中考数学中二次函数压轴题四边形
中考数学四边形二次函数压轴题

1.小明一直对四边形很感兴趣,在矩形ABCD中,E是AC上任意一点,连接DE,作DE⊥EF,交AB于点F.请你跟着他一起解决下列问题
(1)如图①,若AB=BC,则DE,EF有什么数量关系?请给出证明.
(2)如图②,若∠CAB=30°,则DE,EF又有什么数量关系?请给出证明.(3)由(1)、(2)这两种特殊情况,小明提出问题:如果在矩形ABCD中,B C=mAB,那DE,EF有什么数量关系?请给出证明.
2、如图,已知二次函数y=ax2+bx+c(a≠0),经过A(-1,0),B(4,0),C(0,2)三点;
(1)求二次函数解析式;
(2)点D是二次函数图像上一点,且满足∠BDA=∠CAO,求D点坐标;
(3)点P是二次函数图像上位于第一象限上一个动点,连接PA分别交BC,y轴与点E,F,若△PEB,△CEF的面积分别为S1,S2,求S1-S2的最大值;。
2022年中考数学复习之二次函数压轴题40个问题

中考复习之二次函数压轴40个问题主要题型:1.二次函数之面积问题2.二次函数之特殊三角形的存在性问题3.二次函数之特殊四边形的存在性问题4.二次函数之线段最值问题5.二次函数之角度问题题目:如图,抛物线与x轴交于A、B两点,与y轴交于点C,OB=OC=3,OA=1,顶点为D第1问.如图,抛物线与x轴交于A、B两点,与y轴交于点C,OB=OC=3,OA=1,顶点为D.求二次函数的解析式;解:设:设二次函数解为y=a(x+1)(x-3)将(0,3)代入得a=-1,故二次函数解析式为y=-x2+2x +3第2问.如图,抛物线与x轴交于A、B两点,与y轴交于点C,OB=OC=3,OA=1.顶点为D1.判断∆BCD的形状;解:D(1,4),B(3,0),C(0,3),方法一:BC=32,CD=2,BD=25,BC2+CD2=BD2,故∆BCD是直角三角形;方法二:KCD =1,KBC=-1,KCD∙KBC=-1,故CD⊥CB,所以∆BCD是直角三角形;yxBCAODyxBCAODyxBCAODyxBCAOD第3问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于点C,OB=OC=3,OA=1.顶点为D, 2. 四边形ABDC 的面积解:BC:y =-x +3,铅垂法:E(1,2)DE=2,S BCD ∆=21∙2∙3=3 S ABDC 四=21∙4∙3+3=9第4问:如图,抛物线与x 轴交于A 、B 两点,与y 交于点C,OB=OC=3,OA=1,顶点为D, 1. P 为直线BC 上方抛物线上一点,求∆PBC 面积最大值及P 点坐标;解:方法一:设P(m,-m+2m+3)S PBC ∆=21∙3∙[-m 2+2m+3-(m+3)] =23(-m 2+3m),当m=23时,S 有最大值,此时P(23,415)S m ax =827 方法二:平移BC 至抛物线相切时,面积可取最大值设切线为y =-x +n,与抛物线y =-x 2+2x+3联立得x2-3x +n -3=0,∆=0,n=23,y =415,故P(23,415)S m ax =827y xBCAODy xBCAODEy xBCAOD第5问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D5点M 为BC 上方抛物线上一点,过点M 作y 轴的平行线交BC 于点N,求MN 的最大值;解:设点M(m,-m 2+2m+3),BC:y =-x +3,则点N(m,-m+3)MN=-m 2+2m+3-(-m+3)=-m 2+3m 当m=23时,MN m ax =49第6问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于点C,OC=3,OA=1,顶点为D, 6. 在对称轴上找一点P,使∆ACP 的周长最小,并求出最小值解:点A 、B 关于对称轴对称,连接BP,则BP=AP,PA+PC=PB+PC,当点B 、P 、C 三点共线时,可取最小值,此时P(1,2),∆ACP 周长的最小值为10+32第7问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于点C,OB=OC=3,OA=1,顶点为D 1. 在y 轴上找一点E,使∆BDE 为直角三角形,求出E 点坐标, 方法一:y xBCAOPDy xBCAODy xNBCAODMy xBCAOD P1.DE ⊥BE 时,设E(0,m)易知∆DEF~∆EBO,OE DF =BO EF ,即m 1=34m-,m=3或1,故E 1(0,1)、E 2(0,3)2. DE ⊥DB 时,设E(0,m)易知∆DEN~∆BDM,BM DN =DM EN ,即m 1=34m -,m=27故E ;(0,27)3. DB ⊥BE 时,设E(0,m),易知∆DBF~∆BEG,BG DF =EG BF ,即m -2=34,m=-23,故E 4(0,-23)第8问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D 1. 在y 轴上找一点F,使∆BDF 为等腰三角形,求出F 点坐标;2. BD=DF,设F(0,m),22)4()01(m -+-=25,m=4+9 或4-19,F 1(0,4+19);F 2(0,4-19)yxFBCAODExyN MBCAODExy GFEBCAODxy BCAODF2.BD=BF,设F(0,m),22)0()03(m -+-=25,m=±11,F 1(0,11),F 2(0,-11)3.DF=BF,设F(0,m),22)0()03(m -+-=22)4()01(m -+-,m=1,F 4(0,1)第9问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于点C,OB=OC=3,OA=1,顶点为D 1. 求抛物线上一点N,使S ABN ∆=S ABC ∆;解:设N 点的坐标(m,n),则∆ABC 与∆ABN 底相同,故n=±3,-m 2+2m+3=3或者-m 2+2m+3=3得m 1=0,m 2=2,m 3=1-7,m 4=1+7,N(0,3),(2,3),(1-7,-3),(1+7,-3)第10问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于点C,OB=OC=3,OA=1,顶点为D, 1. 在抛物线上找一点Q,使S BDQ ∆=S AOC ∆解:设Q(m,-m 2+2m+3),S AOC ∆=23,BD :y =-2x +6,铅垂高QS=|-m 2+2m+3-(-2m+6)| S BDQ ∆=|-m 2+2m+3-(-2m+6)|∙21∙1=23得m=0或4Q(0,3),(4,-5),xBCAODFBCAOD FBCAODFBCAODN第11问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D 1.在抛物线上找一点E,使BE 平分∆ABC 的面积; 解:BE 平分∆ABC 的面积,故BE 经过AC 的中点,AC 中点(-21,23),BE:y =-73x +79; 与抛物线联立得-x 2+2x +3=-73+79x =-74或722,E(-74;4919)或(722;491849)第12问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA =1,顶点为D 1.