proe运动仿真
ProE 运动仿真参考文档

连接轴设置
图 形 显 示
13
6. 实例演练
三、建立运动模型
牛头刨床主运动机构 附件1,2
插齿机主运动机构 14
四、运动副
1. 凸轮
直接点击按钮 或下拉式菜单“Mechanism”→ 凸轮, 可从弹出的对话框中对凸轮机构进行新建、编辑、删除 的操作,大部分Mechainsm所创建的对象都使用此种方 式予以管理)。
⑧ 轴承
点对齐
具有3个旋转自由度和一个平移自由
度,相当于“球”连接的基础上再加一
个平移自由度,使用“点与轴线对齐”
来限制其他两个自由度。
8
三、建立运动模型
1. 运动连接
连接类型
刚性(Rigid) 销钉(Pin) 滑动杆(Slider) 圆柱(Cylinder) 平面(Plannar) 球(Ball) 焊接(Weld) 轴承(Bearing)
5
三、建立运动模型
1. 运动连接
① 刚性 6个自由度被完全限制。
② 销钉 仅有一个旋转自由度,使用“轴对齐”和 “平移”两个约束来限制其他5个自由度 。
③ 滑动杆 仅有一个沿轴向的平移自由度,使用“轴对 齐”和“旋转”两个约束限制其他5个自由度。
轴对齐 平移
旋转
轴对齐
6
三、建立运动模型
1. 运动连接
通过点击下拉式菜单“Mechanism”→ 质量属性, 对质量属性进行设置,或直接按下快捷按钮 。
“定义属性”有三个选项:“缺省”、“密度” 和“质量属性”。一般只需要对“密度”进行设置即 可;如果不指定相关设置,系统则会指派“缺省”的 设置。
PROE运动仿真分析

PROE运动仿真分析PROE(Pro/ENGINEER)是由美国Parametric TechnologyCorporation(PTC)公司所开发的一套3D CAD软件系统。
它是一款功能强大的工程设计与制造软件,广泛应用于机械工程、汽车工程等领域。
在PROE中进行运动仿真分析可以帮助工程师们更好地了解和优化他们的设计方案。
运动仿真分析是一种通过模拟机械系统在给定条件下的运动来评估其性能和运行情况的方法。
通过对设备或产品的运动进行分析与仿真,可以预测其运动特性、动力学行为和相应的应力应变等情况。
这对于设计师来说非常重要,因为它可以在实际制造之前发现问题并进行相应的调整,从而节省时间和成本。
在PROE中进行运动仿真分析有几个基本步骤。
首先,我们需要创建一个装配模型,也就是包含了所有相关零部件的模型。
然后,我们需要为每个零件定义其运动关系和约束条件。
这些条件可以是固定的,也可以是变化的。
接下来,我们需要选择适当的运动学分析工具,例如正向动力学和逆向动力学。
运动学分析允许我们确定系统的运动规律和轨迹。
最后,我们需要对系统的受力和应力进行分析,以确定零件的强度和稳定性。
PROE中的运动仿真分析可以帮助工程师在设计过程中解决各种问题。
以下是一些典型的应用案例:1.碰撞检测:PROE可以模拟装配过程中各个零部件之间的碰撞情况。
这可以帮助设计师排除可能导致装配错误或故障的问题。
2.动力学分析:通过对装配模型进行运动仿真分析,可以确定各个零部件的运动规律和速度变化。
这对于设计运动机构和机械设备非常重要。
3.振动分析:PROE可以帮助评估系统的振动特性,包括自由振动频率和振幅。
这对于减少振动和噪音问题非常有用。
4.受力和应力分析:工程师可以使用PROE进行受力和应力分析,以确定系统中可能存在的弱点和潜在的破坏部位。
这对于优化设计方案和提高产品强度至关重要。
5.运动优化:PROE可以帮助工程师优化机械系统的运动性能,例如减少摩擦、优化速度和精度等。
