .从40 cm 2变化到128 cm 2C .从128 cm 2变化到40 cm 2D .从64 cm 2变化到20 cm 26.用固定的速度向如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是A .B .C .D .7.五一节,小丽独自一人去老家玩,家住在车站附近的姑姑到车站去接小丽.因为担心小丽下车后找不到路,姑姑一路小跑来到车站,结果客车晚点,休息一阵后,姑姑接到小丽,和小丽一起慢慢的走回了家.下列图象中,能反映以上过程中小丽姑姑离家的距离s 与时间t 的关系的大致图象是( )A.B.C.D.8.从甲地到乙地的铁路路程约为615千米,高铁速度为300千米/小时,直达;动车速度为200千米/小时,行驶180千米后,中途要停靠徐州10分钟,若动车先出发半小时,两车与甲地之间的距离y(千米)与动车行驶时间x(小时)之间的函数图象为()A.B.C.D.9.已知两个变量x和y,它们之间的3组对应值如下表,则y与x之间的函数关系式可能是()A.y=3x B.y=x-4 C.y=x2-4 D.y=3 x10.小明周六参加绘画兴趣班,爸爸开车送他从家去公交车站,先加速行驶一段时间后匀速行驶,过了一段时间到达公交车站,等待一段时间后上了公交车,公交车一开始先加速,一段时间后又开始匀速行驶,下面可以近似地刻画出小明在这段时间内的速度变化情况的图象是( )A.B.C.D.11.某校八年级同学到距学校6千米的郊外秋游,一部分同学步行,另一部分同学骑自行车,沿相同路线前往,如图,L1L2分别表示步行和骑车的同学前往目的地所走的路程y(千米)与所用时间x(分钟)之间的函数关系,则以下判断错误..的是()A.骑车的同学比步行的同学晚出发30分钟B.骑车的同学和步行的同学同时到达目的地C.骑车的同学从出发到追上步行的同学用了20分钟D.步行的速度是6千米/小时.12.函数y=中自变量x的取值范围是( )A.x≤2B.x≥2C.x<2 D.x>2二、填空题13.夏天高山上的气温从山脚起每升高l00m降低0.7℃,已知山脚下的气温是23℃,则气温y(℃)与上升的高度x(m)之间的关系式为____;当x=500时,y=__;当y=16时,x=__.14.球的表面积S与半径R之间的关系是S=4πR2.对于各种不同大小的圆,请指出公式S=4πR2中常量是________ ,变量是________15.某市出租车收费与行驶路程关系如图所示.如果小明姥姥乘出租车去小明家花去了22元,那么小明始姥乘车路程为__________千米.16.光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机物,并释放出氧的过程,如图是夏季晴朗的白天某种绿色植物叶片光合作用强度的曲线图,分析曲线图回答下列问题:(1)大约从7时到__________时的光合作用的强度不断增强.(2)__________时和__________时的光合作用强度不断下降.17.一个装有10千克水的水箱,每小时流出0.5千克水,水箱中的余水量y(千克)与时间t(小时)之间的关系式是__________,自变量t的取值范围是__________.18.根据图中的程序,当输入1x=时,输出的结果y=__________.19.声音在空气中传播的速度y(m/s)(简称声速)与气温x(℃)的关系如下表所示.气温x/℃05101520声速y/(m/s)331334337340343上表中___________是自变量, __________是因变量.照此规律可以发现,当气温x为__________℃时,声速y达到346 m/s.20.某水果店卖出的香蕉数量(千克)与售价(元)之间的关系如下表:如果卖出的香蕉数量用x(千克)表示,售价用y(元)表示,则y与x的关系式为_________;三、解答题21.某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用﹣支出费用)y(元)的变化关系如表所示(每位乘客的公交票价是固定不变的).x(人)50010001500200025003000…y (元)﹣3000﹣2000﹣1000010002000…(1)在这个变化过程中,每月的乘车人数x与每月利润y分别是变量和变量;(2)观察表中数据可知,每月乘客量达到人以上时,该公交车才不会亏损;(3)当每月乘车人数为4000人时,每月利润为多少元?22.如图,在一个半径为10cm的圆面上,从中心挖去一个小圆面,当挖去小圆的半径()x cm由小变大时,剩下的圆环面积()2y cm也随之发生变化.(结果保留π).(1)在这个变化过程中,自变量、因变量各是什么?(2)求圆环的面积y与x的关系式.(3)当挖去圆的半径x为9cm时,剩下圆环面积y为多少?23.已知某函数图象如图所示,请回答下列问题:(1)自变量x的取值范围是(2)函数值y的取值范围是;(3)当x=0时,y的对应值是;(4)当x为时,函数值最大;(5)当y随x增大而增大时,x的取值范围是;(6)当y随x的增大而减少时,x的取值范围是.24.甲、乙两人从少年宫出发,沿相同的路线分别以不同的速度匀速跑向体育馆,甲先跑一段路程后,乙开始出发,当乙超出甲 150 米时,乙停在原地等候甲,两人相遇后乙又继续以原来的速度跑向体育馆.如图所示是甲、乙两人在跑步的全过程中经过的路程 y (米)与甲出发的时间 x(秒)之间关系的图象.(1)在跑步的全过程中,甲一共跑了米,甲的速度为米/秒.(2)求图中标注的 a 的值及乙跑步的速度.(3)乙在途中等候了多少时间?25.公路上依次有A,B,C三个汽车站,上午8时,小明骑自行车从A,B两站之间距离A站8km处出发,向C站匀速前进,他骑车的速度是每小时16.5km,若A,B两站间的路程是26km,B,C两站的路程是15km.(1)在小明所走的路程与骑车用去的时间这两个变量中,哪个是自变量?哪个是因变量?(2)设小明出发x小时后,离A站的路程为ykm,请写出y与x之间的关系式.(3)小明在上午9时是否已经经过了B站?26.光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存能量的有机物,并释放出氧气的过程.如图是夏季的白天7时~18时的一般的绿色植物的光合作用强度与时间之间的关系的曲线,分析图象回答问题:观察:(1)大约几时的光合作用最强?(2)大约几时的光合作用最弱?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【详解】∵长方形的周长为30,其中一边长为x,∴该长方形的另一边长为:15x ,∴该长方形的面积:(15)y x x =-. 故选A.2.C解析:C 【分析】根据周长关系求出另一边的长,再用面积公式即可表示y 与x 的函数. 【详解】∵长方形的周长为24cm ,其中一边长为()x cm , ∴另一边为12-x ,故面积2ycm 则长方形中y 与x 的关系式为(12)y x x =-故选C 【点睛】此题主要考查函数的表示,解题的关键是熟知长方形的周长与面积公式.3.D解析:D 【解析】 【分析】根据一次函数的定义可知,x 为自变量,y 为函数,也叫因变量;x 取全体实数;y 随x 的变化而变化;可以用三种形式来表示函数:解析法、列表法和图象法. 【详解】①x 是自变量,y 是因变量;正确; ②x 的数值可以任意选择;正确;③y 是变量,它的值与x 无关;而y 随x 的变化而变化;错误; ④用关系式表示的不能用图象表示;错误; ⑤y 与x 的关系还可以用列表法和图象法表示,正确. 故选D . 【点睛】本题考查了一次函数的定义,是基础知识,比较简单.4.A解析:A 【解析】 【分析】本题通过观察表格内的x 与y 的关系,可知y 的值相对x=1时是成倍增长的,由此可得出方程. 【详解】依题意得:y=(8+0.3)x ; 故选A . 【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.5.D解析:D【分析】根据S=12(底×高)计算分别计算得出最值即可.【详解】当△ABC的底边BC上的高为8cm,底边BC=16cm时,S1=(8×16)÷2=64cm2;底边BC=5cm时,S2=(5×8)÷2=20cm2.故选D.【点睛】此题主要考查了函数关系,利用极值法得出△ABC的最大值和最小值是解题关键.6.C解析:C【解析】容器上粗下细,杯子里水面的高度上升应是先快后慢.故选C.7.A解析:A【解析】【分析】根据每段中路程s随时间t的变化情况即可作出判断.【详解】姑姑在车站休息的一段时间,路程不随时间的变化而变化,因而这一段的图象应该平行于横轴;姑姑一路小跑来到车站,这段是正比例函数关系,回家的过程是一次函数关系,且s岁t 的增大而减小,因而B、D错误;回家的过程比姑姑一路小跑来到车站的过程速度要慢,即s随t的变化要慢,因而图象要平缓,故A正确,C错误.故选A.【点睛】正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.8.B解析:B【分析】先根据两车并非同时出发,得出D选项错误;再根据高铁从甲地到乙地的时间以及动车从甲地到乙地的时间,得出两车到达乙地的时间差,结合图形排除A、 C选项,即可得出结论.