薄壁圆筒强度计算公式
内压薄壁壳体强度计算

内压薄壁壳体强度计算 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】第三章、 3—1内压薄壁壳体强度计算目的要求:使学生掌握内压圆筒内压球形壳体的强度计算,以及各类厚度的相互关系。
重点难点:掌握由第一强度理论推出的内压圆筒,内压球形壳体的强度计算公式。
第三章 内压薄壁容皿本章的任务就是在回转薄壁壳体应力分析的基础上,推导出内压薄壁容皿强度计公式。
本章的压力容皿设计计算公式,各种参数制造要求以及检验标准均与GB150-1998《钢制压力容皿》保持一致。
第一节 压内薄壁壳体强度计算一、内压圆筒为了保证圆筒受压后不破裂,[根据第一强度理论]应使筒体上最大应力,即环向应力2σ小于等于材料在设计温度下的许用应力[]t σ用公式表达:2[]2t P Dσσδ=≤ ,其中P-设计压力。
1)中径0()2i D D +此外还应考虑到,筒体在焊接的过程中,对焊金属组织的影响以及焊接缺陷(夹渣、气孔、未焊透等)影响缝焊的强度(使整本强度降低),所以将钢板的许用应力乘以一个小于1的焊接接头系数,以弥补焊接可能出现的强度削弱,故 2[]2t P D σσδ=≤:[]2t P Dσϕδ≤ 此外,工艺计算时通常以i D 做为基本尺寸,故将i D D δ=+代入上式: 则()[]2t i P D δσϕδ+≤ 可解出δ,同时根据GB150-1998规定,确定厚度时的压力用计算压力c p 代替。
最终内压薄壁圆筒体的计算厚度δ:2[]C itCP D P δσϕ=- 适用:0.4[]t C P σ≤ 考虑到介质时皿壁的腐蚀,确定钢板厚度时,再加上腐蚀裕量: 2C dδδ+=——圆筒的设计厚度再考虑到钢板供货时的厚度偏差,将设计厚度加上厚度负偏差,再向上圆整三规格厚度,这样得到名义厚度。
筒体强度计算公式,除了可以决定承压筒体所需的最小壁厚外,还可用该公式确定设计温度下圆筒的最大允许工作压力,对容皿进行强度校核;可以计算其设计温度下计算应力,判断指定压力下筒体的安全。
内压薄壁圆筒与封头的强度设计

S
PcD0
2 t
Pc
S
PcD0
2 t
C2
t Pc(D0 Se) t
2Se
Pw 2 t Se
D0 Se
Pc 计算压力,MPa Di-圆筒或球壳的内径,mm Do 圆筒或球壳的外径,mm 〔 p w〕圆筒或球壳的最大允许工作压力,MPa; S 圆筒或球壳的计算厚度,mm(习惯上将圆筒的厚度称
第三节 内压薄壁圆筒与封头的强度设计
在压力容器的设计中,一般都是根据
工艺的要求确定其公称直径。强度设计的任
务是选择合适的材料,然后根据给定的工程
直径以及设计压力和设计温度,设计出合适
的厚度,以保证设备安全可靠地运行。
关于弹性失效的设计准则
设计压力容器时,确定容器壁内允许应力的限度
(即容器判废的标准)有不同的理论依据和准则。对于
S
PcDi
4 t
Pc
(4-12)
S
PcDi
4 t
Pc
C2
(4-12a)
t Pc(Di Se) t
4Se
(4-13)
即上述球形容器计算公Pw式 的4适Di用t S范eSe围为p<0.6
(4-14)
〔б〕t ¢
根据式(3-6)。可以得到对已有设备进行强度校 核和确定最大允许工作压力的计算公式分别为:
(3-7)
(3-8)
t Pc(Dc Se) t
2Se
Pw 2 t Se
Di Se
采用无缝钢管作圆筒体时,其公称直径 为钢管的外径。将Di=D0-S代入 中,并考虑焊缝因素¢ ,可以得到以外径为 基准的公式:
❖〔б〕t —圆筒或球壳材料在设计温度下的许用应力,M Pa; ❖б t —设计温度下圆筒或球壳的计算应力,M Pa ❖¢-焊接接头系数; ❖C2 -腐蚀裕量,m m; ❖C1-钢板厚度负偏差,m m ❖C—厚度附加量,m m,C= C1 + C2
第四章内压薄壁圆筒与封头的强度设计1