ProE运动仿真设计经典收藏

小节目录 | 章目录
5
运动仿真设计基础——运动仿真环境界面介绍
运动仿真界面介绍
模型特征树
绘图平面
提示信息区
小节目录 | 章目录
运动副 运动环境
6
运动机构仿真绘制流程
运动机构仿真绘制一般流程
对产品进行运动仿真,能够生动形象地进行产品的运动模拟,使仿真运动更加清晰地展现 在设计人员和用户面前,对于企业的设计宣传有非常重要的意义。要实现运动仿真效果,必 须对组件进行多个流程的操作,下面介绍创建仿真运动的基本流程。
32
运动仿真器工具
运动副
定义齿轮与齿条的方法:
① ②
④
③ 拾取齿轮轴
拾取运动轴 ⑦
⑤ ⑥
小节目录 | 章目录
⑧
33
运动仿真器工具
创建运动环境
通过设置运动环境,可以在产品的模拟运动中,增加重力、执行电动机、弹簧、阻尼 器、力/扭矩、质量属性等因素,以满足不同的模拟要求,具体可以选择相应的选项完成。
小节目录 | 章目录
20
运动仿真器工具
建立运动模型
单击运动仿真界面中“定义伺服电动机”按钮或者选择菜单栏中的“插入”|“伺服电 动机”选项,系统弹出“伺服电动机定义”对话框,如下图所示,在对话框中,系统默认 时把伺服电动机命名为ServoMotor+阿拉伯数字,可以根据需要更改伺服电动机的名称。 伺服电动机分为两种,分别介如下:
19
运动仿真器工具
建立运动模型
在Pro/E4.0中,单靠设置元件与组件的约束集方式,使元件在组件中保留部分自由度, 元件在组件中仍然无法移动或旋转,必须对该连接组件的某些元件赋予动力,这样元件才 能够做仿真运动。在机械操作环境中,伺服电动机能够为机构提供“动力”,而使用运动 副可实现机构中两构件互做相对运动的活动联接。 伺服电动机
基于PROE六自由度机械手参数化建模及运动仿真概论

基于PROE六自由度机械手参数化建模及运动仿真概论基于PRO/E(Pro/ENGINEER)六自由度机械手参数化建模及运动仿真(Introduction to Parametric Modeling and Motion Simulation of a Six Degree-of-Freedom Robot Arm Based on PRO/E)是一种基于 Pro/E 软件的机械手参数化建模方法和运动仿真技术的概念介绍。
机械手是一种能够执行预定动作的自动机器人系统,在工业领域被广泛应用。
参数化建模和运动仿真是机械手设计与验证的重要工具,可以提高设计效率和减少实验成本。
首先,本文介绍了 Pro/E 软件的基本原理和特点。
Pro/E 是一种三维 CAD(计算机辅助设计)软件,具有强大的参数化建模和运动仿真能力。
它可以通过调整参数来改变模型的形状和尺寸,以便满足不同的设计要求。
Pro/E 还提供了强大的运动仿真功能,可以模拟机械手在不同工况下的运动特性。
接下来,本文详细介绍了机械手的六个自由度,即机械手可以在三维空间中进行平移和转动的六个方向。
机械手的自由度决定了它的灵活性和工作范围。
参数化建模是在 Pro/E 软件中定义机械手的结构和参数,以便能够根据实际需求对机械手进行定制化设计。
然后,本文提出了一种基于 Pro/E 软件的机械手参数化建模方法。
通过定义机械手的几何尺寸、关节角度和连杆长度等参数,可以实现对机械手结构和工作范围的快速调整。
参数化建模可以大大加快机械手的设计过程,减少人工调整的工作量。
最后,本文介绍了基于 Pro/E 软件的机械手运动仿真技术。
通过给定关节的运动规律和工作环境的约束条件,可以模拟机械手在不同运动状态下的姿态和运动轨迹。