在对称轴上找一点M,使|MB -MC|取最大值,并求出最大值;解:点B 关于对称轴对称的点A,连接MA,则MB=MA,MA -MC<AC, 当点A 、C 、M 共线时,|MB -MA|m ax =AC=10, AC:y =3x x +3,M(1,6)第13问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D 1.M 、N 为对称轴上的两点(M 在N 点上方),且MN=1,求四边形ACNM 周长的最小值; 解:A 关于对称轴对称的点B,连接BN,则BN=AN,将点向下平移1个单位得C’、N,则C’N=CM, 故CM+BN=C’N+BN,当C’、N 、B 共线时,取最小值(CM+BN)m in =13,故ACNM 周长得最小值为1+10+13BCAODQABCODEABCODM第14问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D 1.E 在抛物线对称轴上,在抛物线上找一点F,使得点四边形ACFE 为平行四边形; 解:设E(1,m)F(n,-n 2+2n+3),A(-1,0),C(0,3),A 平行至点C 与E 平移至点F, n=1+1=2,m+3=-n 2+2n+3,m=0,故E(1,0)F(2,3)第15问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D 1.M 为y 轴上一点,在坐标平面内找一点N,使A 、C 、M 、N 为顶点的四边形为菱形; 解:当 ACM 为等腰三角形时,问题转化为等腰三角形问题 1.ACNM 为菱形时,M(0,3),N(1,0),2.AMCN 为菱形时,M(0,34),N(-1,35),3.ACMN 为菱形时,M(0,3+10),N(-1,10)ABCODMNABCODM NC'ABCODEFABCODMN ABCONDM4.ACMN 为菱形时,M(0,3-10),N(-1,-10)第16问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D 1.E 为x 轴上一点,以BE 为边的正方形BEFG ; 另一点G 在抛物线上,求点F 坐标;设E(m,0)则EF=|-m 2+2m+3|由EF=EB 得3-m=|-m 2+2m+3|,m=0或m=-2故F(0,3)或F(-2,-5)第17问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D 1.P 是抛物线上任意一点,过点P 作PE ⊥y 轴于点E,交直线BC 于点G ;过点G 作GF ⊥x 轴,连接EF,求EF 的最小值;连接OG,则OG=EF,当OG ⊥BC 时,OG 最小,即EF 最小,故EF m in =233x C,OB=OC=3,OA=1,顶点为D1.M 在抛物线上CB 上方一点过点M 作y 轴的平行线,交BC 于点E,则ME 的最大值是多少? 解:设M(m,-m 2+2m+3),BC :y =-x +3,E(m,3-m),ME=-m 2+2m+3-(3-m)=-m 2+3m,当m=23ABCONDMABCNODMGCABO EFF CABOE GFEGCABOPFEGCABOP时,ME m ax =49第19问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D 1.求一点P,使∠POC=∠PCO ; 解:点P 在OC 得垂直平分线上,-x2+2x +3=23,x =1±210P 1(1-210,23)P 2(1+210,23)第20问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D1.E(2,-2),M 为x 轴上一点,且∠EMO=∠CMO ; 1.M 在右侧时,易知∆CMO~∆EMG,设M(m,0)则有2-m m =23,m=6 2.M 在左侧时,同理易知∆CMO~∆EMG ,m m --2=23,m=6(舍) 第21问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D 1.P 是直线y =x 上的动点,当直接y =x 平分∠APB 时,求点P 的坐标; 如图,∆PAO ≅∆PEO,此时OE=OA=1,故E(0,-1),EB :y =31x -1,与y =x 得x =-23,P(-23,-23) ECABOMPPCABOCABOEMG第22问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D 1.点P 在抛物线上,且∠ABP=∠CBD,求P 坐标;解:C(0,3)D(1,4)B(3,0)tan ∠CBD=31,故tan ∠PBO=31,OE=1或者OF=1,PB :y =-31x +1或y 且=31x -1,联立可得P 1(-32,911)P 2(-23,-23)第23问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D1.在抛物线上找一点P,使∠ACP=450;方法1:∠OCB=∠ACP=450,得∠ACO=∠ECB,故tan ∠ECB=31,作EH ⊥BC,设BH=m,则EH=m;CH=3m,故4m=32,m=423,E(23,0)故CE:y =-2x +3,联立得P(4,-5) 方法2:由12345模型得tan ∠ECO=21得E(23,0)第24问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D 1.P 在抛物线上,∠DBP=450; 由tan ∠CBD=31,∠CBD+∠CBP=450,而∠PBO+∠CBP=450,故tan ∠PBO=31,BP:y =-31x +1,P(-32,911) ECABOPPEFCABODPPHECABOPDP第25问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D 1.点P 在抛物线上,∠PCB=150,求点P 的坐标;解:由∠BCO=450得∠PCO=30或∠PCO=600,故PC:y =-3x +3或y =-33x +3联立得P(2+3,-23)P(2+33,3328-)第26问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D1.直线y =31x -1与y 轴交于点E,求∠EBC -∠CBD ; 由tan ∠DBC=tan ∠EBO=31,故∠EBC -∠CBD=450第27问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D 1.过点P(3,0)作直线与抛物线交于F 、G 、FM 、GN 分别垂直于x 轴,求PM,PN ;设F(1x ,1y )G(2x ,2y ),直线y =k (x +3)与抛物线y =-2x +2x +3联立得2x +(k -2)x +3k -3=0;1x +2x =2-k ,1x •2x =3k -3,PM •PN=(1x +3)(2x +3)=1x •2x +3(1x +2x )+9=12CABOPDPPF CABODPEECABODENMGFCABOPD第28问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为DP 是第一象限抛物线上,PE ⊥AB,求BEAE的值,若PE 2=AE •BE,求P 点坐标 设P(m,-m 2+2m+3),AE=m+1,BE=3-m,BE AE =mm -+31,(m+1)(3-m)=(-m 2+2m+3)2得m=1+3,P(1+3,1)第29问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D M 为直线y =33x 3上的点,N(0,-1),求23BM+MN 的最小值, 过点B 作I ⊥x 轴,MH ⊥I,∠MBH=600,MH=23BM,23BM+MN=MH+MN,当N 、M 、H 共线且垂直于I 时取最值(23BM+MN)min=3第30问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D M 为直线y =33x 3上的点,求21BM+OM 的最小值 过点B 作I:y =3x -33,MH ⊥I,∠MBH=300,MH=21BH,21BH+OM=MH+OM,当Q 、M 、H共线且垂直于I 时取最值(21BM+MN )min=233xy EBCAOPxy BCA O MN H第31问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D M 为直线y =33x 3上的点,求22BM+OM 的最小值 过点B 作I,I 与直线MN 夹角450,MH ⊥I,∠MBH=450,MH=22BM,22BM+OM=MH+OM,当Q 、M 、H 共线且垂直于I 时取最值两着色三角形相似,得cos150=426,(21BM +MN)min=423-63第32问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D在AB 上是否存在点M,使CM+21BM 取最小值. 