解:由题可得,两车并非同时出发,故D选项错误;高铁从甲地到乙地的时间为615÷300=2.05h 动车从甲地到乙地的时间为615÷200+16≈3.24h,动车先出发半小时,∴两车到达乙地的时间差为3.24-2.05-0.5=0.69h,该时间差小于动车从甲地到乙地所需时间的一半,故C选项错误;0.69>0.5,∴两车到达乙地的时间差大于半小时,故A选项错误,动车行驶180千米所需的时间为180÷200=0.9h,而高铁迟出发0.5h,∴0.9>0.5,故B选项符合题意,A选项不合题意.所以B选项是正确的.【点睛】本题主要考查函数与函数的图像.9.C解析:C【解析】选项A,y=3x,根据表格对应数据代入得出y≠3x,选项A错误;选项B,y=x-4,根据表格对应数据代入得出y≠x-4,选项B错误;选项C,y=x2-4,根据表格对应数据代入得出y=x2-4,选项C正确;选项D,y= 3x,根据表格对应数据代入得出y≠3x,选项D错误.故选C.10.C解析:C【解析】试题分析:先加速行驶,可得速度变快,图象从原点开始,成上升趋势;再匀速行驶,可得速度不变,图象平行于x轴;到达公交车站,汽车减速,速度变慢,直至变为0,图象成下降趋势;根据等车,可得速度为零;根据公交加速,可得速度变快,图象成上升趋势;根据匀速行驶,可得速度不变,图象平行于x轴.由此可知只有选项C符合题意.故选C.点睛:本题考查了函数图象,正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数值随自变量的增大是增大还是减小.11.B解析:B【解析】A. 由图知,骑车的同学比步行的同学晚出发30分钟,故A正确;B. 由图知,骑车的同学比步行的同学先到达目的地,故B不正确;C. 由图知,骑车的同学从出发到追上步行的同学用了20分钟,故C正确;D. 由图知,步行的速度是6千米/小时,故D正确;12.D解析:D【解析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,x-2>0,解得x>2,故选D.二、填空题13.y=23-0007x1951000【解析】【分析】每升高l00m降低07℃则每上升1m 降低0007℃则上升的高度xm下降0007x℃据此即可求得函数解析式;当x=500时把x=500代入解析式求得y解析:y=23-0.007x 19.5 1000【解析】【分析】每升高l00m降低0.7℃,则每上升1m,降低0.007℃,则上升的高度xm,下降0.007x℃,据此即可求得函数解析式;当x=500时,把x=500代入解析式求得y的值;当y=16时,把y=16代入解析式求得x的值.【详解】每升高l00m降低0.7℃,则每上升1m,降低0.007℃,则关系式为:y=23-0.007x;当x=500时,y=23-0.007×500=19.5;当y=16时,23-0.007x=16,解得:x=1000.【点睛】考查了列函数解析式,理解每升高l00m降低0.7℃,则每上升1m,降低0.007℃是关键.14.4πS和R【解析】【分析】变量是指在程序的运行过程中随时可以发生变化的量常量是数值始终不变的量根据定义即可确定【详解】解:公式是S=4πR2中常量是4π变量是S和R故答案是:4π;S和R【点睛】本题解析:4π S和R【解析】【分析】变量是指在程序的运行过程中随时可以发生变化的量,常量是数值始终不变的量,根据定义即可确定.【详解】解:公式是S=4πR2中常量是4π,变量是S和R.故答案是: 4π;S和R.【点睛】本题考查了常量与变量的定义,属于简单题,理解定义是关键.15.13【解析】设AB 的解析式为y=kx+b 由题意得解得:∴直线AB 的解析式为y=16x+12(x≥3)当y=22时22=16x+12解得:x=13故答案为:13【点睛】本题考查了运用待定系数法求一次函解析:13【解析】设AB 的解析式为y=kx+b ,由题意,得63148k b k b =+⎧⎨=+⎩,解得: 1.61.2k b =⎧⎨=⎩, ∴直线AB 的解析式为y=1.6x+1.2(x≥3),当y=22时,22=1.6x+1.2,解得:x=13,故答案为:13.【点睛】本题考查了运用待定系数法求一次函数的解析式的运用,根据解析式由函数值求自变量的值的运用.解答时求出函数的解析式是关键.16.【解析】试题分析:(1)观察图象即可知大约从7时到10时的光合作用的强度不断增强;(2)观察图象即可知在哪个时间段内光合作用的强度不断下降试题解析:10 10~12 14~18【解析】试题分析:(1)观察图象即可知大约从7时到10时的光合作用的强度不断增强; (2)观察图象即可知在哪个时间段内光合作用的强度不断下降.试题(1)观察图象可知大约从7时到10时的光合作用的强度不断增强,故答案为10;(2)观察图象可知在10~12时、14~18时的光合作用强度不断下降,故答案为10~12、14~18.17.【解析】依题意有y=10−05tt ⩾0且用水量不能超过原有水量∴05t ⩽10解得t ⩽20∴0⩽t ⩽20故函数关系式是y=10−05t 自变量t 的取值范围是0⩽t ⩽20故答案为 解析:100.5y t =- 020t ≤≤【解析】依题意有y=10−0.5t ,t ⩾0,且用水量不能超过原有水量,∴0.5t ⩽10,解得t ⩽20, ∴0⩽t ⩽20.故函数关系式是y=10−0.5t ,自变量t 的取值范围是0⩽t ⩽20.故答案为 100.5y t =- , 020t ≤≤18.9【解析】∵x=1时符合x≤1的条件∴将x=1代入函数y=x+8得:y=9;故答案为9点睛:此题主要考查了实数的运算解答本题的关键就是弄清楚题图给出的计算程序解析:9【解析】∵x=1时,符合x≤1的条件,∴将x=1代入函数y=x+8得:y=9;故答案为9.点睛:此题主要考查了实数的运算,解答本题的关键就是弄清楚题图给出的计算程序.19.气温声速25【解析】气温是自变量声速是因变量设函数解析式y=kx+b∵该函数图象经过点(0331)和(5334)∴解得∴该函数关系式为y=x+331当y=346时x=25即当气温x为25℃时声速y达解析:气温声速 25【解析】气温是自变量, 声速是因变量设函数解析式y=kx+b,∵该函数图象经过点(0,331)和(5,334),∴3315334 bk b⎧⎨+⎩==,解得35331 kb⎧⎪⎨⎪⎩==.∴该函数关系式为y=35x+331 .当y=346时,x=25即当气温x为25 ℃时,声速y达到346 m/s.故答案为:25故答案为:气温声速 25点睛:主要考查了函数关系式以及函数值的相关知识,解答本题的关键是:读懂表格数据,用待定系数法求函数解析式,本题难度不大,是一道基础题.20.y=3x【解析】观察表中数据可知y与x之间是一次函数关系设y=kx+b(k≠0)将x=05y=15和x=1y=3代入y=kx+b(k≠0)中得解得故y与x的关系式为y=3x;点睛:根据实际问题确定一解析:y=3x【解析】观察表中数据可知y与x之间是一次函数关系,设y=kx+b(k≠0)将x=0.5,y=1.5和x=1,y=3代入y=kx+b(k≠0)中,得1.50.5{3k b k b=+=+, 解得=3{=0k b故y 与x 的关系式为y=3x;点睛:根据实际问题确定一次函数关系式关键是读懂题意,建立一次函数的数学模型来解决问题.描点猜想问题需要动手操作,这类问题需要真正的去描点,观察图象再判断时一次函数还是其他函数,再利用待定系数法求解相关的问题.三、解答题21.(1)每月的乘车人数,每月利润;(2)2000人;(3)4000元【分析】(1)根据函数的定义即可求解;(2)根据表格可得:当每月乘客量达到2000人以上时,该公交车才不会亏损,即可求解;(3)有表中的数据推理即可求解.【详解】解:(1)在这个变化过程中,每月的乘车人数是自变量,每月利润是因变量; 故答案为:每月的乘车人数,每月利润;(2)根据表格可得:当每月乘客量达到2000人以上时,该公交车才不会亏损, 故答案为:2000;(3)有表中的数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元, 当每月的乘车人数为2000人时,利润为0元,故每月乘车人数为4000人时,每月的利润是(4000-2000)÷500×1000=4000元.【点睛】本题考查了根据表格与函数知识,正确读懂表格,理解表格体现变化趋势是解题关键. 22.(1)自变量是小圆的半径()x cm ,因变量是圆环面积()2y cm;(2)y =()2100xπ-;(3)19π 【分析】(1)根据自变量与因变量的定义解答即可;(2)根据圆环面积的计算方法求解即可;(3)把x =9代入(2)题的关系式中计算即得结果.【详解】解:(1)自变量是小圆的半径()x cm ,因变量是圆环面积()2y cm; (2)根据题意得:()22210100y x xπππ=⨯-⨯=-;(3)当9x =时,()1008119y ππ=⨯-=.【点睛】本题考查了用关系式表示的变量之间的关系,正确列出关系式是解题的关键.23.(1)﹣4≤x≤3;(2)﹣2≤y≤4;(3)3;(4)1;(5)﹣2≤x≤1(6)﹣4≤x≤﹣2和1≤x≤3.【解析】【分析】根据自变量的定义,函数值的定义以及二次函数的最值和增减性,观察函数图象分别写出即可.【详解】解:(1)自变量x的取值范围是﹣4≤x≤3;(2)函数y的取值范围是﹣2≤y≤4;(3)当x=0时,y的对应值是3;(4)当x为1时,函数值最大;(5)当y随x的增大而增大时,x的取值范围是﹣2≤x≤1.(6)当y随x的增大而减少时,x的取值范围是﹣4≤x≤﹣2和1≤x≤3;故答案为(1)﹣4≤x≤3;(2)﹣2≤y≤4;(3)3;(4)1;(5)﹣2≤x≤1(6)﹣4≤x≤﹣2和1≤x≤3.