运动仿真可以帮助设计师评估机械手的性能和可靠性,并进行优化设计。
总结起来,基于 Pro/E 的六自由度机械手参数化建模和运动仿真技术是一种高效、准确和可靠的机械手设计方法。
ProE 运动仿真

四、运动环境
2. 执行电动机
使用执行电动机可以为运动机构施加载荷。直接点击按钮 或下拉式菜单 “Mechanism”→ 执行电动机 → 新建,进行定义。和伺服电动机类似,执行电动机也需要连接 轴以施加作用,模分为8种类型。
四、运动环境
3. 弹簧
通过弹簧可以在运动机构中产生线性弹力。直接点击按钮 “Mechanism”→ 弹簧 → 新建,进行定义。 或下拉式菜单
四、运动副
3. 齿轮
实例演练
附件 5
四、运动环境
1. 重力
通过重力选项,可以对重力加速度的数值及方向进行设置。指令为直接省情况下,重力并未被启用,分析过程中欲使组件模拟真实的重力环境,需要在分析定 义对话框的外部载荷选项卡中勾选“启用重力”选项。
三、建立运动模型
1. 运动连接
自由度 连接类型 平移 刚性(Rigid) 销钉(Pin) 滑动杆(Slider) 圆柱(Cylinder) 平面(Plannar) 球(Ball) 焊接(Weld) 轴承(Bearing) 0 0 1 1 2 0 0 1 旋转 0 1 0 1 1 3 0 3 完全 轴对齐;平面或点对齐 轴对齐;平面或点对齐 轴对齐 平面匹配/对齐 点与点对齐 坐标系对齐 点与边或轴线对齐 约束
三、建立运动模型
1. 运动连接
⑥球 具有3个旋转自由度,使用“点对齐”约束来限制3个平移自由度。 ⑦ 焊接 6个自由度被完全限制,使用“坐标系(重合)”约束所有自由度。 ⑧ 轴承 具有3个旋转自由度和一个平移自由 度,相当于“球”连接的基础上再加一 个平移自由度,使用“点与轴线对齐” 来限制其他两个自由度。
1. 凸轮
实例演练:槽轮机构
附件3
四、运动副
2. 槽
第 1讲 PROE运动仿真基础-四连杆机构.

五、分析 1、类型:运动学; 2、终止时间:1--3 sec; 3、桢频:100-200; 4、若有“快照” ,点“快照”,“运行”。 六、回放 1、播放; 2、生成视频:在“播放”的“动画”窗口内,点“捕获”,输入“路 径”、文件名。 七、分析结果(测量):分析测量 1、新建“测量点”:测量点1(摇杆的位置)、测量点2(摇杆的速度)、 测量点3(摇杆的加速度); 2、按ctrl选多个测量点、复选“分别绘制”、选“结果集”中仿真分析名 称; 3、点左上角 “绘制”图标,再点“文件”——“输出EXCEL文件”。 八、绘制曲线 轨迹曲线——纸零件(选装配图或机架)——选取点——选“结果集”— —确定
(采用普通装配的方式进行约束)
1、刚性:采用普 通装配的方式进行 约束;(自动) 2、焊接:采用坐 标系进行约束; (缺省)
(垫片)
SVA
四连杆机构
一、装配 1、机架(左):缺省方式; 2、机架(右):前面、底面对齐,右面相距120; 3、曲柄、连杆:销钉; 4、摇杆:两个销钉(在“放置”页左下点“新设置”, 添加第2销钉); “应用”——“机构”,进入仿真界面 二、设置运动副(凸轮副、齿轮副) 三、设置电机 1、电机位置(类型):拾取“销钉运动副”; 2、电机大小(轮廓):速度、A为360 deg/sec。 四、调整:手形“拖动”图标,进行调整,“快照”确定当 前位置。
参照下图,设计一万向连接传动机构,结构、尺寸 均自己设计确定,并装配、运动仿真、分析。
缺省专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料sva专业资料专业资料专业资料四连杆机构一装配1机架左