① 根据应力状态确定主应力; ② 确定材料的许用应力。 对承受均匀内压的薄壁容器,其主应力为:
1 2 m
pD 2S pD 4S
3 r 0
1 )第一强度理论(最大主应力理论)及相应的强度条 件
第一强度理论认为在三向应力中,若最大应力小于许用应力, 则安全。 其强度条件为:
S pDi (m m) t 2.3 p pDi C2 (m m) t 2.3 p
Sd
所以对已有设备进行强度校验和确定最大允许工作压力的计 算公式分别为:
pDi Se t ( MPa) 2Se
2 S s p ( MPa) Di Se
(1)液压试验 (2)气压试验 (3)气密试验
3、压力试验时的应力校核
在压力试验时,容器壁内所产生的最大应力不得超过所用材 料在实验温度下屈服点的90%(液压试验)或80%(气压试验)。 液压实验时:
pr Di Se T 0.9 s 2Se
气压实验时:
pr Di Se T 0.8 s 2Se
V 当
1 2 2 2 1 2 2 3 3 1 2
V
适用性: 第一强度理论适用于脆性材料; 第三、第四强度理论适用于塑性材料。
第二节
内压薄壁圆筒的强度计算
一、强度计算公式 1)圆柱筒体
由薄膜应力理论可知,圆柱筒体上任一点处薄膜应力如下:
① 根据薄膜理论进行应力分析,确定薄膜应力状态下的主 应力; ② 根据弹性失效的设计准则,应用强度理论确定应力的强 度判据;
③ 对封头,考虑到薄膜应力的变化和边缘应力的影响,按 壳体中的应力状况在公式中引进应力增强系数。 ④ 根据应力强度判据,考虑腐蚀等实际因素导出具体的计 算公式。
化工设备机械基础:第四章 内压薄壁圆筒与封头的强度设计

上一内容 下一内容 回主目录
返回
2020/12/14
4.1强度设计的基本知识
4.1.2强度理论及其相应的强度条件
压力容器零部件中各点的受力大多数是二向应力状态或三向应
力状态。预建立强度条件必须解决:(1)根据应力状态确定主 应力,(2)确定材料的许用应力。以圆筒形容器作例:
m
pD ;
4
pD
2
主应力为: 1
在内压容器设计中,一般都是根据工艺要求确定其公 称直径。强度设计的任务是选择合适的材料,然后根 据给定的公称直径以及设计压力(计算压力)和设计 温度,设计出合适的厚度,以保证设备安全可靠运行
上一内容 下一内容 回主目录
返回
2020/12/14
第四章 内压薄壁圆筒与封头的强度设计
内压薄壁圆筒和封头的强度设计公式推导过程如下: ①根据薄膜理论进行应力分析,确定薄膜应力状态下 的主应力; ②根据弹性失效的设计准则,应用强度理论确定应力 的强度判据; ③对于封头,考虑到薄膜应力的变化和边缘应力的影 响,按壳体中的应力状况在公式中引进应力增强系数 ④根据应力强度判据,考虑腐蚀等实际因素导出具体 的计算公式。
)
,
t n
ns
nn
,
t D
nD
(2)安全系数的取法
安全系数选择包括:(1)计算方法的准确性,可靠性和受
力分析的精确程度;(2)材料的质量、焊接检验等制造技术
水平;(3)容器的工作条件,如压力、温度和温压波动及容
器在生产中的重要性和危险性等
安全系数是不断发展变化的参数,科技发展,安全系数变小 常温下,碳钢和低合金钢nb=3.0,ns=1.6。(表4-6)
上一内容 下一内容 回主目录
附1 薄壁容器设计

2 p
C1 C2
37
内压薄壁容器设计计算步骤
1. 选材:Q235-A、Q235-B、20R、16MnR、不锈钢等
2. 选取参数:P、t、[σ]t、φ、σs、C1、C2 3. 计算筒体壁厚: n
2 p
t
pDi
C1 C2
4. 筒体水压试验应力校核:
35
椭圆形封头设计
组成:长短轴分别为Di和2h的半椭球和高度为h0的 短圆筒(直边)
36
标准椭圆形封头
定义Di /2h=2的椭圆封头为标准椭圆封头。
标准椭圆封头壁厚公式为
n
2 0.5 p
t
pDi
C1 C2
(8-8)
上式中各参数取法同筒体。 筒体: n
pDi
39
1.6 2600 n 0.8 1.0 14.2 2 170 1.0 1.6
圆整取δn=16mm厚的16MnR钢板制作罐体。 2.封头壁厚设计
采用标准椭圆形封头。φ =1.0 设计壁厚δ n按(8-8)式计算:
n
2 0.5 p 1.6 2600 1.8 14.1 2 1701.0 0.5 1.6
6~7 8~25 26~30 32~34 36~40 42~50 52~60 0.6 0.8 0.9 1 1.1 1.2 1.3
20
⑵腐蚀裕量C2
C2应根据各种钢材在不同介质中的腐蚀速度和容器设计寿 命确定。 C2=nλ n:设计寿命, λ :年腐蚀率 塔类、反应器类容器设计寿命 n一般按20年考虑,换热器 壳体、管箱及一般容器按10年考虑。 ①腐蚀速度λ<0.05mm/a(包括大气腐蚀)时:碳素钢和低合 金钢单面腐蚀C2=1mm,双面腐蚀取C2=2mm; ②当腐蚀速度λ>0.05mm/a时,单面腐蚀取C2=2mm,双 面腐蚀取C2=4mm。
化工设备设计基础第8章内压薄壁圆筒与封头的强度设计