过点B 作I,I 与x 轴夹角为300,MH=21BM,21BM+CM=MH+CM,当C 、M 、H 共线且垂直于I 时取最值(21BM+CM)min=2333+第33问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为Dxy BCAMO Hxy BCAMOHxy BCAO M EHM 是抛物线上一点,作MH ⊥x 轴,交BC 于点E,当ME:EH=3:2时,求M 点的横坐标, 设M(m,-m 2+2m+3),则E(m,3-m),ME=-m 2+2m+3-(3-m),EH=3-m,ME:EH=3:2 即有-m 2+2m+3-(3-m)=23(3-m) m=23第34问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于顶点为D P 是抛物线上一点,且∠PAB=2CBD,求P 点坐标. tan ∠CBD=31,tan ∠PAB=tan2∠CBD=43(12345模型) 设P(m,-m 2+2m+3)(1)tan ∠PAB=1322+++-m m m =43,m=49,P(49,1639)(2)tan ∠PAB=1322+--m m m =43,m=415,P(415,1657)第35问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为DF(1,415)直线y =417,(1)证明:M 上任意一点到直线y =417距离等于到F 点的距离, M(m,-m 2+2m+3),MH=417-(-m 2+2m+3)=m 2-2m+45MF=222)41532()1(-++-+-m m m =m 2-2m+45,故MH=MF xyEBCAOMHxy BCAODPP第36问:如图,抛物线与x 轴交于、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为DF(1,415)直线y =417,(2)证明:N(2,-1)M 为抛物线上一点,求NM+MF 的最小值 由(1)可知MF=MH,故NM+MF=MN+MH,(NM+MF)min=421第37问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D ∠BAC 的角平分线交y 轴于点M,绕点M 作直线I,与x 轴交于点E,与A 交于点F,求证:AE 1+AF 1为定值 过点M 、F 、C 作x 轴的平行线,交AC 于点G,交AM 于点H 、I ,易知:∆AEM~∆HFM,∆AFH~∆ACI,AO GM =AC CG ,CI GM =AC AG ,相加得AO GM +CI GM =AC CG +ACAG=1 即有AO 1+AC 1=GM 1,同理可得AE 1+AF 1=GM1=1+1010第38问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D P 为第四象限抛物线上一点,且tan ∠APC=21,求出点P 的坐标; 过点C 作CE ⊥AC,取一点E 使CE=2AC,过点C 作MN||x 轴,作A M ⊥MN 、EN ⊥MN,易知∆ACM~∆CEN,CN=6,EN=2,E(6,1),P 为以AE 为直径的圆与抛物线的交点AE 的中点F,F(25,21) xy BCOFMHxy BCNOFMHA过点易知AE HF AFACGM AO =CG AC ,GM CI =AGAC,GM AO +GM CI =CG AC +AGAC =1即有1AO +1AC =1GM,同1AE +1AF =1GM =11010xy H G FEMBCOIPF=225,设P(m,-m 2+2m+3),PF 2=(m -25)2+(-m 2+2m+325)2=225m=255,y =2531--,P(255,2531--)第39问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D 直线y =x -3与抛物线交于点P,在x 轴正半轴上找一点E,使tan(∠PBO+∠PEO)=25 在x 轴上找一点F,使tan ∠HPF=25,∠HPF=450+∠BPH=∠PBO+∠PEO=450+∠PEO, 故∠BPF=∠PEO,故∆BEP~∆BPF,BP BE =BF BP ,即253-m =21525,m -3=320,m=329故E(329,0)第40问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D 对称轴与BC 交于点E,在直线BC 上找一点P,使∆ABP 与∆DEB 相似,∠BED=1350=∠ABP,故P 在CB 的延长线上,DE=2,BE=22,AB=3,1.当∆EDB~∆BAP,AB DE =BP EB ,即42=BP22,BP=42,P(7,-4) 2.∆EDB~∆BPA 时,BP=22,P(5,-2)AxyN MPFEBCOAH PE FAxyIHEBCODP 1P 2。
中考数学解答题压轴题突破 重难点突破七 二次函数综合题 类型四:二次函数与特殊四边形问题

Ⅰ)如答图①,连接AC,分别过点A,B作对边的平行线交于 点F. 在▱ ACBF中,∵C(0,-5)向右平移1个单位长度,再向上平 移5个单位长度得到A(1,0), ∴B(5,0)按照相同的平移方式得到F(6,5);
解:设点Q的坐标为(a,b),过点Q作QM∥x轴,过点B作BM∥y轴,交QM 于点M,过点F作FN∥y轴交QM于点N,过点E作EK∥x轴交BM于点K, ∴△BMQ≌△QNF≌△EKB, ∴NF=KB=MQ=|a+2|,QN=EK=BM=|b|, ∴点F的坐标为 (a-b,a+b+2), 点E的坐标为 (-2-b,a+2),
Ⅱ)如答图②,分别过点A,C作BC,AB的平行线交于点 F,在▱ ABCF中,∵B(5,0)向左平移5个单位长度,再向 下平移5个单位长度得到C(0,-5), ∴A(1,0)按照相同的平移方式得到F(-4,-5);
Ⅲ)如答图③,连接AC,分别过点B,C作对边的平行线交 于点F.在▱ ACFB中,∵A(1,0)向左平移1个单位长度,再 向下平移5个单位长度得到C(0,-5), ∴B(5,0)按照相同的平移方式得到F(4,-5); 综上所述,满足条件的点F分别为(6,5),(-4,-5)或 (4,-5).
(1)求抛物线的函数解析式; (2)把抛物线 y=x2+bx+c 平移,使得新抛物线的顶点 为点 P(2,-4).M 是新抛物线上一点,N 是新抛物线对 称轴上一点,直接写出所有使得以点 A,B,M,N 为顶点 的四边形是平行四边形的点 M 的坐标,并把求其中一个 点 M 的坐标的过程写出来.
解:(1)该抛物线的函数解析式为y=x2-72x-1. (2)满足条件的点M的坐标为 (2,-4),(6,12),(-2,12). 由题意可知,平移后抛物线的函数解析式为 y=x2-4x, 对称轴为直线x=2,如答图.
二次函数与几何综合压轴题(原卷版)-2024年中考数学

二次函数与几何综合压轴题几乎所有的地方都把二次函数与几何综合压轴题作为中考压轴题。
1.(2023·青海·中考真题)如图,二次函数2y x bx c =−++的图象与x 轴相交于点A 和点()1,0C ,交y 轴于点()0,3B .(1)求此二次函数的解析式;(2)设二次函数图象的顶点为P ,对称轴与x 轴交于点Q ,求四边形AOBP 的面积(请在图1中探索); (3)二次函数图象的对称轴上是否存在点M ,使得△AMB 是以AB 为底边的等腰三角形?若存在,请求出满足条件的点M 的坐标;若不存在,请说明理由(请在图2中探索).2.(2023·内蒙古·中考真题)如图,在平面直角坐标系中,抛物线2y x bx c =−++与x 轴的交点分别为A 和()10B ,(点A 在点B 的左侧),与y 轴交于点()0,3C ,点P 是直线AC 上方抛物线上一动点.(1)求抛物线的解析式;(2)如图1,过点P 作x 轴平行线交AC 于点E ,过点P 作y 轴平行线交x 轴于点D ,求PE PD +的最大值及点P 的坐标;(3)如图2,设点M 为抛物线对称轴上一动点,当点P ,点M 运动时,在坐标轴上确定点N ,使四边形PMCN 为矩形,求出所有符合条件的点N 的坐标.3.(2023·海南·中考真题)如图1,抛物线2y x bx c =++交x 轴于A ,()3,0B 两点,交y 轴于点()0,3C −.点P 是抛物线上一动点.(1)求该抛物线的函数表达式;(2)当点P 的坐标为()1,4−时,求四边形BACP 的面积;(3)当动点P 在直线BC 上方时,在平面直角坐标系是否存在点Q ,使得以B ,C ,P ,Q 为顶点的四边形是矩形?若存在,请求出点Q 的坐标;若不存在,请说明理由;(4)如图2,点D 是抛物线的顶点,过点D 作直线DH y ∥轴,交x 轴于点H ,当点P 在第二象限时,作直线PA ,PB 分别与直线DH 交于点G 和点I ,求证:点D 是线段IG 的中点.4.