【点睛】本题考查二次函数的性质,函数图象,熟练掌握函数自变量的定义,函数值的定义以及函数的增减性并准确识图是解题关键.24.(1) 900;1.5;(2)a 的值为 750 米,乙的跑步速度为 2.5(米 / 秒);(3)100 秒【解析】试题分析:(1)由图中信息可知,甲一共跑了900米,用时600秒,由此即可求得甲的速度为1.5米/秒;(2)由图中的信息可知,第500秒时,甲共跑了a米,由此结合(1)中所得甲的速度即可求得a的值;(3)由图中信息结合(2)中所得a的值,可知乙在60秒内跑了150米,由此可得乙的速度为:2.5米/秒,由此即可计算出乙从出发到休息时所用时间为750÷2.5=300(秒);由图中信息结合(1)中所得甲的速度可知,乙是在甲出发100秒后出发的;这样结合图中信息就可得乙在中途等候的时间为:500-100-300=100(秒).试题(1)由图中信息可知,甲一共跑了900米,用时600秒,∴甲的速度为:900÷600=1.5(米/秒);(2)由图中信息可得,图中:a=1.5×500=750(米);(3)由图中信息结合a=750可得:乙的速度为:(900-750)÷(560-500)=2.5(米/秒),由图中信息可得:乙出发时甲已经跑了:150÷1.5=100(秒),乙从出发到中途等候时共跑了750÷2.5=300(秒),∴乙在中途等候的时间为:500-100-300=100(秒).点睛:本题解题的要点是弄清函数图象中以下几个点的实际意义:(1)点A表示甲跑完150米时所用的时间,也是乙出发的时间;(2)B表示乙跑完a米,开始休息时的时间;(3)C点表示甲跑完a米,追上乙时所对应的时间为500秒;(4)D表示乙跑完全程900米时,所对应的时间是第560秒;(5)E表示甲跑完全程900米,用时600秒. 25.(1)骑车时间是自变量,所走过的路程是因变量;(2)y=16.5x+8;(3)上午9时小明还没有经过B站.【解析】【分析】(1)在函数中,给一个变量x一个值,另一个变量y就有对应的值,则x是自变量,y是因变量,据此即可判断;(2)首先表示出小明出发x小时后所行驶的路程,再加上8km就是离A站的路程;(3)小明8时出发到9时行驶了1小时,计算出小明此时距离A站的路程,与AB两站之间的路程进行比较即可;【详解】解:(1)骑车时间是自变量,所走过的路程是因变量;(2)小明出发x小时后所行驶的路程是16.5xkm,离A站的路程为:y=16.5x+8;(3)当x=1时,y=16.5+8=24.5<26,可知上午9时小明还没有经过B站;【点睛】此题考查函数值,函数关系式,常量与变量,解题关键在于列出方程26.(1)上午10时;(2)早上7时和晚上18时.【解析】【分析】分析曲线图可知,光合作用强度随光照强度增强而增强;在夏日中午10时;光合作用强度随光照强度减弱而减弱,早上7时和晚上18时的光合作用最弱.【详解】观察得到:(1)大约上午10时的光合作用最强;(2)大约早上7时和晚上18时的光合作用最弱.【点睛】此题考查函数图象问题,关键是根据图象分析得出的信息.。
【精选】北师大版七年级下册数学第四章《变量之间的关系》综合测试卷(含答案)

【精选】北师大版七年级下册数学第四章《变量之间的关系》综合测试卷(含答案)一、选择题(每题3分,共30分)1.【教材P68习题T1变式】地表以下岩层的温度随着所处深度的变化而变化,在这一问题中因变量是( )A.地表B.岩层的温度C.所处深度D.时间2.已知两个变量之间的关系满足y=-x+2,则当x=-1时,对应的y的值为( )A.1 B.3 C.-1 D.-33.如果圆珠笔有12支,总售价为18元,用y(元)表示圆珠笔的售价,x(支)表示圆珠笔的数量,那么y与x之间的关系应该是( )A.y=12x B.y=18x C.y=23x D.y=32x4.【教材P78复习题T6变式】小明从家出发,外出散步,到一个公共阅报栏前看了一会儿报后,继续散步了一段时间,然后回家.如图描述了小明在散步过程中离家的距离s(m)与散步所用时间t(min)之间的关系.根据图象,下列信息错误..的是( )A.小明看报用时8 minB.公共阅报栏距小明家200 mC.小明离家最远的距离为400 mD.小明从出发到回家共用时16 min5.下面的表格列出了一个实验的统计数据,表示将皮球从高处落下时,弹跳高度b(cm)与下降高度d(cm)的关系,下面能表示这种关系的式子是( )A.b=d2B.b=2d C.b=d2D.b=d+256.【2022·合肥一六八中学模拟】一个长方形的周长为24 cm,其中一边长为x cm,面积为y cm2,则y与x的关系式可写为( )A.y=x2B.y=(12-x)2 C.y=x(12-x) D.y=2(12-x) 7.小王利用计算机设计了一个程序,输入和输出的数据如下表:那么,当输入数据8时,输出的数据是( )A.861B.863C.865D.8678.【教材P74随堂练习T2改编】【2022·雅安】一辆公共汽车从车站开出,加速行驶一段时间后开始匀速行驶.过了一段时间,汽车到达下一车站.乘客上、下车后汽车开始加速,一段时间后又开始匀速行驶.下图中近似地刻画出汽车在这段时间内的速度变化情况的是( )9.如图是甲、乙两车在某时间段速度随时间变化的图象,下列结论错误..的是( )A.乙前4 s行驶的路程为48 mB.在0 s到8 s内甲的速度每秒增加4 mC.两车到第3 s时行驶的路程相等D.在4 s到8 s内甲的速度都大于乙的速度10.【2022·河北】某项工作,已知每人每天完成的工作量相同,且一个人完成需12天.若m个人共同完成需n天,选取6组数对(m,n),下列各图中正确的是( )二、填空题(每题3分,共24分)11.已知圆的半径为r,则圆的面积S与半径r之间有如下关系:S=πr2.在这个关系中,常量是__________,变量是__________.12.小虎拿6元钱去邮局买面值为0.8元的邮票,买邮票后所剩的钱数y(元)与买邮票的枚数x(枚)的关系式为________________,最多可以买________枚.13.【数学运算】根据如图所示的程序,当输入x=3时,输出的结果y是________.(第13题) (第14题) (第15题) 14.假定甲、乙两人在一次赛跑中,路程s(m)与时间t(s)的关系如图所示,则甲、乙两人中先到达终点的是________,乙在这次赛跑中的速度为__________.15.如图,长方形ABCD的四个顶点在互相平行的两条直线上,AD=10 cm.当点B,C在平行线上运动时,长方形的面积发生了变化.(1)在这个变化过程中,自变量是__________________,因变量是__________________________;(2)如果长方形的边AB长为x(cm),那么长方形的面积y(cm2)与x(cm)的关系式为____________.16.声音在空气中传播的速度y(m/s)与气温x(℃)之间的关系式为y=35x+331.(1)当气温为15 ℃时,声音在空气中传播的速度为__________;(2)当气温为22 ℃时,某人看到烟花燃放5 s后才听到响声,则此人与燃放的烟花所在地相距__________.17.某市自来水收费实行阶梯水价,收费标准如下表所示.月用水量不超过12 t的部分超过12 t不超过18 t的部分超过18 t的部分收费标准/(元/t)2.00 2.503.00 某户5月份交水费45元,则所用水量为__________.18.火车匀速通过隧道时,火车在隧道内的长度y(m)与火车行驶时间x(s)之间的关系用图象描述如图所示,有下列结论:①火车的长度为120 m;②火车的速度为30 m/s;③火车整体都在隧道内的时间为25 s;④隧道的长度为750 m.其中,正确的结论是__________(把你认为正确结论的序号都填上).三、解答题(19,20,23题每题14分,其余每题12分,共66分)19.【教材P63随堂练习T2变式】下表是橘子的销售额随橘子卖出质量的变化表:质量/kg 1 2 3 4 5 6 7 8 9 …销售额/元 2 4 6 8 10 12 14 16 18 …(1)这个表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当橘子卖出5 kg时,销售额是________元.(3)如果用x表示橘子卖出的质量,y表示销售额,按表中给出的关系,y与x之间的关系式为____________.(4)当橘子的销售额是100元时,共卖出多少千克橘子?。
2022-2023学年北师大版七年级数学上《变量之间的关系》测试卷及答案解析