基于proe的机构运动仿真

软件学习曲线
ProE软件功能强大但学习曲线较陡峭,需要 用户花费一定时间来熟悉和掌握。
未来展望
06
基于ProE的机构运动仿真实践建议
提高仿真的精度和准确性
建立精确的模型
在建模过程中,应充分考虑机构的实际尺寸 、材料属性、装配关系等因素,确保模型与 实际机构的一致性。
优化仿真参数
根据机构运动特性和仿真需求,合理设置仿真参数 ,如时间步长、摩擦系数等,以提高仿真的精度和 准确性。
通过各种渠道宣传推广ProE软件 在机构运动仿真领域的应用,提 高软件的市场知名度和占有率。
THANKS
感谢观看
度和实用性。
02
机构运动仿真概述
机构运动仿真定义
机构运动仿真是一种利用计算机技术对机械机构进行模拟分析的方法,通过建立机构的数学模型,模拟机构的运动轨迹、受 力情况等特性,为机构的设计、优化和性能分析提供依据。
基于ProE的机构运动仿真是指使用ProE软件进行机构运动仿真的过程,ProE是一款广泛应用的CAD/CAE/CAM一体化软件, 具有强大的机构运动仿真功能。
CAM功能
支持数控加工编程,实现自动 化加工。
ProE软件应用领域
机械设计
汽车制造
航空航天
家电行业
用于设计各种机械零件、 机构和装置,如减速器、
连杆机构等。
用于汽车零部件的设计、 分析和优化,提高生产
效率和产品质量。
用于飞机和航天器的零 部件设计、分析和优化,
确保安全可靠。
用于家电产品的设计和 分析,提高产品的美观
机构运动仿真的重要性
提高设计效率
通过机构运动仿真,可以在设计 阶段预测和分析机构的运动性能, 避免后期修改和优化,大大提高 设计效率。
ProE机构运动仿真设计及分析

活塞速度的测量结果,也可导出为EXCEL和文本格式
测量特征也可加入到运动分析中,进行结果查看,图形输出,如测量连杆大头最外边 与缸体裙部的距离。
应将测量保存为一个特征,然后才能进行测量分析
回放:轨迹曲线
轨迹曲线用来表示机构中某一元素相对于另一零件的运动。分为“轨迹曲线”与“凸轮 合成曲线”两种: “轨迹曲线”表示机构中某一点或顶点相对于另一零件的运动。 “凸轮合成曲线”表示机构中某曲线或边相对于另一零件的运动。 菜单:插入--->轨迹曲线
序号
1 2 3 4 5 6 7
8 9 10 11
名称
自由度 旋转 平移
0
0
1
0
0
1
1
1
1
2
说明
使用一个或多个基本约束,交元件与组件连接在一起,连接后,元件与组件成为一个 主体,相互间没有自由度。 由一个轴对齐约束加一个与轴垂直的平移约束组成。元件可以绕轴旋转,不能平移。 例如,活塞销,齿轮、曲轴等。 由一个轴对齐约束与一个旋转约束组成,元件可沿轴平移,但不能旋转。如活塞。 由一个轴对齐约束组成,元件可绕轴旋转同时可沿轴向平移。如挺柱、气门等。
定义并约束相对运动的主体之间的关系。
自由度(Degrees 允许的机械系统运动。连接的作用是约束主体之间的相对运动,减少系统可能的
of Freedom)
总自由度。
执行电动机( Force Motor)
作用于旋转轴或平移轴上(引起运动)的力。
机构(Joints)
特定的连接类型(例如销钉机构、滑块机构和球机构)
选取运动轴,曲柄连杆机构选 择曲轴的销钉连接图标 反向按钮改变旋向
定义轮廓,“规范”为位置时模选 项定义为斜坡曲轴旋转一圈360度, 图形中可以查看定义的轮廓,横坐 标为时间
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