四、压力试验及其强度校验
3.压力试验时的强度校核
压力试验时,容器壁内的最大应力不得超过所用材料在试验 温度下屈服点的90%(液压试验)或80%(气压试验)。
T
pT
Di
2Se
Se
0.9
s
液压试验
T
pT
Di
2Se
【注意】设计压力的确定:
1.容器上装安全阀时:取P≥1.05Pw~1.1Pw 2.单个容器无安全泄放装置:P=1.0~1.1Pw 3.外压容器:取不小于在正常操作工况下可能产生的内外压差
1.3计算压力Pc
在相应的设计温度下用以确定元件厚度的压力,包括液柱静压力, 当液柱静压力小于5%设计压力时可忽略不计。
5分钟,然后对所有焊缝和连接部位进行初次检查;合格后继续升压到规 定试验压力的50%,其后按每级为规定试验压力的10%的级差逐渐升压 到试验压力,保持10分钟后,然后再降到试验压力的87%,保持足够时 间并同时进行检查。
2.3气密试验
容器须经液压试验合格后,方可进行气密试验。 首先缓慢升压至试验压力保持10分钟,然后降至设计压力,同时进行检
⑤ 液压试验完毕后,应将液体排尽并用压缩空气将内部吹干。
四、压力试验及其强度校验
2.压力试验的要求与试验方法
2.2气压试验
气压试验适用场合。 试验介质要求:干燥、洁净的空气、氮气或其他惰性气体,试验气体温
度一般应不低于15℃。 试验程序是:缓慢升压至规定试验压力的10%,且不超过0.05MPa,保持
二、设计参数的确定
2. 设计温度
设计温度是指容器正常工作情况下,设定的元件金属温度 (沿元件金属截面温度平均值)。设计温度是选择材料及 确定材料许用应力时的一个基本设计参数。
内压薄壁圆筒与封头的强度设计

设计压力p:设定的容器顶部的最高压力---设计载荷。
取值方法:
(1)容器上装有安全阀
取不低于安全阀开启压力 : p ≤(1.05~1.1)pw
系数取决于弹簧起跳压力 。
23
(2)容器内有爆炸性介质,安装有防爆膜时:
防 爆 膜 装 置 示 意 图
取 设计压力为爆破片设计爆破压力加制造范围上限。 P93 表4-3,表4-4。
11
当
当1 1
当 21(23)
当 3 13
当 41 2(12)2(23)2(31)2
在大多数应力状态下,脆性材料将发生脆性断裂.因而应选用第一强度理论; 而在大多数应力状态下,塑性材料将发生屈服和剪断.故应选用第三强度理论 或第四强度理论.但材料的破坏形式不仅取决于材料的力学行为,而且与所处 的应力状态,温度和加载速度有关.实验表明,塑性材料在一定的条件下低温
( 4 5
2)现有容器的最大允许工作压力如何?
p w 2 D i tf ee (MPa) ( 4 6)
式中e——有效壁厚, e=圆整后的壁厚(n)-C1-C2 。
19
2、内压球形壳体
pD
1 2 4
公式的适用范围为
pc 0.6[]tf
pcDi
4tf
13
第四强度理论
(能量理论)
当 IV 1 2[ (12)2(23)2(31)2] 122212 2p.D 3
强度条件
IV 当
pD[] 2.3
适用于 塑性材料
第二强度理论(最大变形理论)与实际相差较大,目前很少采用。
压力容器材料都是塑性材料,应采用三、四强度理论, GB150-98
n b n s t t t
内压薄壁圆筒和球壳的强度设计