2022-2023学年北师大版七年级数学上《变量之间的关系》一.选择题(共9小题)1.(2022春•雁峰区期中)在圆的周长计算公式C=2πR中,对于变量和常量的说法正确的是()A.2是常量,C,π,R是变量B.2,π是常量,C,R是变量C.2,C,π是常量,R是变量D.2,π,R是常量,C是变量2.(2022春•历城区期中)太阳能作为一种新型能源被广泛应用到实际生活中,在利用太阳能热水器加热的过程中,热水器里水的温度随着太阳光照射时间的变化而变化,这一变化过程中因变量是()A.热水器水的温度B.热水器的容积C.太阳光照射的时间D.太阳光的强弱3.(2022春•滦南县期中)刘师傅到加油站加油,如图是所用的加油机上的某一时刻数据显)示牌,则其中的常量是(A.金额B.单价C.数量D.金额和数量4.(2022春•古田县期中)如表是研究弹簧长度与所挂物体质量关系的实验表格,则弹簧不挂物体时的长度为()12345所挂物体重量x(kg)1012141618弹簧长度y(cm)A.4cm B.6cm C.8cm D.10cm 5.(2022春•碑林区校级期末)小明一家自驾车到离家500km的某景点旅游,出发前将油箱加满油.下表记录了行驶路程x(km)与油箱余油量y(L)之间的部分数据:行驶路程x(km)050100150200…油箱余油量y(L)4541373329…下列说法不正确的是()A.该车的油箱容量为45LB.该车每行驶100km耗油8LC.油箱余油量y(L)与行驶路程x(km)之间的关系式为y=45﹣8xD.当小明一家到达景点时,油箱中剩余5L油6.(2022•常州)某城市市区人口x万人,市区绿地面积50万平方米,平均每人拥有绿地y 平方米,则y与x之间的函数表达式为()A.y=x+50B.y=50x C.y=D.y=7.(2022•广东)水中涟漪(圆形水波)不断扩大,记它的半径为r,则圆周长C与r的关系式为C=2πr.下列判断正确的是()A.2是变量B.π是变量C.r是变量D.C是常量8.(2022春•滕州市期中)滕州某布店新进了一批花布,卖出的数量x(米)与售价y(元)的关系如表:数量x(米)1234…售价y(元)8+0.316+0.624+0.932+1.2…那么y与x的关系式是()A.y=8x+0.3B.y=(8+0.3)x C.y=8+0.3x D.y=8+0.3+x 9.(2022春•榆次区期中)一支蜡烛长20厘米,点燃后每小时燃烧掉5厘米.下面能大致刻画出这支蜡烛点燃后剩下的长度h(厘米)与点燃时间t(时)的关系的图象是()A.B.C.D.二.多选题(共1小题)(多选)10.(2022•乳山市一模)甲、乙二人相约去科技创新大厦做核酸检测.如图表示的是他们在行走的过程中,离单位的距离y(单位:米)和行走的时间x(单位:分)间的)关系.下列说法正确的是(A.甲、乙二人第一次相遇,停留了10分钟B.甲先到达目的地C.甲停留10分钟之后提高了行走速度D.甲行走的平均速度比乙行走的平均速度快三.填空题(共6小题)11.(2020春•鱼台县期末)圆的面积S与半径R之间的关系是S=πR2.请指出公式S=πR2中常量是.12.(2019秋•潍坊期末)骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一变量关系中,因变量是.13.(2019春•雁塔区校级期中)我们知道,地面有一定的温度,高空也有一定的温度,且高空中的温度是随着距地面高度的变化而变化的,如果t表示某高空中的温度,h表示距地面的高度,则是自变量.14.(2022春•莲湖区期中)弹簧原长(不挂物体)15cm,弹簧总长L(cm)与物体质量x (kg)的关系如表所示:弹簧总长L(cm)1617181920重物质量x(kg)0.5 1.0 1.5 2.0 2.5当物体质量为5kg(在弹性限度内)时,弹簧的总长是cm.15.(2022春•霞浦县期中)某超市进了一批草莓,出售时销售量x与销售总价y的关系如下表:12345…销售量x(kg)销售总价y (元)12+0.524+136+1.548+2.060+2.5…请根据上表中的数据写出销售总价y (元)与销售量x (kg )之间的关系式:.16.(2022•兴化市一模)冬奥会每隔4年举办一次,如今年的年份为2022,举办的是第24届冬奥会.设第x 届冬奥会的年份为y ,则y 与x 之间的函数表达式为y =(x 、y均为正整数).四.解答题(共4小题)17.(2021春•和平区校级期中)如图所示,一个四棱柱的底面是一个边长为10cm 的正方形,它的高变化时,棱柱的体积也随着变化.①在这个变化中,自变量、因变量分别是、;②如果高为h (cm )时,体积为V (cm 3),则V 与h 的关系为;③当高为5cm 时,棱柱的体积是;④棱柱的高由1cm 变化到10cm 时,它的体积由变化到.18.(2013秋•霍邱县校级月考)齿轮每分钟120转,如果n 表示转数,t 表示转动时间.(1)用n 的代数式表示t ;(2)说出其中的变量与常量.19.被誉为“沙漠之舟”的骆驼,其体温随着气温的变化而变化,在这个变化中,有几个变量?自变量是什么20.(2022春•金牛区校级期中)在一次实验中,小强把一根弹簧的上端固定,在其下端悬挂物体,下面是测得的弹簧的长度y 与所挂物体的重量x 的一组对应值:所挂物重量x (kg )01234…弹簧长度y (cm )2022242628…(1)上述表格中的自变量是,因变量是;(2)当所挂物体的重量为4kg时,弹簧长为cm;不挂重物时,弹簧长为cm;(3)在一定范围内,写出弹簧长ycm与所挂重物xkg的关系?2022-2023学年北师大版七年级数学上《变量之间的关系》参考答案与试题解析一.选择题(共9小题)1.(2022春•雁峰区期中)在圆的周长计算公式C=2πR中,对于变量和常量的说法正确的是()A.2是常量,C,π,R是变量B.2,π是常量,C,R是变量C.2,C,π是常量,R是变量D.2,π,R是常量,C是变量【考点】常量与变量.【专题】函数及其图象;应用意识.【分析】常量就是在变化过程中不变的量,变量是指在变化过程中随时可以发生变化的量.【解答】解:在圆的周长计算公式C=2πR中,C和R是变量,2、π是常量,故选:B.【点评】此题主要考查了常量和变量,关键是掌握变量和常量的定义.2.(2022春•历城区期中)太阳能作为一种新型能源被广泛应用到实际生活中,在利用太阳能热水器加热的过程中,热水器里水的温度随着太阳光照射时间的变化而变化,这一变化过程中因变量是()A.热水器水的温度B.热水器的容积C.太阳光照射的时间D.太阳光的强弱【考点】常量与变量.【专题】函数及其图象;数据分析观念;应用意识.【分析】函数的定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一的值与它对应,那么称y是x的函数,x叫自变量.函数关系式中,某特定的数会随另一个(或另几个)会变动的数的变动而变动,就称为因变量.据此解答即可.【解答】解:根据函数的定义可知,水温是随着所晒时间的长短而变化,可知水的温度是因变量,所晒时间为自变量.故选:A.【点评】本题主要考查的是对函数的定义,解题的关键是根据函数的定义对自变量和因变量的认识和理解.3.(2022春•滦南县期中)刘师傅到加油站加油,如图是所用的加油机上的某一时刻数据显示牌,则其中的常量是()A.金额B.单价C.数量D.金额和数量【考点】常量与变量.【专题】函数及其图象;应用意识.【分析】根据常量与变量的定义即可得出答案.【解答】解:金额随数量的增加而增加,常量是单价,故选:B.【点评】本题考查了常量与变量,掌握在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量是解题的关键.4.(2022春•古田县期中)如表是研究弹簧长度与所挂物体质量关系的实验表格,则弹簧不挂物体时的长度为()12345所挂物体重量x(kg)1012141618弹簧长度y(cm)A.4cm B.6cm C.8cm D.10cm【考点】函数的表示方法.【专题】函数及其图象;应用意识.【分析】据题意求得该函数解析式为y=2x+8,即可求得此题结果.【解答】解:由题意可得,所挂重物每增加1kg,弹簧伸长2cm,∴该函数解析式为y=2x+8,∴当x=0时,y=2×0+8=8,∴弹簧不挂物体时的长度为8cm,故选:C.【点评】此题考查了运用函数解决实际问题的能力,关键是能根据题意求得对应函数解析式.5.(2022春•碑林区校级期末)小明一家自驾车到离家500km的某景点旅游,出发前将油箱加满油.下表记录了行驶路程x(km)与油箱余油量y(L)之间的部分数据:行驶路程x(km)050100150200…油箱余油量y(L)4541373329…下列说法不正确的是()A.该车的油箱容量为45LB.该车每行驶100km耗油8LC.油箱余油量y(L)与行驶路程x(km)之间的关系式为y=45﹣8xD.当小明一家到达景点时,油箱中剩余5L油【考点】函数关系式.【专题】函数及其图象;应用意识.【分析】通过表格给出的信息理解题意,可得此题答案.【解答】解:∵当x=0时y=45,∴该车的油箱容量为45L,∴选项A不符合题意;∵由表格可得该车每行驶100km耗油8L,∴选项B不符合题意;∵由题意可得油箱余油量y(L)与行驶路程x(km)之间的关系式为y=45﹣0.08x,∴选项C符合题意;∵由45﹣0.08×500=5(L),即当小明一家到达景点时,油箱中剩余5L油,∴选项D不符合题意;故选:C.【点评】此题考查了确定实际问题中的函数解析式的能力,关键是能准确理解题目中的数量关系,并能列式表达.6.(2022•常州)某城市市区人口x万人,市区绿地面积50万平方米,平均每人拥有绿地y 平方米,则y与x之间的函数表达式为()A.y=x+50B.y=50x C.y=D.y=【考点】函数关系式.【专题】函数及其图象;运算能力.【分析】根据题意列出函数关系式即可得出答案.【解答】解:由城市市区人口x万人,市区绿地面积50万平方米,则平均每人拥有绿地y=.故选:C.【点评】本题主要考查了函数关系式,根据题意列出函数关系式进行求解是解决本题的关键.7.(2022•广东)水中涟漪(圆形水波)不断扩大,记它的半径为r,则圆周长C与r的关系式为C=2πr.下列判断正确的是()A.2是变量B.π是变量C.r是变量D.C是常量【考点】常量与变量.【专题】函数及其图象;应用意识.【分析】根据变量与常量的定义进行求解即可得出答案.【解答】解:根据题意可得,在C=2πr中.2,π为常量,r是自变量,C是因变量.