proe5.0装配体运动仿真基础与重定义主体基础是在运动分析中被设定为不参与运动的主体。
创建新组件时,装配(或创建)的第一个元件自动成为基础。
元件使用约束连接(“元件放置”窗口中“放置”页面)与基础发生关系,则此元件也成为基础的一部份。
如果机构不能以预期的方式移动,或者因两个零件在同一主体中而不能创建连接,就可以使用“重定义主体”来确认主体之间的约束关系及删除某些约束。
进入“机构”模块后,“编辑”—>“重定义主体”进入主体重定义窗口,选定一个主体,将在窗口里显示这个主体所受到的约束(仅约束连接及“刚体”接头所用的约束)。
可以选定一个约束,将其删除。
如果删除所有约束,元件将被封装。
、、特殊连接:凸轮连接凸轮连接,就是用凸轮的轮廓去控制从动件的运动规律。
PROE里的凸轮连接,使用的是平面凸轮。
但为了形象,创建凸轮后,都会让凸轮显示出一定的厚度(深度)。
凸轮连接只需要指定两个主体上的各一个(或一组)曲面或曲线就可以了。
定义窗口里的“凸轮1”“凸轮2”分别是两个主体中任何一个,并非从动件就是“凸轮2”。
如果选择曲面,可将“自动选取”复选框勾上,这样,系统将自动把与所选曲面的邻接曲面选中,如果不用“自动选取”,需要选多个相邻面时要按住Ctrl。
如果选择曲线/边,“自动选取”是无效的。
如果所选边是直边或基准曲线,则还要指定工作平面(即所定义的二维平面凸轮在哪一个平面上)。
凸轮一般是从动件沿凸轮件的表面运动,在PROE里定义凸轮时,还要确定运动的实际接触面。
选取了曲面或曲线后,将会出线一个箭头,这个箭头指示出所选曲面或曲线的法向,箭头指向哪侧,也就是运动时接触点将在哪侧。
如果系统指示出的方向与想定义的方向不同,可反向。
关于“启用升离”,打开这个选项,凸轮运转时,从动件可离开主动件,不使用此选项时,从动件始终与主动件接触。
启用升离后才能定义“恢复系数”,即“启用升离”复选框下方的那个“e”。
因为是二维凸轮,只要确定了凸轮轮廓和工作平面,这个凸轮的形状与位置也就算定义完整了。
为了形象,系统会给这个二维凸轮显示出一个厚度(即深度)。
通常我们可不必去修改它,使用“自动”就可以了。
也可自已定义这个显示深度,但对分析结果没有影响。
需要注意:A.所选曲面只能是单向弯曲曲面(如拉伸曲面),不能是多向弯曲曲面(如旋转出来的鼓形曲面)。
B.所选曲面或曲线中,可以有平面和直边,但应避免在两个主体上同时出现。
C.系统不会自动处理曲面(曲线)中的尖角/拐点/不连续,如果存在这样的问题,应在定义凸轮前适当处理。
凸轮可定义“升离”、“恢复系数”与“磨擦”。
特殊连接:齿轮连接齿轮连接用来控制两个旋转轴之间的速度关系。
在PROE中齿轮连接分为标准齿轮和齿轮齿条两种类型。
标准齿轮需定义两个齿轮,齿轮齿条需定义一个小齿轮和一个齿条。
一个齿轮(或齿条)由两个主体和这两个主体之间的一个旋转轴构成。
因此,在定义齿轮前,需先定义含有旋转轴的接头连接(如销钉)。
定义齿轮时,只需选定由接头连接定义出来的与齿轮本体相关的那个旋转轴即可,系统自动将产生这根轴的两个主体设定为“齿轮”(或“小齿轮”、“齿条”)和“托架”,“托架”一般就是用来安装齿轮的主体,它一般是静止的,如果系统选反了,可用“反向”按钮将齿轮与托架主体交换。
“齿轮2”或“齿条”所用轴的旋转方向是可以变更的,点定义窗口里“齿轮2”轴右侧的反向按钮就可以,点中后画面会出现一个很粗的箭头指示此轴旋转的正向。
速比定义:在“齿轮副定义”窗口的“齿轮1”、“齿轮2”、“小齿轮”页面里,都有一个输入节圆直径的地方,可以在定义齿轮时将齿轮的实际节圆直径输入到这里。