(2023·西藏·中考真题)在平面直角坐标系中,抛物线2y x bx c =−++与x 轴交于()30A −,,()10B ,两点,与y 轴交于点C .(1)求抛物线的解析式;(2)如图甲,在y 轴上找一点D ,使ACD 为等腰三角形,请直接写出点D 的坐标;(3)如图乙,点P 为抛物线对称轴上一点,是否存在P 、Q 两点使以点A ,C ,P ,Q 为顶点的四边形是菱形?若存在,求出P 、Q 两点的坐标,若不存在,请说明理由.5.(2023·四川甘孜·中考真题)已知抛物线2y x bx c =++与x 轴相交于()10A −,,B 两点,与y 轴相交于点()03C −,.(1)求b ,c 的值;(2)P 为第一象限抛物线上一点,PBC 的面积与ABC 的面积相等,求直线AP 的解析式;(3)在(2)的条件下,设E 是直线BC 上一点,点P 关于AE 的对称点为点P ′,试探究,是否存在满足条件的点E ,使得点P ′恰好落在直线BC 上,如果存在,求出点P ′的坐标;如果不存在,请说明理由.6.(2023·四川达州·中考真题)如图,抛物线2y ax bx c ++过点()()()1,0,3,,00,3A B C −.(1)求抛物线的解析式;(2)设点P 是直线BC 上方抛物线上一点,求出PBC 的最大面积及此时点P 的坐标;(3)若点M 是抛物线对称轴上一动点,点N 为坐标平面内一点,是否存在以BC 为边,点B C M N 、、、为顶点的四边形是菱形,若存在,请直接写出点N 的坐标;若不存在,请说明理由.7.(2023·四川巴中·中考真题)在平面直角坐标系中,抛物线2(0)y ax bx c a ++≠经过点(1,0)A −和(0,3)B ,其顶点的横坐标为1.(1)求抛物线的表达式.(2)若直线x m =与x 轴交于点N ,在第一象限内与抛物线交于点M ,当m 取何值时,使得AN MN +有最大值,并求出最大值.(3)若点P 为抛物线2(0)y ax bx c a ++≠的对称轴上一动点,将抛物线向左平移1个单位长度后,Q 为平移后抛物线上一动点.在(2)的条件下求得的点M ,是否能与A 、P 、Q 构成平行四边形?若能构成,求出Q 点坐标;若不能构成,请说明理由.8.(2023·四川眉山·中考真题)在平面直角坐标系中,已知抛物线2y ax bx c ++与x 轴交于点()()3,0,1,0A B −两点,与y 轴交于点()0,3C ,点P 是抛物线上的一个动点.(1)求抛物线的表达式;(2)当点P 在直线AC 上方的抛物线上时,连接BP 交AC 于点D .如图1.当PD DB的值最大时,求点P 的坐标及PD DB 的最大值; (3)过点P 作x 轴的垂线交直线AC 于点M ,连接PC ,将PCM △沿直线PC 翻折,当点M 的对应点'M 恰好落在y 轴上时,请直接写出此时点M 的坐标.9.(2023·四川内江·中考真题)如图,在平面直角坐标系中,抛物线2y ax bx c ++与x 轴交于()4,0B ,()2,0C −两点.与y 轴交于点()0,2A −.(1)求该抛物线的函数表达式;(2)若点P 是直线AB 下方抛物线上的一动点,过点P 作x 轴的平行线交AB 于点K ,过点P 作y 轴的平行线交x 轴于点D ,求与12PK PD +的最大值及此时点P 的坐标; (3)在抛物线的对称轴上是否存在一点M ,使得MAB △是以AB 为一条直角边的直角三角形:若存在,请求出点M 的坐标,若不存在,请说明理由.10.(2023·湖北黄冈·中考真题)已知抛物线212y x bx c =−++与x 轴交于,(4,0)A B 两点,与y 轴交于点(0,2)C ,点P 为第一象限抛物线上的点,连接,,,CA CB PB PC .(1)直接写出结果;b =_____,c =_____,点A 的坐标为_____,tan ABC ∠=______;(2)如图1,当2PCB OCA ∠=∠时,求点P 的坐标; (3)如图2,点D 在y 轴负半轴上,OD OB =,点Q 为抛物线上一点,90QBD ∠=°,点E ,F 分别为BDQ △的边,DQ DB 上的动点,QE DF =,记BE QF +的最小值为m . ①求m 的值;②设PCB 的面积为S ,若214S m k =−,请直接写出k 的取值范围.11.(2023·湖北武汉·中考真题)抛物线21:28=−−C y x x 交x 轴于,A B 两点(A 在B 的左边),交y 轴于点C .(1)直接写出,,A B C 三点的坐标;(2)如图(1),作直线()04=<<x t t ,分别交x 轴,线段BC ,抛物线1C 于,,D E F 三点,连接CF .若BDE 与CEF △相似,求t 的值;(3)如图(2),将抛物线1C 平移得到抛物线2C ,其顶点为原点.直线2y x =与抛物线2C 交于,O G 两点,过OG 的中点H 作直线MN (异于直线OG )交抛物线2C 于,M N 两点,直线MO 与直线GN 交于点P .问点P 是否在一条定直线上?若是,求该直线的解析式;若不是,请说明理由.12.(2023·湖南郴州·中考真题)已知抛物线24y ax bx ++与x 轴相交于点 1,0A ,()4,0B ,与y 轴相交于点C .(1)求抛物线的表达式;(2)如图1,点P 是抛物线的对称轴l 上的一个动点,当PAC △的周长最小时,求PAPC的值; (3)如图2,取线段OC 的中点D ,在抛物线上是否存在点Q ,使1tan 2QDB ∠=若存在,求出点Q 的坐标;若不存在,请说明理由.且与直线:1l y x =−−交于D E 、两点(点D 在点E 的右侧),点M 为直线l 上的一动点,设点M 的横坐标为t .(1)求抛物线的解析式.(2)过点M 作x 轴的垂线,与拋物线交于点N .若04t <<,求NED 面积的最大值.(3)抛物线与y 轴交于点C ,点R 为平面直角坐标系上一点,若以B C M R 、、、为顶点的四边形是菱形,请求出所有满足条件的点R 的坐标.在此抛物线上,其横坐标分别为,2(0)m m m >,连接AP ,AQ .(1)求此抛物线的解析式.(2)当点Q 与此抛物线的顶点重合时,求m 的值.(3)当PAQ ∠的边与x 轴平行时,求点P 与点Q 的纵坐标的差.(4)设此抛物线在点A 与点P 之间部分(包括点A 和点P )的最高点与最低点的纵坐标的差为1h ,在点A 与点Q 之间部分(包括点A 和点Q )的最高点与最低点的纵坐标的差为2h .当21h h m −=时,直接写出m 的值.15.(2023·青海西宁·中考真题)如图,在平面直角坐标系中,直线l 与x 轴交于点()6,0A ,与y 轴交于点()0,6B −,抛物线经过点A ,B ,且对称轴是直线1x =.(1)求直线l 的解析式; (2)求抛物线的解析式;(3)点P 是直线l 下方抛物线上的一动点,过点P 作PC x ⊥轴,垂足为C ,交直线l 于点D ,过点P 作PM l ⊥,垂足为M .求PM 的最大值及此时P 点的坐标.16.(2023·湖南·中考真题)如图,二次函数2y x bx c =++的图象与x 轴交于A ,B 两点,与y 轴交于C 点,其中()10B ,,()0,3C .(1)求这个二次函数的表达式;(2)在二次函数图象上是否存在点P ,使得PAC ABC S S =△△?若存在,请求出P 点坐标;若不存在,请说明理由;(3)点Q 是对称轴l 上一点,且点Q 的纵坐标为a ,当QAC △是锐角三角形时,求a 的取值范围.17.(2023·辽宁营口·中考真题)如图,抛物线()210y ax bx a +−≠与x 轴交于点 1,0A 和点B ,与y 轴交于点C ,抛物线的对称轴交x 轴于点()3,0D ,过点B 作直线l x ⊥轴,过点D 作DE CD ⊥,交直线l 于点E .(1)求抛物线的解析式;(2)如图,点P 为第三象限内抛物线上的点,连接CE 和BP 交于点Q ,当57BQ PQ =时.求点P 的坐标; (3)在(2)的条件下,连接AC ,在直线BP 上是否存在点F ,使得DEF ACD BED ∠=∠+∠?若存在,请直接写出点F 的坐标;若不存在,请说明理由.18.(2023·湖南湘西·中考真题)如图(1),二次函数25y ax x c =−+的图像与x 轴交于()4,0A −,(),0B b 两点,与y 轴交于点()0,4C −.(1)求二次函数的解析式和b 的值.(2)在二次函数位于x 轴上方的图像上是否存在点M ,使13BOM ABC S S =△△?若存在,请求出点M 的坐标;若不存在,请说明理由.(3)如图(2),作点A 关于原点O 的对称点E ,连接CE ,作以CE 为直径的圆.