故选:C.【点评】本题主要考查了常量与变量,熟练掌握常量与变量的定义进行求解是解决本题的关键.8.(2022春•滕州市期中)滕州某布店新进了一批花布,卖出的数量x(米)与售价y(元)的关系如表:数量x(米)1234…售价y(元)8+0.316+0.624+0.932+1.2…那么y与x的关系式是()A.y=8x+0.3B.y=(8+0.3)x C.y=8+0.3x D.y=8+0.3+x【考点】函数关系式.【专题】一次函数及其应用;应用意识.【分析】根据表格可知布的数量(米)与售价(元)的关系为售价=8.3×数量.【解答】解:∵16+0.6=2(8+0.3);24+0.9=3(8+0.3);32+1.2=4(8+0.3),...∴y=(8+0.3)x;故选:B.【点评】本题考查了函数关系式,正确得出数字变化规律是解题的关键.9.(2022春•榆次区期中)一支蜡烛长20厘米,点燃后每小时燃烧掉5厘米.下面能大致刻画出这支蜡烛点燃后剩下的长度h(厘米)与点燃时间t(时)的关系的图象是()A.B.C.D.【考点】函数的图象.【专题】函数及其图象;应用意识.【分析】可以列出蜡烛点燃后,剩下的长度h与点燃时间t的函数关系式,利用函数的性质判断图象.【解答】解:设蜡烛点燃后剩下h厘米时,燃烧了t小时,则h与t的关系是为h=20﹣5t,即t越大,h越小,符合此条件的只有A.故选:A.【点评】本题主要考查了函数的图象,解答时应看清函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.二.多选题(共1小题)(多选)10.(2022•乳山市一模)甲、乙二人相约去科技创新大厦做核酸检测.如图表示的是他们在行走的过程中,离单位的距离y(单位:米)和行走的时间x(单位:分)间的关系.下列说法正确的是()A.甲、乙二人第一次相遇,停留了10分钟B.甲先到达目的地C.甲停留10分钟之后提高了行走速度D.甲行走的平均速度比乙行走的平均速度快【考点】函数的图象.【专题】函数及其图象;应用意识.【分析】根据函数图象中的数据得出路程、时间与速度,进而解答即可.【解答】解:由图象可知,甲、乙二人第一次相遇后,停留了20﹣10=10(分钟),故选项A说法正确;甲在35分时到达,乙在40分时到达,所以甲先到达的目的地,故选项B说法正确;甲在停留前的速度为:750÷10=75(米/分),停留后的速度为:(1500﹣750)÷(35﹣20)=50(米/分),所以甲在停留10分钟之后减慢了行走速度,故选项C说法错误;由图象可知,甲所走的路程比乙多,用时比乙少,所以甲行走的平均速度要比乙行走的平均速度快,故选项D说法正确;故选:ABD.【点评】本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.三.填空题(共6小题)11.(2020春•鱼台县期末)圆的面积S与半径R之间的关系是S=πR2.请指出公式S=πR2中常量是π.【考点】常量与变量.【专题】函数及其图象;应用意识.【分析】利用常量定义可得答案.【解答】解:公式S=πR2中常量是π,故答案为:π.【点评】此题主要考查了常量,关键是掌握在一个变化的过程中,数值始终不变的量称为常量.12.(2019秋•潍坊期末)骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一变量关系中,因变量是体温.【考点】常量与变量.【专题】函数及其图象;应用意识.【分析】因为骆驼的体温随时间的变化而变化,符合“对于一个变化过程中的两个量x 和y,对于每一个x的值,y都有唯一的值和它相对应”的函数定义,自变量是时间,因变量是体温.【解答】解:∵骆驼的体温随时间的变化而变化,∴自变量是时间,因变量是体温,故答案为:体温【点评】考查了函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D 中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数.13.(2019春•雁塔区校级期中)我们知道,地面有一定的温度,高空也有一定的温度,且高空中的温度是随着距地面高度的变化而变化的,如果t表示某高空中的温度,h表示距地面的高度,则h是自变量.【考点】常量与变量.【专题】函数及其图象;数感.【分析】常量就是在一个变化过程中,数值不发生变化的量,发生变化的量是变量,根据定义即可判断.【解答】解:∵高空中的温度t是随着距地面高度h的变化而变化的,∴自变量是h,因变量是t,故答案为:h.【点评】本题考查了常量与变量的定义,在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.14.(2022春•莲湖区期中)弹簧原长(不挂物体)15cm,弹簧总长L(cm)与物体质量x (kg)的关系如表所示:弹簧总长L(cm)1617181920重物质量x(kg)0.5 1.0 1.5 2.0 2.5当物体质量为5kg(在弹性限度内)时,弹簧的总长是25cm.【考点】函数的表示方法.【专题】函数及其图象;数感.【分析】观察表格发现,重物质量增加0.5kg,弹簧就伸长1cm,根据弹簧的总长=弹簧原长+伸长的长度即可得出答案.【解答】解:观察表格发现,重物质量增加0.5kg,弹簧就伸长1cm,∴当物体质量为5kg(在弹性限度内)时,弹簧的总长=15+=25(cm),故答案为:25.【点评】本题考查了函数的表示方法,观察表格发现,重物质量增加0.5kg,弹簧就伸长1cm是解题的关键.15.(2022春•霞浦县期中)某超市进了一批草莓,出售时销售量x与销售总价y的关系如下表:12345…销售量x(kg)12+0.524+136+1.548+2.060+2.5…销售总价y(元)请根据上表中的数据写出销售总价y(元)与销售量x(kg)之间的关系式:y=12.5x.【考点】函数关系式.【专题】函数及其图象;数感;应用意识.【分析】销售总价y是一个整数加一个小数的形式,通过观察发现分别是:12×1+0.5×1,12×2+0.5×2,12×3+0.5×3,……,从而得到销售总价y与销售量x之间的关系.【解答】解:观察表格即可得到:y=12.5x.故答案为:y=12.5x.【点评】本题考查观察表格规律求函数解析式问题,找出表格中的规律是解答此题的关键.16.(2022•兴化市一模)冬奥会每隔4年举办一次,如今年的年份为2022,举办的是第24届冬奥会.设第x届冬奥会的年份为y,则y与x之间的函数表达式为y=4x+1926(x、y均为正整数).【考点】函数关系式.【专题】一次函数及其应用;运算能力.【分析】根据题意设第x届冬奥会的年份为y,用待定系数法求函数关系式即可.【解答】解:设y与x的函数关系式为y=kx+b,根据题意,今年年份为2022,举办的是第24届冬奥会,可得:,解得,,则y与x之间的函数关系式为y=4x+1926.故答案为:y=4x+1926.【点评】本题考查了函数关系式,根据题意找出等量关系是解题的关键.四.解答题(共4小题)17.(2021春•和平区校级期中)如图所示,一个四棱柱的底面是一个边长为10cm的正方形,它的高变化时,棱柱的体积也随着变化.①在这个变化中,自变量、因变量分别是高、体积;②如果高为h(cm)时,体积为V(cm3),则V与h的关系为V=100h;③当高为5cm时,棱柱的体积是500cm3;④棱柱的高由1cm变化到10cm时,它的体积由100cm3变化到1000cm3.【考点】常量与变量;认识立体图形.【专题】函数及其图象;应用意识.【分析】①根据自变量、因变量的定义判断即可;②利用四棱柱体积公式即可写出;③利用V与h之间的关系计算即可;④利用V与h之间的关系计算即可.【解答】解:①∵四棱柱的高变化时,棱柱的体积也随着变化.∴变化中自变量为高,因变量为体积;②∵四棱柱体积=底面积×高,∴V=100h;③令h=5,则V=100×5=500(cm3);④当h=1时,V=100(cm3);当h=10时,V=1000(cm3).∴棱柱的高由1cm变化到10cm时,它的体积由100cm3变化到1000(cm3).故答案为:高、体积;V=100h;500cm3,100cm3,1000cm3.【点评】本题考查自变量、因变量、函数值、立体图形等,题目比较简单,代数时认真些,然后计算即可.18.(2013秋•霍邱县校级月考)齿轮每分钟120转,如果n表示转数,t表示转动时间.(1)用n的代数式表示t;(2)说出其中的变量与常量.【考点】常量与变量.【分析】(1)根据题意可得:转数=每分钟120转×时间;(2)根据变量和常量的定义:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量可得t、n是变量.【解答】解:(1)由题意得:120t=n,t=;(2)变量:t,n常量:120.【点评】此题主要考查了常量和变量的定义,关键是正确理解定义的意思.19.被誉为“沙漠之舟”的骆驼,其体温随着气温的变化而变化,在这个变化中,有几个变量?自变量是什么【考点】常量与变量.【专题】函数及其图象;应用意识.【分析】根据变量、自变量的定义即可得出答案.【解答】解:两个变量:骆驼的体温和气温,其中气温是自变量.【点评】本题考查了常量和变量,掌握自变量是主动发生变化的量是解题的关键.20.(2022春•金牛区校级期中)在一次实验中,小强把一根弹簧的上端固定,在其下端悬挂物体,下面是测得的弹簧的长度y与所挂物体的重量x的一组对应值:01234…所挂物重量x(kg)2022242628…弹簧长度y(cm)(1)上述表格中的自变量是所挂物重量,因变量是弹簧长度;(2)当所挂物体的重量为4kg时,弹簧长为28cm;不挂重物时,弹簧长为20 cm;(3)在一定范围内,写出弹簧长ycm与所挂重物xkg的关系?【考点】函数的表示方法;常量与变量.【专题】函数及其图象;应用意识.【分析】(1)根据自变量和因变量的定义进行求解即可得出答案;(2)根据表格对应数值即可得出答案;(3)根据表格可知,所挂重物每增加1kg,弹簧长度增加2cm,列式即可得出答案.【解答】解:(1)根据题意可得,上述表格中的自变量是所挂物重量,因变量是弹簧长度;故答案为:所挂物重量,弹簧长度;(2)当所挂物体的重量为4kg时,弹簧长为28cm;不挂重物时,弹簧长为20cm;故答案为:28,20;(3)根据表格可知,所挂重物每增加1kg,弹簧长度增加2cm,则y=2x+20.【点评】本题主要考查了函数的表示方法,常量与变量,熟练掌握函数的表示方法,常量与变量的定义进行求解是解决本题的关键.。