在“属性”页面里,“齿轮比”(“齿条比”)有两种选择,一是“节圆直径”,一是“用户定义的”。
选择“节圆直径”时,D1、D2由系统自动根据前两个页面里的数值计算出来,不可改动。
选择“用户定义的”时,D1、D2需要输入,此情况下,齿轮速度比由此处输入的D1、D2确定,前两个页面里输入的节圆直径不起作用。
速度比为节圆直径比的倒数,即:齿轮1速度/齿轮2速度=齿轮2节圆直径/齿轮1节圆直径=D2/D1。
齿条比为齿轮转一周时齿条平移的距离,齿条比选择“节圆直径”时,其数值由系统根据小齿轮的节圆数值计算出来,不可改动,选择“用户定义的”时,其数值需要输入,此情况下,小齿轮定义页面里输入的节圆直径不起作用。
图标位置:定义齿轮后,每一个齿轮都有一个图标,以显示这里定义了一个齿轮,一条虚线把两个图标的中心连起来。
默认情况下,齿轮图标在所选连接轴的零点,图标位置也可自定义,点选一个点,图标将平移到那个点所在平面上。
图标的位置只是一视觉效果,不会对分析产生影响。
要注意的事项:A.PROE里的齿轮连接,只需要指定一个旋转轴和节圆参数就可以了。
因此,齿轮的具体形状可以不用做出来,即使是两个圆柱,也可以在它们之间定义一个齿轮连接。
B.两个齿轮应使用公共的托架主体,如果没有公共的托架主体,分析时系统将创建一个不可见的内部主体作为公共托架主体,此主体的质量等于最小主体质量的千分之一。
并且在运行与力相关的分析(动态、力平衡、静态)时,会提示指出没有公共托架主体特殊连接:槽连接槽连接是两个主体之间的一个点----曲线连接。
从动件上的一个点,始终在主动件上的一根曲线(3D)上运动。
槽连接只使两个主体按所指定的要求运动,不检查两个主体之间是否干涉,点和曲线甚至可以是零件实体以外的基准点和基准曲线,当然也可以在实体内部。
曲线可以是任何一组相邻曲线(即要求相连,不必相切),可以是基准曲线,也可以是实体/曲面的边,可以是开放的,也可以是封闭的。
点可以是任何一个基准点或顶点,但只能是零件中的,组件中的点不能用于槽连接。
运动时,从动件上的点始终在主动件上的指定曲线上,如果曲线是一条(组)开放曲线,则此曲线(曲线组)的首末两个端点为槽的默认端点,如果是一条(组)封闭曲线,则默认无端点。
如果希望运动区间不是在整条曲线(曲线组)上,而只是在其中的一段上,则需要自定义槽的端点。
对于开放曲线(曲线组),只要指定新的端点就可以了,对于封闭曲线,指定两个新端点后,系统自动选取被两端点分割出的两段曲线中的一段为运行区间,如果不是所需要的,点“反向”选取另一段。
定义槽端点可选取基准点、顶点、曲线/边/曲面,如果选的是曲线/边/曲面,则槽端点为槽曲线与所选曲线/边/曲面的交点。
槽连接可定义“恢复系数”与“磨擦”。
拖动与快照拖动,是在允许的范围内移动机械。
快照,对机械的某一特殊状态的记录。
可以使用拖动调整机构中各零件的具体位置,初步检查机构的装配与运动情况,并可将其保存为快照,快照可用于后续的分析定义中,也可用于绘制工程图。
“机构”----“拖动”,进入“拖动”窗口,此窗口具有一个工具栏,工具栏左第一个按钮为“保存快照”,即将当前屏幕上的状态保存为一个快照,左第二个按钮为“点拖动”,即点取机构上的一个点,移动鼠标以改变元件的位置,左第三个按钮为“主体拖动”,选取一个主体,移动鼠标以改变元件的位置。
右侧两个按钮为“撤消”和“恢复”,每一次拖动,系统都会记录入内存,使用此两按钮,可查看已做的各次拖动的结果。
“快照”页和“约束”页,分别有一个列表,显示当前已经定义的快照和为当前拖动定义的临时约束。