点E ′是圆在x 轴上方圆弧上的动点(点E ′不与圆弧的端点E 重合,但与圆弧的另一个端点可以重合),平移线段AE ,使点E 移动到点E ′,线段AE 的对应线段为A E ′′,连接E C ′,A A ′,A A ′的延长线交直线E C ′于点N ,求AA CN′的值.19.(2023·辽宁盘锦·中考真题)如图,抛物线23y ax bx ++与x 轴交于点()10A −,,()30B ,,与y 轴交于点C .(1)求抛物线的解析式.(2)如图1,点Q 是x 轴上方抛物线上一点,射线QM x ⊥轴于点N ,若QM BM =,且4tan 3MBN ∠=,请直接写出点Q 的坐标.(3)如图2,点E 是第一象限内一点,连接AE 交y 轴于点D ,AE 的延长线交抛物线于点P ,点F 在线段CD 上,且CF OD =,连接FA FE BE BP ,,,,若AFE ABE S S =△△,求PAB 面积.20.(2023·重庆·中考真题)如图,在平面直角坐标系中,抛物线22y ax bx ++过点()1,3,且交x 轴于点()1,0A −,B 两点,交y 轴于点C .(1)求抛物线的表达式;(2)点P 是直线BC 上方抛物线上的一动点,过点P 作PD BC ⊥于点D ,过点P 作y 轴的平行线交直线BC 于点E ,求PDE △周长的最大值及此时点P 的坐标;(3)在(2)中PDE △周长取得最大值的条件下,将该抛物线沿射线CB M 为平移后的抛物线的对称轴上一点.在平面内确定一点N ,使得以点A ,P ,M ,N 为顶点的四边形是菱形,写出所有符合条件的点N 的坐标,并写出求解点N 的坐标的其中一种情况的过程.21.(2023·四川广安·中考真题)如图,二次函数2y x bx c =++的图象交x 轴于点A B ,,交y 轴于点C ,点B 的坐标为()1,0,对称轴是直线=1x −,点P 是x 轴上一动点,PM x ⊥轴,交直线AC 于点M ,交抛物线于点N .(1)求这个二次函数的解析式.(2)若点P 在线段AO 上运动(点P 与点A 、点O 不重合),求四边形ABCN 面积的最大值,并求出此时点P 的坐标.(3)若点P 在x 轴上运动,则在y 轴上是否存在点Q ,使以M 、N C Q 、、为顶点的四边形是菱形?若存在,请直接写出所有满足条件的点Q 的坐标;若不存在,请说明理由.22.(2023·湖北十堰·中考真题)已知抛物线28y ax bx ++过点()4,8B 和点()8,4C ,与y 轴交于点A .(1)求抛物线的解析式;(2)如图1,连接,AB BC ,点D 在线段AB 上(与点,A B 不重合),点F 是OA 的中点,连接FD ,过点D 作DE FD ⊥交BC 于点E ,连接EF ,当DEF 面积是ADF △面积的3倍时,求点D 的坐标;(3)如图2,点P 是抛物线上对称轴右侧的点,(),0H m 是x 轴正半轴上的动点,若线段OB 上存在点G (与点,O B 不重合),使得GBP HGP BOH ∠=∠=∠,求m 的取值范围.23.(2023·四川·中考真题)如图1,在平面直角坐标系中,已知二次函数24y ax bx ++的图象与x 轴交于点()2,0A −,()4,0B ,与y 轴交于点C .(1)求抛物线的解析式;(2)已知E 为抛物线上一点,F 为抛物线对称轴l 上一点,以B ,E ,F 为顶点的三角形是等腰直角三角形,且90BFE ∠=°,求出点F 的坐标; (3)如图2,P 为第一象限内抛物线上一点,连接AP 交y 轴于点M ,连接BP 并延长交y 轴于点N ,在点P 运动过程中,12OM ON +是否为定值?若是,求出这个定值;若不是,请说明理由.24.(2023·黑龙江绥化·中考真题)如图,抛物线21y ax bx c =++的图象经过(6,0)A −,(2,0)B −,(0,6)C 三点,且一次函数6y kx =+的图象经过点B .(1)求抛物线和一次函数的解析式.(2)点E ,F 为平面内两点,若以E 、F 、B 、C 为顶点的四边形是正方形,且点E 在点F 的左侧.这样的E ,F 两点是否存在?如果存在,请直接写出所有满足条件的点E 的坐标:如果不存在,请说明理由.(3)将抛物线21y ax bx c =++的图象向右平移8个单位长度得到抛物线2y ,此抛物线的图象与x 轴交于M ,N 两点(M 点在N 点左侧).点P 是抛物线2y 上的一个动点且在直线NC 下方.已知点P 的横坐标为m .过点P 作PD NC ⊥于点D .求m 为何值时,12CD PD +有最大值,最大值是多少?25.(2023·四川德阳·中考真题)已知:在平面直角坐标系中,抛物线与x 轴交于点(4,0)A −,(2,0)B ,与y 轴交于点(0,4)C −.(1)求抛物线的解析式;(2)如图1,如果把抛物线x 轴下方的部分沿x 轴翻折180°,抛物线的其余部分保持不变,得到一个新图象.当平面内的直线6y kx =+与新图象有三个公共点时,求k 的值; (3)如图2,如果把直线AB 沿y 轴向上平移至经过点D ,与抛物线的交点分别是E ,F ,直线BC 交EF 于点H ,过点F 作FG CH ⊥于点G ,若DF HG=F 的坐标.26.(2023·辽宁锦州·中考真题)如图,抛物线2y bx c ++交x 轴于点()1,0A −和B ,交y 轴于点(C ,顶点为D .(1)求抛物线的表达式;(2)若点E 在第一象限内对称右侧的抛物线上,四边形ODEB 的面积为E 的坐标;(3)在(2)的条件下,若点F 是对称轴上一点,点H 是坐标平面内一点,在对称轴右侧的抛物线上是否存在点G ,使以E ,F ,G ,H 为顶点的四边形是菱形,且60EFG ∠=°,如果存在,请直接写出点G 的坐标;如果不存在,请说明理由.27.(2023·辽宁鞍山·中考真题)如图1,抛物线253y ax x c =++经过点()3,1,与y 轴交于点()0,5B ,点E 为第一象限内抛物线上一动点.(1)求抛物线的解析式.(2)直线243y x =−与x 轴交于点A ,与y 轴交于点D ,过点E 作直线EF x ⊥轴,交AD 于点F ,连接BE .当BE DF =时,求点E 的横坐标.(3)如图2,点N 为x 轴正半轴上一点,OE 与BN 交于点M .若OE BN =,3tan 4BME ∠=,求点E 的坐标.28.(2023·辽宁丹东·中考真题)抛物线24y ax bx +−与x 轴交于点()4,0A −,()2,0B ,与y 轴交于点C .(1)求抛物线的表达式;(2)如图,点D 是抛物线上的一个动点,设点D 的横坐标是()42m m −<<,过点D 作直线DE x ⊥轴,垂足为点E ,交直线AC 于点F .当D ,E ,F 三点中一个点平分另外两点组成的线段时,求线段DF 的长;(3)若点P 是抛物线上的一个动点(点P 不与顶点重合),点M 是抛物线对称轴上的一个点,点N 在坐标平面内,当四边形CMPN 是矩形邻边之比为1:2时,请直接写出点P 的横坐标.。
2023年九年级中考数学:二次函数综合题压轴题(特殊四边形问题)(含答案)

(1)求该抛物线的解析式和顶点 的坐标;
(2)设点 的横坐标是 ,问当 取何值时,四边形 的面积最大;
(3)如图,若直线 的解析式是 ,点 和点 分别在抛物线上和直线 上,问:是否存在以点 为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点 的坐标
3.综合与探究
如图,在平面直角坐标系中,抛物线 与 轴交于 、 两点,与 轴交于点 ,点 为抛物线顶点.
(1)求抛物线解析式;
(2)点 在此抛物线的对称轴上,当 最大时,点 的坐标为_____,此时 的面积为_____;
(3)点 在抛物线上,平面内存在点 使四边形 为菱形时,请直接写出点 的坐标.
4.如图,在平面直角坐标系中,抛物线 和直线 交于 、 两点,直线 交 轴于点 .
20.如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上, , ,抛物线 经过点B,且与x轴交于点 和点E.
(1)求抛物线的表达式:
(2)若P是第一象限抛物线上的一个动点,连接CP,PE,当四边形OCPE的面积最大时,求点P的坐标,此时四边形OCPE的最大面积是多少;
(3)若N是抛物线对称轴上一点,在平面内是否存在一点M,使以点C,D,M,N为顶点的四边形是矩形?若存在,请直接写出点M的坐标;若不存在,说明理由.
(1)求点 的坐标与 的值;
(2)当点 恰好是 的中点时,求点 的坐标;
(3)连结 ,作点 关于直线 的对称点 ,当点 落在线段 上时,则点 的坐标为______ 直接写出答案
6.已知抛物线 与x轴有公共点.