北师大版七年级下数学第三章《变量之间的关系》练习题1

《变量之间的关系》练习题一、选择题(每小题3分,共24分)1、2021年春节期间,许多在西安市的外地员工都响应政府号召留在西安过春节,滞留的小豪在西安给远在北京的妻儿打电话,电话费随着通话时间的变化而变化,在这个过程中,自变量和因变量分别是()。
A、小豪和妻儿B、小豪和电话费C、电话费和通话时间D、通话时间和电话费2、下列哪幅图可以大致刻画出苹果成熟后从树上下落过程中(落地前)的速度变化情况()。
3、汽车离开甲站10km后,以60k/h的速度匀速前进了th,则汽车离开甲站所走的路程s(km)与时间t (h)之间的关系式是()A、s=10+60tB、s=60tC、s=60t -10D、s=10-60t4、一个蓄水池有水50m3,打开放水闸门匀速放水,水池中的水量和放水时间的关系如下表,下面说法不正确的是()。
放水时间(min)1234……水池剩余水量(m3)48464442……A、放水时间是自变量,水池剩余水量是因变量B、每分钟放水2m3C、放水25min后,水池中的水全部放完D、放水10min后,水池中还有水28m35、张老师从甲镇去乙村,一开始沿公路乘车,后来沿小路步行到达乙村,下列图中,横轴表示从甲镇出发后的时间,纵轴表示张老师与甲镇的距离,则比较符合题意的图象是()。
6、如图,用每片长6cm的纸条,重叠1cm粘贴成一条纸带,纸带的长度y(cm)与纸片的张数x之间的关系式是()。
A、y=6x+1B、y=4x+1C、y=4x+2D、y=5x+17、如图(1),在长方形ABCD中,动点P从点A处出发,沿ABCD方向运动至点D处停止,设点P出发时的速度为每秒bcm,a秒后点P改变速度,以每秒1cm向点D运动,直到停止,图(2)是△APD的面积S(cm2)与时间x(s)的图象,则b的值是()。
8、一天李师傅骑车上班途中因车发生故障,修车耽误了一段时间后继续骑行,按时赶到了单位,如图所示的折线图描述了他上班途中整个过程的情景,下列四种说法:①李师傅上班的 单位距他家2000米;②李师傅路上耗时20分钟;③自行车发生故障时离家的距离为1000米;④李师傅修车用了15分钟。
(完整版)北师大版数学七年级下册变量之间的关系单元试题及答案(4套)

北师大版数学七年级下册变量之间的关系单元试题及答案(4套)北师大版数学七年级下册变量之间的关系单元试题及答案(1)一、选择题(每小题3分,共30分)1.已知变量x、y满足下面的关系,则x,y之间用关系式表示为()A. y=3xB. y=3C. y=xD. y=32.在用图象表示变量之间的关系时,下列说法最恰当的是()A.用水平方向的数轴上的点表示因变量B.用竖直方向的数轴上的点表示自变量C.用横轴上的点表示自变量D.用横轴或纵轴上的点表示自变量3. 在关系式y=3x+5中,下列说法:①x是自变量,y是因变量;②x的数值可以任意选择;③y是变量,它的值与x无关;④用关系式表示的不能用图象表示;⑤y与x的关系还可以用列表法和图象法表示,其中正确的是()A.①②⑤ B.①②④ C.①③⑤ D.①④⑤4. 从空中落下一个物体,它降落的速度随时间的变化而变化,即落地前速度随时间的增大而逐渐增大,这个问题中自变量是()A.物体 B.速度 C.时间 D.空气5. 如图,是反映两个变量关系的图,下列四个情境比较合适该图的是()A.一杯热水放在桌子上,它的水温与时间的关系B.一辆汽车从启动到匀速行驶,速度与时间的关系C.一架飞机从起飞到降落的速度与时间的关系D. 踢出足球的时间与速度的关系O6.如图,是广州市某一天内的气温变化图,根据图象,下列说法中错误的是()A.这一天中最高气温是26 ℃B.这一天中最高气温与最低气温的差为18 ℃C.这一天中2时至14时之间的气温在逐渐升高D.这一天中只有14时至24时之间的气温在逐渐降低7.变量y与x之间的关系式是y=12x2+1,当自变量x=2时,因变量y的值是()A.-2 B.-1 C.1 D.38.小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和上班时一致,那么他从单位到家门口需要的时间是()A.12分钟 B.15分钟C.25分钟 D.27分钟9.三军受命,我解放军各部队奋力抗战在救灾一线.现有甲、乙两支解放军小分队将救灾物资送往某重灾小镇,甲队先出发,从部队基地到该小镇只有唯一通道,且路程为24 km,如图是他们行走的路程与时间的图象,四位同学观察此图象得出有关信息,其中正确的个数是()....A .1 B .2 C .3 D .410.下面的图表是护士统计的一位病人一天的体温变化情况,通过图表,估计这个病人下午16:00时的体温是( ) OA .38.0 ℃B .39.1 ℃C .37.6 ℃D .38.6 ℃二、填空题(每小题3分,共24分)11. 长方形的面积为S ,则长a 和宽b 之间的关系为 ,当长一定时, 是常量, 是变量.12.如图,l 1反映了某公司的销售收入与销售量的关系,l 2反映了该公司产品的销售成本与销售量的关系,当该公司盈利(收入大于成本)时,销售量 .(1)小于3 t (2)大于3 t(3)小于4 t (4)大于4 t13.在“变量之间的关系”一章中,我们学习的“变量”是指自变量和因变量,而表达它们之间的关系通常有三种方法,这三种方法是指 、 和 . 第10题图 12345614.找出能反映下列两个变量间的关系图象,并将代号填在横线上.一辆匀速行驶的汽车,其速度与时间的关系.对应的图象是.第14题图15.变量y与x之间的对应关系如下表所示,则y与x之间的关系可表示为.x…1 1.5 2 3 4 …y…6 4 3 2 1.5 …16.某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图所示,那么乙播种机参与播种的天数是天.(1公顷=15亩)17. 如图所示的图象反映的过程是:小明从家去书店,又去学校取封信后马上回家,其中x表示时间,y表示小明离他家的距离,则小明从学校回家的平均速度为千米∕时.耗油量(升)18.某型号汽油的耗油量与相应金额的关系如图所示,那么这种汽油的单价是每升元.三、解答题(共46分)19.(6分)父亲告诉小明:“距离地面越远,温度越低,”并给小明出示了下面的表格.(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用h表示距离地面的高度,用t表示温度,那么随着h的变化,t是怎么变化的?(3)你知道距离地面6千米的高空温度是多少吗?20.(6分)下表是某公共电话亭打长途电话的几次收费记录:(2)如果用x表示时间,y表示电话费,那么随x的变化,y的变化趋势是什么?(3)丽丽打了5分钟电话,那么电话费需付多少元?21.(6分) 心理学家发现,学生对概念的接受能力y与提出概念所用时间x(单位:分)之间有如下关系(其中0≤x≤30).(2)根据表格中的数据,你认为提出概念所用时间为几分钟时,学生的接受能力最强?(3)从表格中可知,当提出概念所用时间x在什么范围内时,学生的接受能力逐步增强?当提出概念所用时间x在什么范围内时,学生的接受能力逐步降低?22. (6分)张爷爷晚饭以后外出散步,碰到老邻居,交谈了一会儿,返回途中在读报栏前看了一会儿报,下图是据此情景画出的图象,s(m)表示张爷爷离开家的距离,t(min)表示外出散步的时间.请你回答下面的问题:(1)张爷爷是在什么地方碰到老邻居的?交谈了多长时间?(2)读报栏大约离家多少路程?(3)图中反映了哪些变量之间的关系?其中哪个是自变量?哪个是因变量?23.(8分)在如图所示的三个图象中,有两个图象能近似地刻画如下a,b两个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回家里找到了作业本再去学校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.(1)情境a,b所对应的图象分别是、(填写序号);(2)请你为剩下的图象写出一个合适的情境.24.(8分)如图,反映了小明从家到超市的时间与距离之间关系的一幅图.(1)图中反映了哪两个变量之间的关系?超市离家多远?(2)小明到达超市用了多少时间?小明仅往返(不考虑中间的等待时间)花了多少时间?(3)小明出发后20分钟到30分钟内可能在做什么?(4)小明从家到超市的平均速度是多少?