极限应力的选取与结构的使 用条件和失效准则有关 极限应力可以是 t t t b、 s ( 0.2 )、 st ( 0.2 )、 D、 n
16
常温容器
b s 0.2 =min{ , }
nb ns
中温容器
=min{
t
t b
nb
,
t s
t 0.2
第九章
内压薄壁圆筒和球壳设计
教学重点:
内压薄壁圆筒的厚度计算
教学难点:
厚度的概念和设计参数的确定
1
第一节 概述
一、压力容器工艺设计的任务: 根据工艺的要求确定其内直径,设计压力、设计
温度、处理的介质等工艺指标。
二、压力容器强度设计的任务:
根据给定的内直径、设计压力、设计温度以及介 质腐蚀性等工艺条件,设计计算出合适的容器厚度, 以保证新设备能在规定的使用寿命内安全可靠地运 行。
注:5mm为不锈钢常用厚度。
21
三、容器的厚度和最小厚度
1、厚度的定义 计 算 厚 度 设 计 厚 度 名 义 厚 度 有 效 厚 度 毛 坯 厚 度
d
C1
n
e
C2
C C1 C 2
圆整值 加工减薄量
图9-2 壁厚的概念
22
2、最小厚度 min 设计压力较低的容器计算厚度很薄。
26
(2)采用石油蒸馏产品进行液压试验时,试验温度应低于石 油产品的闪点或沸点。
(3)试验温度应低于液体沸点温度,对新钢种的试验应高于
材料无塑性转变温度。
(4)碳素钢、16MnR和正火的15MnVR钢制容器液压试验时,液 体温度不得低于5℃,其它低合金钢制容器(不包括低温容器) 液压试验时,液体温度不低于15 ℃。如果由于板厚等因素造 成材料无塑性转变温度升高,还要相应地提高试验液体温度。 (5)液压试验完毕后,应将液体排尽并用压缩空气将内部吹 干。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PD
2[呗一P
+C
环向应力
Pa2
c 9b2 - a2
(1 b2
轴向应力
Pa2
7Z=b2- a2
压力容器相关知识
一、压力容器的概念
同时满足以下三个条件的为压力容器,否则为常压容器。
1、最高工作压力P:9.8x104Pa < P w 9.8X 106Pa,不包括液体静压力;
2、容积V>25L,且P X V> 1960X 104L Pa;
3、介质:为气体,液化气体或最高工作温度高于标准沸点的液体。
二、强度计算公式
1、受内压的薄壁圆筒
当K=1.1〜1.2,压力容器筒体可按薄壁圆筒进行强度计算,认为筒体为二向应力状态,且各受力面应力均匀分布,径向应力(T r=0,环向应力(T t=PD/4s,(Tz= PD/2s, 最大主应力(7 1 = PD/2s,根据第一强度理论,筒体壁厚理论计算公式,
PD
2[可一P
考虑实际因素,
式中,圆筒的壁厚(包括壁厚附加量),伽;
D —圆筒内径,伽;
P —设计压力,伽;
[7 ]—材料的许用拉应力,值为7 s/n, MPa;©—焊缝系数,0.6〜1.0 ;
C —壁厚附加量,伽。
2、受内压P的厚壁圆筒
①K> 1.2 ,压力容器筒体按厚壁容器进行强度计算,筒体处于三向应力状态, 且各受力面应力非均匀分布(轴向应力除外)。
2 2
径向应力7 r= 2P J(1-b T)
b - a r
式中,a—筒体内半径,伽;b—筒体外半径,伽;
②承受内压的厚壁圆筒应力最大的危险点在内壁,内壁处三个主应力分别为:
K2十1
(y1=7e= 2 P
K -1
环向应力 (T e =—
2
(1 + 0 .2 2 2 b - a r Pb 2 经向应力 PP 2
CT Z = 一 2s
环向应力
(T 3= (y r =-P
第一强度理论推导处如下设计公式
K 1
y 1= 2 --- P 三[y ]
K 2 -1 由第三强度理论推导出如下设计公式
由第四强度理论推导出如下设计公式:
,3K 2
K -1
式中,K = a/b
3、受外压P 的厚壁圆筒
2 2
径向应力 y r =— --- 2 (1「%)
b -a r
4、一般形状回转壳体的应力计算
式中,P —内压力,MPa
P 1—所求应力点回转体曲面的第一主曲率半径,伽;
(纬) P 2—所求应力点回转体曲面的第一主曲率半径,伽;
(经)
S —壳体壁厚,伽。
5、封头设计 ①受内压的标准椭圆形封头,顶点应力最大, y z = y t =P • a/s (椭圆长轴),由 第一强度条件,再考虑到焊缝削弱及材料腐蚀等影响,则标准椭圆形封头的壁厚 计算公式为:
s 号 + C
2㈢ © — 0.5P
式中,s —封头壁厚,伽;
P —设计压力,MPa;
D —圭寸头内径,伽;
[ y 厂一设计温度下的材料许用应力,MPa
6 ‘2
©—焊缝系数;
径向应力 2 .尸。
-一 3(3」)PR
t 2
C —壁厚附加量,伽。
②受内压的平盖设计
周边固支,最大径向应力在周边,周边的应力,
3
PR 2 er r =
z — 4 t 2
式中,t —圆板厚度,伽;
R —圆板半径,伽;
卩一材料的波松比。
周边铰支,最大应力发生在圆板中心处,中心应力表达式为,
圆形平盖的设计公式为(根据第一强度理论)
式中,t —平盖厚度,伽;
D —计算直径,伽;
K —结构特征系数,查表;
c —壁厚附加量,伽。
环向应力
4 t 2
t =D
[:];C。