精选中考二次函数压轴题(含答案)

精选中考二次函数压轴题(含答案)1.如图,二次函数c x y +-=221的图象经过点D ⎪⎭⎫ ⎝⎛-29,3,与x 轴交于A 、B 两点. ⑴求c 的值;⑵如图①,设点C 为该二次函数的图象在x 轴上方的一点,直线AC 将四边形ABCD 的面积二等分,试证明线段BD 被直线AC 平分,并求此时直线AC 的函数解析式;⑶设点P 、Q 为该二次函数的图象在x 轴上方的两个动点,试猜想:是否存在这样的点P 、Q ,使△AQP ≌△ABP ?如果存在,请举例验证你的猜想;如果不存在,请说明理由.(图②供选用)2.(2010福建福州)如图,在△ABC 中,∠C =45°,BC =10,高AD =8,矩形EFPQ 的一边QP 在BC 边上,E 、F 两点分别在AB 、AC 上,AD 交EF 于点H . (1)求证:AH AD =EFBC;(2)设EF =x ,当x 为何值时,矩形EFPQ 的面积最大?并求其最大值;(3)当矩形EFPQ 的面积最大时,该矩形EFPQ 以每秒1个单位的速度沿射线QC 匀速运动(当点Q 与点C 重合时停止运动),设运动时间为t 秒,矩形EFFQ 与△ABC 重叠部分的面积为S ,求S 与t 的函数关系式.3.(2010福建福州)如图1,在平面直角坐标系中,点B 在直线y =2x 上,过点B 作x 轴的垂线,垂足为A ,OA =5.若抛物线y =16x 2+bx +c 过O 、A 两点.(1)求该抛物线的解析式;(2)若A 点关于直线y =2x 的对称点为C ,判断点C 是否在该抛物线上,并说明理由;(3)如图2,在(2)的条件下,⊙O 1是以BC 为直径的圆.过原点O 作⊙O 1的切线OP ,P 为切点(点P 与点C 不重合).抛物线上是否存在点Q ,使得以PQ 为直径的圆与⊙O 1相切?若存在,求出点Q 的横坐标;若不存在,请说明理由4.(2010江苏无锡)如图,矩形ABCD 的顶点A 、B 的坐标分别为(-4,0)和(2,0),BC=AC 与直线x =4(第2(图1) (图交于点E .(1)求以直线x =4为对称轴,且过C 与原点O 的抛物线的函数关系式,并说明此抛物线一定过点E ;(2)设(1)中的抛物线与x 轴的另一个交点为N ,M 是该抛物线上位于C 、N 之间的一动点,求△CMN 面积的最大值.5.(2010湖南邵阳)如图,抛物线y =2134x x -++与x 轴交于点A 、B ,与y 轴相交于点C ,顶点为点D ,对称轴l 与直线BC 相交于点E ,与x 轴交于点F 。
中考数学二次函数与四边形综合专题

二次函數與四邊形綜合專題一.二次函數與四邊形的形狀例1. 如圖,拋物線223y x x=--與x軸交A、B兩點(A點在B點左側),直線l與拋物線交于A、C兩點,其中C點的橫坐標為2.(1)求A、B 兩點的坐標及直線AC的函數表達式;(2)P是線段AC上的一個動點,過P點作y軸的平行線交拋物線于E 點,求線段PE長度的最大值;(3)點G是拋物線上的動點,在x軸上是否存在點F,使A、C、F、G 這樣的四個點為頂點的四邊形是平行四邊形?如果存在,求出所有滿足條件的F點坐標;如果不存在,請說明理由.解:(1)令y=0,解得11x=-或23x=∴A(-1,0)B(3,0);將C點的橫坐標x=2代入223y x x=--得y=-3,∴C(2,-3)∴直線AC的函數解析式是y=-x-1(2)設P點的橫坐標為x(-1≤x≤2)則P、E的坐標分別為:P(x,-x-1),E(2(,23)x x x--∵P點在E點的上方,PE=22(1)(23)2x x x x x-----=-++AGAGGAGAGGAFFFFAFAF∴當12x =時,PE 的最大值=94(3)存在4個這樣的點F,分別是1234(1,0),(3,0),(4(4F F F F -練習1.如圖,對稱軸為直線72x =的拋物線經過點A (6,0)和B (0,4).(1)求拋物線解析式及頂點坐標;(2)設點E (x ,y )是拋物線上一動點,且位于第四象限,四邊形OEAF 是以OA 為對角線的平行四邊形.求平行四邊形OEAF 的面積S 與x 之間的函數關系式,并寫出自變量x 的取值范圍;①當平行四邊形OEAF 的面積為24時,請判斷平行四邊形OEAF 是否為菱形?②是否存在點E ,使平行四邊形OEAF 為正方形?若存在,求出點E 的坐標;若不存在,請說明理由.GAGGAGAGGAFFFFAFAF練習 1.解:(1)由拋物線的對稱軸是72x =,可設解析式為27()2y a x k =-+.把A 、B 兩點坐標代入上式,得227(6)0,27(0) 4.2a k a k ⎧-+=⎪⎪⎨⎪-+=⎪⎩ 解之,得225,.36a k ==-故拋物線解析式為22725()326y x =--,頂點為725(,).26-(2)∵點(,)E x y 22725()326y x =--,∴y<0,即 -y>0,-y 表示點E 離.∵OA 是OEAF 的對角線,∴2172264(2522OAES SOA y y ==⨯⨯⋅=-=--+.因為拋物線與x 軸的兩個交點是(1,0)的(6,0),所以,自變量x 的取值范圍是1<x <6.①根據題意,當S = 24時,即274()25242x --+=.化簡,得271().24x -= 解之,得123, 4.x x ==故所求的點E 有兩個,分別為E 1(3,-4),E 2(4,-4).點E 1(3,-4)滿足OE = AE ,所以OEAF 是菱形;GAGGAGAGGAFFFFAFAF點E 2(4,-4)不滿足OE = AE ,所以OEAF 不是菱形.②當OA ⊥EF ,且OA = EF 時,OEAF是正方形,此時點E 的坐標只能是(3,-3).而坐標為(3,-3)的點不在拋物線上,故不存在這樣的點E ,使OEAF 為正方形.練習2.如圖,已知與x 軸交于點(10)A ,和(50)B ,的拋物線1l 的頂點為(34)C ,,拋物線2l 與1l 關于x 軸對稱,頂點為C '. (1)求拋物線2l 的函數關系式;(2)已知原點O ,定點(04)D ,,2l 上的點P 與1l 上的點P '始終關于x 軸對稱,則當點P 運動到何處時,以點D O P P ',,,為頂點的四邊形是平行四邊形?(3)在2l 上是否存在點M ,使ABM △是以AB 為斜邊且一個角為30的直角三角形?若存,求出點MGAGGAGAGGAFFFFAFAF練習3. 如圖,已知拋物線1C 與坐標軸的交點依次是(40)A -,,(20)B -,,(08)E ,. (1)求拋物線1C 關于原點對稱的拋物線2C 的解析式;(2)設拋物線1C 的頂點為M ,拋物線2C 與x 軸分別交于C D ,兩點(點C 在點D 的左側),頂點為N ,四邊形MDNA 的面積為S .若點A ,點D 同時以每秒1個單位的速度沿水平方向分別向右、向左運動;與此同時,點M ,點N 同時以每秒2個單位的速度沿堅直方向分別向下、向上運動,直到點A 與點D 重合為止.求出四邊形MDNA 的面積S 與運動時間t 之間的關系式,并寫出自變量t 的取值范圍;(3)當t 為何值時,四邊形MDNA 的面積S 有最大值,并求出此最大值; (4)在運動過程中,四邊形MDNA 能否形成矩形?若能,求出此時t 的值;若不能,請說明理由.二.二次函數與四邊形的面積例1.如圖10,已知拋物線P:y=ax2+bx+c(a≠0) 与x轴交于A、B两点(点A在x轴的正半轴上),与y轴交于点C,矩形DEFG的一条边DE 在线段AB上,顶点F、G分别在线段BC、AC上,拋物線P上部分點的橫坐標對應的縱坐標如下:x …-3-212…y…-52-4-520…(1) 求A、B、C三点的坐标;(2) 若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系,并指出m的取值范围;(3) 当矩形DEFG的面积S取最大值时,连接DF并延长至点M,使FM=k·DF,若點M不在拋物線P上,求k的取值范圍.練習1.如圖,平面直角坐標系中有一直角梯形OMNH,點H的坐標為(-圖10GAGGAGAGGAFFFFAFAFGAGGAGAGGAFFFFAFAF8,0),點N 的坐標為(-6,-4).