返回时的平均速度是多少?25. (6分)某县从2007年开始实施退耕还林,每年退耕还林的面积如下表:时间/年2007 2008 2009 2010 2011 2012面积/亩350 380 420 500 600 720(2)从表中可知,随时间的变化,退耕还林面积的变化趋势是什么?(3)从2007年到2012年底,该县已完成退耕还林面积多少亩?(1公顷=15亩)参考答案1. C解析:观察表中数据知=,故x,y之间用关系式表示为y=3 x .2. C解析:用水平方向的横轴上的点表示自变量,用竖直方向的纵轴上的点表示因变量.故选C.3. A解析:①x是自变量,y是因变量,正确;②x的数值可以任意选择,正确;③y是变量,它的值与x无关,错误,因为y随x的变化而变化;④用关系式表示的不能用图象表示,错误;⑤y与x的关系还可以用列表法和图象法表示,正确.故选A.4. C解析:因为速度随时间的变化而变化,故时间是自变量,速度是因变量,故本题选C.5. B 解析:题中给的图象变化情况为先是y随x的增大而增大,后随着x的增加y不变.A.热水的水温先是随时间的增加而下降,后不变,所以不符合.B.汽车启动的过程中,速度是随着时间的增长从0增大的,而匀速后,速度随时间的增加是不变的,故符合题意.C.飞机起飞的过程中速度是随着时间的增加而增大的,而降落的过程中,速度是随着时间的增加而减少的,所以不符合题意.D.踢出的足球的速度是随着时间的增加而减小的,所以不符合题意.故选B.6.D解析:0时至2时之间和14时至24时之间的气温在逐渐降低,剩下时段气温逐渐上升,A、B、C的说法都是正确的,故选D.7. D解析:当 x=2时,y=12x2+1=2+1=3.故选D.8. B 解析:先算出平路、上坡路和下坡路的速度分别为13千米/分、15千米/分和12千米/分,∴他从单位到家门口需要的时间是2÷15+1÷12+1÷13=15(分钟).故选B.9. D 解析:由图可知:甲队、乙队的起始时间分别为0 h和2 h,因此甲队比乙队早出发2 h;在3 h-4 h这段时间内,甲队的图象与x轴平行,因此在行进过程中,甲队停顿了1 h;两个图象有两个交点:①甲行驶4.5 h、乙行驶2.5 h时,两图象相交,因此乙队出发2.5 h后追上甲队;②甲队行驶6 h、乙队行驶4 h后,两图象相交,此时两者同时到达目的地.在整个行进过程中,乙队用的时间为4 ,行驶的路程为24 km,因此乙队的平均速度为6 km/h.这四个同学的结论都正确,故选D.10.D解析:由图表可知,这个病人下午14:00~18:00时的体温差是39.1-38.0=1.1(℃),平均每小时体温增加1.1÷4≈0.3(℃),因此估计这个病人下午16:00时的体温是38.0+0.3×2=38.6(℃).故选D.11.a;a;S,b 解析:由题意,得a,在该关系式中,当长一定时,a是常量,S,b是变量.12.(4)解析:盈利时收入大于成本,即l1>l2,在图上应是l1在上面,在交点右边的部分满足条件,故填(4).13.表格法;关系式法;图象法解析:表示两个变量之间的关系时,通常有三种方法:表格法、关系式法、图象法.14.a解析:匀速时速度和时间之间的关系不变,故选a.15. y=6x解析:∵x与y的乘积是定值6,∴xy=6,即y=6x,所以y与x之间的关系可表示为y=6 x .16. 4 解析:600÷150=4(天).17. 6 解析:平均速度为6÷1=6(千米/时).18. 7.79 解析:单价为779÷100=7.79(元/升),故填7.79.19.解:(1)反映了温度和距离地面高度之间的关系,高度是自变量,温度是因变量.(2)由表可知,每上升1千米,温度降低6 ℃,可得关系式为y=20-6x.(3)将=6代入=206得=2036=16,即距离地面6千米的高空温度是16 ℃.20.解:(1)反映的是时间和电话费两个变量之间的关系,时间是自变量,电话费是因变量;(2)根据表格中的数据得出:每增加1分钟,电话费增加0.6元;(3)由表格中的数据直接得出:丽丽打了5分钟电话,电话费需付3元.21. 解:(1)反映了提出概念所用时间x和对概念的接受能力y两个变量之间的关系;其中x是自变量,y是因变量.(2)提出概念所用时间为13分钟时,学生的接受能力最强.(3)当x在2分钟至13分钟内时,学生的接受能力逐步增强;当x在13分钟至20分钟内时,学生的接受能力逐步降低.22.解:由图象可知:(1)张爷爷是在距家600 的地方碰到老邻居的,交谈了25-15=10(min);(2)读报栏离家300 ;(3)反映了离开家的距离与外出散步的时间之间的关系,时间t是自变量,离开家的距离是因变量.23.解:(1)∵情境a:小芳离开家不久,即离家一段路程,此时①②③都符合,发现把作业本忘在家里,于是返回家里找到了作业本,即又返回家,离家的距离是0,又去学校,即离家越来越远,此时只有③符合,∴只有③符合情境a;∵情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进,即离家越来越远,且没有停留,∴只有①符合,(2)情境是小芳离开家不久,休息了一会儿,又走回了家.24. 解:根据图形可知:(1)图中所反映的是时间与距离之间的关系;超市离家900米.(2)小明到达超市用了20分钟;返回用了15分钟,往返共用了35分钟.(3)小明出发后20分钟到30分钟可能在超市购物或休息.(4)小明到超市的平均速度是900÷20=45(米/分),返回时的平均速度是900÷15=60(米/分).25.解:(1)反映了时间和退耕还林的面积之间的关系,其中时间是自变量,退耕还林的面积是因变量.(2)由表中数据可知退耕还林面积的变化趋势是逐年增加.(3)由题意得,从2007年到2012年底,该县已完成退耕还林面积350+380+420+500+600+720=2 970(亩).北师大版数学七年级下册变量之间的关系单元试题及答案(2)一、选择题(每小题3分,共30分)1.下面说法中正确的是 ( ) A .两个变量间的关系只能用关系式表示 B .图象不能直观的表示两个变量间的数量关系 C .借助表格可以表示出因变量随自变量的变化情况 D .以上说法都不对2.如果一盒圆珠笔有12支,售价18元,用y (元)表示圆珠笔的售价,x 表示圆珠笔的支数,那么y 与x 之间的关系应该是 ( ) A .y=12x B.y=18x C.y=23x D.y=32x 3. 一辆汽车由韶关匀速驶往广州,下列图象中大致能反映汽车距离广州的路程s (千米)和行驶时间t (小时)的关系的是 ( )4.在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为1232++=t t s ,则当4t =时,该物体所经过的路程为 ( ) A.28米 B.48米 C .57米 D .88米5.在某次试验中,测得两个变量m 和v 之间的4组对应数据如下表:A .22v m =-B .21v m =-C . 33v m =-D .1v m =+6.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉.当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点….用S 1,S 2分别表示乌龟和兔子所行的路程,t 为时间,则下列图象中与故事情节相吻合的是 ( )7.正常人的体温一般在C 037左右,但一天中的不同时刻不尽相同,如图1反映了一天24小时内小红的体温变化情况,下列说法错误的是 ( )A.清晨5时体温最低B.下午5时体温最高C.这一天小红体温T C 0的范围是36.5≤T ≤37.5D.从5时至24时,小红体温一直是升高的8.小王利用计算机设计了一个程序,输入和输出的数据如下表: 输入 (1)2345… 输出…1225310417526…那么,当输入数据8时,输出的数据是 ( ) A.861 B.863 C.865D.867 9. 如图2,图象(折线OEFPMN )描述了某汽车在行驶过程中速度与时间的关系,下列说法中错误的是 ( ) A.第3分时汽车的速度是40千米/时 B.第12分时汽车的速度是0千米/时36.51712 5 0 T/()C 0t/h24 37.5图1图2C.从第3分到第6分,汽车行驶了120千米D.从第9分到第12分,汽车的速度从60千米/时减少到0千米/时10. 向高为10厘米的容器中注水,注满为止,若注水量V (厘米3)与水深h(厘米)之间的关系的图象大致如图3所示,则这个容器是下列四个图中的 ( )二、填空题(每小题3分,共30分)11.对于圆的周长公式c=2 r ,其中自变量是____,因变量是____. 12.在关系式y=5x+8中,当y=120时,x 的值是 .13.一蜡烛高20 厘米,点燃后平均每小时燃掉4厘米,则蜡烛点燃后剩余的高度h(厘米)与燃烧时间t(时)之间的关系式是__________(0≤t ≤5).14.等腰三角形的周长为12厘米,底边长为y 厘米,腰长为x 厘米. 则y 与x 的之间的关系式是 .15.如图4所示的关系图象反映的过程是:小明从家去书店,又去学校取封信后马上回家,其中x 表示时间,y 表示小明离他家的距离,则小明从学校回家的平均速度为 千米∕小时.16.小亮帮母亲预算家庭4月份电费开支情况,下表是小亮家4月初连续8天每天早上电表显示的读数. 日期︳日 1 2 3 4 5 6 7 8 电表读数︳度2124283339424649(1)表格中反映的变量是______,自变量是______,因变量是______. (2)估计小亮家4月份的用电量是______,若每度电是0.49元,估计他家4月份应交的电费是______.