快照列表左侧有一列工具按钮,第一个为显示当前快照,即将屏幕显示刷新为选定快照的内容;第二个为从其它快照中把某些元件的位置提取入选定快照;第三个为刷新选定快照,即将选定快照的内容更新为屏幕上的状态;第四个为绘图可用,使选定快照可被当做分解状态使用,从而在绘图中使用,这是一个开关型按钮,当快照可用于绘图时,列表中的快照名前会有一个图标;第五个是删除选定快照。
约束列表显示已为当前拖动所定义的临时约束,这些临时约束只用于当前拖动操作,以进一步限制拖动时各主体之间的相对运动。
“高级拖动选项”提供了一组工具,用于精确限定拖动时被拖动点或主体的运动。
恢复系数与磨擦即碰撞系数,其物理定义为两物体碰撞后的相对速度(V2-V1)与碰撞前的相对速度(V10-V20)的比值,即e=(V2-V1)/(V10-V20),它的值介于0到1之间。
典型的恢复系数可从工程书籍或实际经验中得到。
恢复系数取决于材料属性、主体几何以及碰撞速度等因素。
在机构中应用恢复系数,是在刚体计算中模拟非刚性属性的一种方法。
完全弹性碰撞的恢复系数为1。
完全非弹性碰撞的恢复系数为0。
橡皮球的恢复系数相对较高。
而湿泥土块的恢复系数值非常接近0。
摩擦阻碍凸轮或槽的运动。
摩擦系数取决于接触材料的类型以及实验条件。
可在物理或工程书籍中查找各种典型的摩擦系数表。
需要分别指定静磨擦系数和动磨擦系数,且静磨擦系数应大于动磨擦系数。
要在力平衡分析中计算凸轮滑动测量,必须指定凸轮连接的磨擦系数。
恢复系数与磨擦可用于凸轮连接和槽连接,也可用于连接轴设置。
连接轴设置“机构”—“连接轴设置”,可为由接头连接(如销钉)产生的连接轴定义一些具体的属性,包括:连接轴的位置,连接轴的零参照,连接轴的再生位置(用于重复组件分析),连接轴的运动限制、恢复系数及磨擦。
进入此窗口后,需先选取一连接轴,然后再对此轴进行各种设置。
“连接轴位置”,这里显示的是连接轴的两个零参照间的位置或距离,未改变时,显示的是当前屏幕上这个位置时的值。
如果自己输入一个数值并回车(对于旋转轴,此数值为-180到180,如超出此范围或超出“属性”里设置的限制范围,系统将自动转换成可接受的范围内的值),屏幕上的组件也将临时改变位置以反映当前修改,如果按了“生成零点”,则将当前位置设定为连接轴零点,其它测量都从此零点位置开始。
点了“生成零点”后,“指定参照”将无效。
如果选了“指定参照”,则“生成零点”无效。
“指定参照”可为连接轴的两个主体分别选定零位置的几何参照。
选取“再生值”,可让组件在非连接轴零点位置再生,这个用于重复组件分析中。
“启用限制”,设置接头运动时的最大最小运动范围及恢复系数。
对于旋转轴,“最小”值为-180到180之间且小于最大值,“最大”值为-180到180之间且大于最小值。
恢复系数用来模拟当连接轴运动到限制位置时的冲击力。
“启用磨擦”,设置接头的两个主体之间相互运动的阻力。
需指定静磨擦系数和动磨擦系数,对于旋转轴,还应指定一个大于零的接触半径值,它用于定义磨擦扭矩作用于连接轴上的半径。
静磨擦系数应大于动磨擦系数。
在任何连接轴上,都不能创建多个连接轴零点。
不能为球接头定义连接轴设置。
另外,不能编辑属于多旋转DOF 接头(如6DOF 或某个一般连接)的旋转连接轴的连接轴设置。
--------------------------------------------------------------------------------连接轴设置:零点参照的要求定义旋转轴的零点时,要注意以下事项:点-点零点参照:以垂直于旋转轴的方向从每一点绘制向量。