(1)畫出直角梯形OMNH 繞點O 旋轉180°的圖形OABC ,并寫出頂點A ,B ,C 的坐標(點M 的對應點為A , 點N 的對應點為B , 點H 的對應點為C );(2)求出過A ,B ,C 三點的拋物線的表達式;(3)截取CE =OF =AG =m ,且E ,F ,G 分別在線段CO ,OA ,AB 上,求四邊形BEFG 的面積S 與m 之間的函數關系式,并寫出自變量m 的取值范圍;面積S 是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由;(4)在(3)的情況下,四邊形BEFG 是否存在鄰邊相等的情況,若存在,請直接寫出此時m 的值,并指出相等的鄰邊;若不存在,說明理由.練習2.如圖,正方形ABCD 的邊長為2cm ,在對稱中心O 處有一釘子.動點P ,Q 同時從點A 出發,點P 沿A B C →→方B C P O DQ A BP CODQ Ay32 1 O1 2 xGAGGAGAGGAFFFFAFAF向以每秒2cm 的速度運動,到點C 停止,點Q 沿A D 方向以每秒1cm 的速度運動,到點D 停止.P ,Q 兩點用一條可伸縮的細橡皮筋聯結,設x 秒后橡皮筋掃過的面積為2cm y .(1)當01x ≤≤時,求y 與x 之間的函數關系式; (2)當橡皮筋剛好觸及釘子時,求x 值;(3)當12x ≤≤時,求y 與x 之間的函數關系式,并寫出橡皮筋從觸及釘子到運動停止時POQ ∠的變化范圍;(4)當02x ≤≤時,請在給出的直角坐標系中畫出y 與x 之間的函數圖象.練習3. 如圖,已知拋物線l 1:y =x 2-4的圖象與x 軸相交于A 、C 兩點,B 是拋物線l 1上的動點(B 不與A 、C 重合),拋物線l 2與l 1關于x 軸對稱,以AC 為對角線的平行四邊形ABCD 的第四個頂點為D . (1) 求l 2的解析式;(2) 求證:點D 一定在l 2上;(3) □ABCD 能否為矩形?如果能為矩形,求這些矩形公共部分的面積(若只有一個矩形符合條件,則求此矩形的面積);如果不能為矩形,請說明理由. 注:計算結果不取近似值.三.二次函數與四邊形的動態探究例1.如圖1,在平面直角坐標系中,有一張矩形紙片OABC,已知O(0,0),A(4,0),C(0,3),点P是OA边上的动点(与点O、A不重合).现将△PAB沿PB翻折,得到△PDB;再在OC边上选取适当的点E,将△POE 沿PE翻折,得到△PFE,并使直线PD、PF重合.(1)设P(x,0),E(0,y),求y关于x的函数关系式,并求y的最大值;(2)如图2,若翻折后点D落在BC边上,求过点P、B、E的抛物线的函数关系式;(3)在(2)的情况下,在该抛物线上是否存在点Q,使△PEQ是以PE为GAGGAGAGGAFFFFAFAFGAGGAGAGGAFFFFAFAF直角边的直角三角形?若不存在,说明理由;若存在,求出点Q 的坐标.例2. 已知抛物线y =ax2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB <OC )是方程x 2-10x +16=0的两个根,且抛物线的对称轴是直线x =-2.(1)求A 、B 、C 三点的坐标; (2)求此抛物线的表达式;(3)连接AC 、BC ,若点E 是线段AB 上的一个动点(与点A 、点B 不重合),过点E 作EF ∥AC 交BC 于点F ,连接CE ,设AE 的长为m ,△CEF 的面积为S ,求S 与m 之间的函数关系式,并写出自变量m 的取值范围;图2图1(4)在(3)的基础上试说明S是否存在最大值,若存在,请求出S 的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.例3. 如图,矩形ABCD中,AB=3,BC=4,将矩形ABCD沿对角线A 平移,平移后的矩形为EFGH(A、E、C、G始终在同一条直线上),当点E与C重时停止移动.平移中EF与BC交于点N,GH与BC的延长线交于点M,EH与DC交于点P,FG与DC的延长线交于点Q.设S表示矩形PCMH的面积,S'表示矩形NFQC的面积.(1)S与S'相等吗?请说明理由.(2)设AE=x,写出S和x之间的函数关系式,并求出x取何值时S 有最大值,最大值是多少?GAGGAGAGGAFFFFAFAFGAGGAGAGGAFFFFAFAF(3)如图11,连结BE ,当AE 为何值时,ABE 是等腰三角形.练习1.如图12, 四边形OABC 为直角梯形,A (4,0),B (3,4),C (0,4). 点M 从O 出发以每秒2个单位长度的速度向A 运动;点N从B 同时出发,以每秒1个单位长度的速度向C 运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N 作NP 垂直x 轴于点P ,连结AC 交NP 于Q ,连结MQ .(1)点 (填M 或N )能到达终点;(2)求△AQM 的面积S 与运动时间t 的函数关系式,并写出自变量t 的取值范围,当t 为何值时,S 的值最大;(3)是否存在点M ,使得△AQM 为直角三角形?若存在,求出点M 的坐标,若不存在,说明理由.xN MQ PHGFEDCBA图QPN M HGFED CBA图GAGGAGAGGAFFFFAFAF练习2. 实验与探究(1)在图1,2,3中,给出平行四边形ABCD 的顶点A B D ,,的坐标(如图所示),写出图1,2,3中的顶点C 的坐标,它们分别是(52),, , ;(2)在图4中,给出平行四边形ABCD 的顶点A B D ,,的坐标(如图所示),求出顶点C 的坐标(C 点坐标用含a b c d e f ,,,,,的代数式表示);归纳与发现(3)通过对图1,2,3,4的观察和顶点C 的坐标的探究,你会发现:x图1x图2x图3)x图4GAGGAGAGGAFFFFAFAF无论平行四边形ABCD 处于直角坐标系中哪个位置,当其顶点坐标为()()()()A a b B c d C m n D e f ,,,,,,,(如图4)时,则四个顶点的横坐标a c m e ,,,之间的等量关系为 ;纵坐标b d n f,,,之间的等量关系为 (不必证明); 运用与推广(4)在同一直角坐标系中有抛物线2(53)y x c x c=---和三个点15192222G c c S c c ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,,,,(20)H c ,(其中0c >).问当c 为何值时,该抛物线上存在点P ,使得以G S H P ,,,为顶点的四边形是平行四边形?并求出所有符合条件的P 点坐标.参考答案:一.二次函数与四边形的形状例1.解:(1)令y=0,解得11x =-或23x =∴A (-1,0)B (3,0); 将C 点的横坐标x=2代入223y x x =--得y=-3,∴C (2,-3)∴直线AC 的函数解析式是y=-x-1GAGGAGAGGAFFFFAFAF(2)设P 点的横坐标为x (-1≤x ≤2)则P 、E 的坐标分别为:P (x ,-x-1), E (2(,23)x xx --∵P 点在E 点的上方,PE=22(1)(23)2x xx x x -----=-++∴当12x =时,PE 的最大值=94(3)存在4个这样的点F,分别是1234(1,0),(3,0),(4(4F F F F -练习 1.解:(1)由抛物线的对称轴是72x =,可设解析式为27()2y a x k =-+.把A 、B 两点坐标代入上式,得227(6)0,27(0) 4.2a k a k ⎧-+=⎪⎪⎨⎪-+=⎪⎩ 解之,得225,.36a k ==-故抛物线解析式为22725()326y x =--,顶点为725(,).26- (2)∵点(,)E x y 22725(326y x =--,∴y<0,即 -y>0,-y 表示点E 到OA 的距离.∵OA 是OEAF 的对角线,∴2172264(2522OAE S S OA yy ==⨯⨯⋅=-=--+.因为抛物线与x 轴的两个交点是(1,0)的(6,0),所以,自变量x 的取值范围是1<x <6.①根据题意,当S = 24时,即274()25242x --+=.化简,得271().24x -= 解之,得123, 4.x x ==x 故所求的点E有两个,分别为E1(3,-4),点E1(3,-4)满足OE = AE,所以OEAF点E2(4,-4)不满足OE = AE,所以OEAF②当OA⊥EF,且OA = EF时,OEAF③坐标只能是(3,-3).而坐标为(3,-3)的点不在抛物线上,故不存在这样的点E,使OEAF为正方形.