图3图417.如图5所示,是护士统计一位病人的体温变化图,这位病人中午12时的体温约为 .18.根据图6中的程序,当输入x =3时,输出的结果y = .19. 小明早晨从家骑车到学校,先上坡后下坡,行程情况如图7所示,若返回时上、 下坡的速度仍保持不变,那么小明从学校骑车回家用的时间是_______分 .20. 一根弹簧原长13厘米,挂物体质量不得超过16千克,并且每挂1千克就伸长0.5厘米,则当挂物体质量为10千克,弹簧长度为________厘米,挂物体X (千克)与弹簧长度y(厘米)的关系式为_______.(不考虑x 的取值范围)三、解答题(第21题6分,第22题7分,共13分)21.(6分)某校办工厂现在年产值是15万元,计划以后每年增加2万元. (1)写出年产值y (万元)与年数x 之间的关系式.(2)用表格表示当x 从0变化到6(每次增加1)y 的对应值.时间/分18 363696路程/百米图7(3)求5年后的年产值.22.(7分)星期天,小明与小刚骑自行车去距家50千米的某地旅游,匀速行驶1.5小时的时候,其中一辆自行车出故障,因此二人在自行车修理点修车,用了半个小时,然后以原速继续前行,行驶1小时到达目的地.请在右面的图8中,画出符合他们行驶的路程S(千米)与行驶时间t(时)之间的图象.图8四、本题满分8分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章《变量之间的关系》水平测试
一、选一选,看完四个选项后再做决定呀!(每小题3分,共30分)
1.李老师骑车外出办事,离校不久便接到学校到他返校的紧急电话,李老师急忙赶回学校.下面四个图象中,描述李老师与学校距离的图象是( ) 2.已知变量x ,y 满足下面的关系
则x ,y 之间用关系式表示为( )
A.y =
x 3 B.y =-3
x C.y =-x
3
D.y =
3
x 3.某同学从学校走回家,在路上遇到两个同学,一块儿去文化宫玩了会儿,然后回家,下列象能刻画这位同学所剩路程与时间的变化关系的是(
)
4.地表以下的岩层温度y 随着所处深度x 的变化而变化,在某个地点y 与x 的关系可以由公式
2035+=x y 来表示,则y 随x 的增大而( )
A 、增大
B 、减小
C 、不变
D 、以上答案都不对
5.某校办工厂今年前5个月生产某种产品总量(件)与时间(月)的关系如图1所示,则对于该厂生产这种产品的说法正确的是( )
A.1月至3月生产总量逐月增加,4,5两月生产总量逐月减少 B.1月至3月生产总量逐月增加,4,5两月均产总量与3月持平 C.1月至3月生产总量逐月增加,4,5两月均停止生产 D.1月至3月生产总量不变,4,5两月均停止生产 6.如图2是反映两个变量关系的图,下列的四个情境比较合适该图的是( ) A.一杯热水放在桌子上,它的水温与时间的关系
A. B. C. D.
图2
B.一辆汽车从起动到匀速行驶,速度与时间的关系 C.一架飞机从起飞到降落的速度与时晨的关系 D.踢出的足球的速度与时间的关系
7.如图3,射线l 甲,l 乙分别表示甲、乙两名运动员在自行车比赛中所走路程与时间的关系,则图中显示的他们行进的速度关系是( )
A.甲比乙快 B.乙比甲快 C.甲、乙同速 D.不一定
8.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是( )
A.太阳光强弱
B.水的温度
C.所晒时间
D.热水器 9.长方形的周长为24厘米,其中一边为x (其中0>x ),面积为y 平方厘米,则这样的长方形中y 与x
的关系可以写为( )
A 、2
x y = B 、()2
12x y -= C 、()x x y ⋅-=12 D 、()x y -=122
10如果没盒圆珠笔有12支,售价18元,用y (元)表示圆珠笔的售价,x 表示圆珠笔的支数,那么y 与x 之间的关系应该是( ) (A )y=12x (B )y=18x (C )y=
23x (D )y=32
x 二、填一填,要相信自己的能力!(每小题3分,共30分)
1.某种储蓄的月利率是0.2%,存入100元本金后,则本息和y (元)与所存月数x 之间的关系式为____(不考虑利息税).
2.如果一个三角形的底边固定,高发生变化时,面积也随之发生改变.现已知底边长为10,则高从3变化到10时,三角形的面积变化范围是____.
3.汽车开始行驶时,油箱中有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间x (小时)的关系式为____,该汽车最多可行驶____小时.
4.某公司销售部门发现,该公司的销售收入随销售量的变化而变化,其中 是自变量, 是因变量。
5.地面温度为15 ºC ,如果高度每升高1千米,气温下降6 ºC ,则高度h(千米)与气温 t(ºC)之间的关系式为 。
6.汽车以60千米/时速度匀速行驶,随着时间t
间的关系式为 。
7.小明和小强进行百米赛跑,小明比小强跑得快,如果
两人同时起跑,小明肯定赢,如图4所示,现在小明让小强先跑 米,直线 表示小明的路程与时间的
关系,大约 秒时,小明追上了小强,小强在这次赛
跑中的速度是 。
8.小雨拿5元钱去邮局买面值为80分的邮票,小雨买邮票后所剩钱数y (元)与买邮票的枚数x (枚)之间的关系式 为
9.拖拉机工作时,油箱中的余油量Q(升)与工作时间t(时)的关系式为406
t=时,
=-.当4
Q t
Q=_________,从关系式可知道这台拖拉机最多可工作_________小时.
10.随着我国人口增长速度的减慢,小学入学儿童数量有所减少.下表中的数据近似地呈现了某地区入学儿童人数的变化趋势
(1)上表中_____是自变量,_____是因变量.
(2)你预计该地区从_____年起入学儿童的人数不超过1 000人.
三、做一做,要注意认真审题呀!(本大题共38分)
1.(8分)某校办工厂现在年产值是15万元,计划以后每年增加2万元.
(1)写出年产值y(万元)与年数x之间的关系式.
(2)用表格表示当x从0变化到6(每次增加1)y的对应值.
(3)求5年后的年产值.
2.(10分)如图5,反映了小明从家到超市的时间与距离之间关系的一幅图.
(1)图中反映了哪两个变量之间的关系?超市离家多远?
(2)小明到达超市用了多少时间?小明往返花了多少时间?
(3)小明离家出发后20分钟到30分钟内可以在做什么?
(4)小明从家到超市时的平均速度是多少?返回时的平均速度是多少?
3.(10分)如图6,它表示甲乙两人从同一个地点出发后的情况。
到十点时,甲大约走了13千米。
根据图象回答:
(1)甲是几点钟出发?
(2)乙是几点钟出发,到十点时,他大约走了多少千米?
(3)到十点为止,哪个人的速度快?
(4)两人最终在几点钟相遇?
(5)你能将图象中得到信息,编个故事吗?
4.(10分)在一次实验中,小明把一根弹簧的上端固定.在其下端悬挂物体,下面是测得的弹簧的长度y
(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量? (2)当所挂物体重量为3千克时,弹簧多长?不挂重物时呢? (3)若所挂重物为7千克时(在允许范围内),你能说出此时的弹簧长度吗? 四、拓广探索!(本大题共22分) 1.(10分)小明在暑期社会实距活动中,以每千克0.8元的价格从批发市场购进若干千克瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图7所示.请你根据图象提供的信息完成以下问题:
(
1)求降价前销售金额y (元)与售出西瓜x (千克)之间的关系式;
(2)小明从批发市场共购进多少千克西瓜? (3)小明这次卖瓜赚子多少钱?
2.(12分某移动通信公司开设了两种通信业务,“全球通”:使用时首先缴50元月租费,然后每通话1分钟,自付话费0.4元;“动感地带”:不缴月租费,每通话1分钟,付话费0.6元(本题的通话均指市内通话),若一个月通话x 分钟,两种方式的费用分别为1y 元和2y 元. (1)写出1y 、2y 与x 之间的关系式;
(2)一个月内通话多少分钟,两种移动通讯费用相同?
(3)某人估计一个月内通话300分钟,应选择哪种移动通信合算些?)
图7
参考答案:
一、1~10 CCBAC BACD C .
二、1、1000.2y x =+;2、三角形的面积由15变为50;3、405y x =-,8; 4、销售量,销售收入;5、h=15-6t ;6、s=60t ;7、10,l 1,20;8、y=500-80x
9、16;
203
10、 (1)年份,入学儿童人数;(2)2008; 三、1、(1)y=15+2x ;(2)略;(3)25; 2、(1)时间与距离之间的关系;900米; (2)20分钟;35分钟; (3)休息;
(4)45米/分钟;60米/分钟; 3、(1)8点;(2)9点;13米;(3)乙;(4)10点;(5)答案不惟一,略; 4、(1)弹簧长度与所挂物体质量之间的关系;其中所挂物体质量是自变量,弹簧长度是因变量; (2)24厘米;18厘米; (3)32厘米. 四、1.(1) 1.6y x =;(2)50千克;(3)36元. 2.(1)12500.4,0.6y x y x =+=;
(2)由1y =2y ,即500.40.6x x +=,解得x=250,当每个月通话250分钟时,两种移动通讯费用相同. (3)当x=300时,1y =170,2y =180,1y <2y ,所以使用“全球通”合算.。