练习 2.解:(1)由题意知点C'的坐标为(34)-,.设2l的函数关系式为2(3)4y a x=--.又点(10)A,在抛物线2(3)4y a x=--上,2(13)40a∴--=,解得1a=.∴抛物线2l的函数关系式为2(3)4y x=--(或265y x x=-+).(2)P与P'始终关于x轴对称,PP'∴与设点P的横坐标为m,则其纵坐标为2m-4OD=,22654m m∴-+=,即2652m m-+=±2652m m-+=时,解得3m=±265m m-+=解得3m=.∴当点P运动到(3-或(3+GAGGAGAGGAFFFFAFAF或(322)--,或(322)+-,时,P P OD '∥,以点D O P P ',,,为顶点的四边形是平行四边形. (3)满足条件的点M 不存在.理由如下:若存在满足条件的点M 在2l 上,则90AMB ∠=,30BAM ∠=(或30ABM ∠=),114222BM AB ∴==⨯=. 过点M 作ME AB ⊥于点E ,可得30BME BAM ∠=∠=.112122EB BM ∴==⨯=,3EM =,4OE =.∴点M 的坐标为(43)-,. 但是,当4x =时,246451624533y =-⨯+=-+=-≠-.∴不存在这样的点M 构成满足条件的直角三角形.练习 3. 解(1)点(40)A -,,点(20)B -,,点(08)E ,关于原点的对称点分别为(40)D ,,(20)C ,,(08)F -,. 设抛物线2C 的解析式是2(0)y ax bx c a =++≠,则16404208a b c a b c c ++=⎧⎪++=⎨⎪=-⎩,,.解得168a b c =-⎧⎪=⎨⎪=-⎩,,. 所以所求抛物线的解析式是268y x x =-+-.(2)由(1)可计算得点(31)(31)M N --,,,.GAGGAGAGGAFFFFAFAF过点N 作NH AD ⊥,垂足为H .当运动到时刻t 时,282AD OD t ==-,12NH t =+.根据中心对称的性质OA OD OM ON ==,,所以四边形MDNA 是平行四边形.所以2ADNS S =△.所以,四边形MDNA的面积2(82)(12)4148S t t t t =-+=-++. 因为运动至点A 与点D 重合为止,据题意可知04t <≤.所以,所求关系式是24148S t t =-++,t 的取值范围是04t <≤.(3)781444S t ⎛⎫=--+ ⎪⎝⎭,(04t <≤).所以74t =时,S 有最大值814. 提示:也可用顶点坐标公式来求.(4)在运动过程中四边形MDNA 能形成矩形. 由(2)知四边形MDNA 是平行四边形,对角线是AD MN ,,所以当AD MN =时四边形MDNA 是矩形.所以OD ON =.所以2222ODON OH NH ==+. 所以22420tt +-=.解之得1222t t ==,(舍).所以在运动过程中四边形MDNA可以形成矩形,此时2t =.[点评]本题以二次函数为背景,结合动态问题、存在性问题、最值问题,是一道较传统的压轴题,能力要求较高。
2023年九年级数学中考专题:二次函数综合压轴题(线段周长问题)(含简单答案)

(2)点P在直线 下方的抛物线上,连接 交 于点 ,过点 作 轴的垂线 ,垂线 交 于点 , 垂线 ,求证 ;当 最大时,求点P的坐标及 的最大值;
(3)在(2)的条件下,在 上是否存在点 ,使 是直角三角形,若存在,请直接写出点 的坐标;若不存在,请说明理由.
4.如图,已知抛物线与 轴交于点 , ,与 轴交于点 .
(3)若直线 与线段 交于点 (不与点 , 重合),则是否存在这样的直线 ,使得以 , , 为顶点的三角形与 相似?若存在,求出该直线的函数表达式及点 的坐标;若不存在,请说明理由.
8.如图,抛物线 与 轴交于 , 两点,与 轴交于点 .
(1)求该抛物线的解析式及顶点坐标;
(2)若点 是抛物线的对称轴与直线 的交点,点 是抛物线的顶点,求 的长;
(3) 或
13.(1)二次函数的解析式为 ;
(3)点P的坐标为 或 .
14.(1)
(2) ,或
(3)
15.(1)抛物线的函数关系式为 ;直线 的函数关系式为 ;
(2) 面积的最大值为 ;
(3)点M的坐标为 .
16.(1) ,
(2)
(3)最大值为4,此时
17.(1) ,
(2)
(3) 或 或
18.(1)
11.已知:抛物线 经过 三点.
(1)求抛物线的解析式;
(2)如图1,点P为直线 上方抛物线上任意一点,连接 , 交直线 于点E,设 ,求当k取最大值时点P的坐标,并求此时k的值.
(3)如图2,点Q为抛物线对称轴与x轴的交点,点C关于x轴的对称点为点D.求 的周长及 的值.
12.如图,抛物线 交 轴于 , 两点(点 在 的右边),与 轴交于点 ,连接 , .点 是第一象限内抛物线上的一个动点,点 的横坐标为 ,过点 作 轴,垂足为点 , 交 于点 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于二次函数的压轴题
四、抛物线与四边形
例题 1. 如图,抛物线经过A (-1,0),B (5,0),C (0,-52
)三点. (1)求抛物线的解析式;
(2)在抛物线的对称轴上有一点P ,使PA +PC 的值最小,求点P 的坐标;
(3)点M 为x 轴上一动点,在抛物线上是否存在一点N ,使以A ,C ,M ,N 四点构成的四边形为平行四边形若存在,求点N 的坐标;若不存在,请说明理由.
!
2. 如图,已知二次函数图像的顶点坐标为(2,0),直线1+=x y 与二次函数的图像交于A 、B 两点,其中点A 在y 轴上.
(1)二次函数的解析式为y = ;
(2)证明点(,21)m m --不在(1)中所求的二次函数的图像上;
(3)若C 为线段AB 的中点,过C 点作x CE ⊥轴于E 点,CE 与二次函数的图像交于D 点. ① y 轴上存在点K ,使以K 、A 、D 、C 为顶点的四边形是平行四边形,则K 点的坐标是 ; ②二次函数的图像上是否存在点P ,使得ABD POE S S ∆∆=2若存在,求出P 点坐标;若不存在,请
说明理由.
y
x
O "
B
C
练习:
1. 如图,抛物线14
17
452++-
=x x y 与y 轴交于A 点,过点A 的直线与抛物线交于另一点B ,过点B 作BC ⊥x 轴,垂足为点C (3,0). (1)求直线AB 的函数关系式;
(2)动点P 在线段OC 上从原点出发以每秒一个单位的速度向C 移动,过点P 作PN ⊥x 轴,交直线AB 于点M ,交抛物线于点N . 设点P 移动的时间为t 秒,MN 的长度为s 个单位,求s 与t 的函数关系式,并写出t 的取值范围;
(3)设在(2)的条件下(不考虑点P 与点O ,点C 重合的情况),连接CM ,BN ,当t 为何值时,四边形BCMN 为平行四边形对于所求的t 值,平行四边形BCMN 是否菱形请说明理由.
(
2. 如图所示,在平面直角坐标系x O y 中,正方形OABC 的边长为2cm ,点A 、C 分别在y 轴的负半
轴和x 轴的正半轴上,抛物线2y ax bx c =++经过点A 、B 和D (4,2
3
-).
(1)求抛物线的表达式.
(2)如果点P 由点A 出发沿AB 边以2cm/s 的速度向点C 运动,当其中一点到达终点时,另一点也随之停止运动,设S=2PQ (2cm ).
①试求出S 与运动时间t 之间的函数关系式,并写出t 的取值范围;
!
②当S 取5
4
时,在抛物线上是否存在点R ,使得以点P 、B 、Q 、R 为顶点的四边形是平行四边形如
O x
,
M
N
B
P
C
果存在,求出R点的坐标;如果不存在,请说明理由.
(3)在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标.
@
3. 如图,已知抛物线与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C(0,3).
(1)求抛物线的解析式;
(2)设抛物线的顶点为D,在其对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形若存在,求出符合条件的点P的坐标;若不存在,请说明理由;
(3)点M是抛物线上一点,以B,C,D,M为顶点的四边形是直角梯形,试求出点M的坐标.。