SCR技术介绍
SCR技术

ESC 循环中分别采用怠速为800r/ min, 转速为2 125 r/ min, 转速为2 710 r / min,转速为3 295 r/ min下。SCR 前 后气态污染物测试结果显示:大部分工况点NOx 转化率在 70 %~ 80% 左右, 个别工况点在50 %以下。 ETC循环中采用了快速加载和减载模拟瞬态工况。发动机 在1 s 内能够迅速将转速和扭矩加载至目标值。结果经修 正后将阶跃比例作为NOx 预测值的修正参考量如图:
随着柴油机越来越严格的排放法规的出台柴油机排放控制技术 有了很大的发展。但由于柴油机 自身燃烧方式原因,在颗粒物 (PM)排放和氮氧化物(NOx) 排 放之间存在此消彼长即所谓的 “trade-off”效应。 有研究表明,许多机内净化措施 以牺牲动力性及燃油经济性为代 价。因此柴油车达到国Ⅳ排放标准必须将机内净化不后处理技 术相结合。高效的排气后处理技术 SCR,同时还有对发动机改 动较小,对油品质要求丌高等优点。 SCR在国外得到了相当广 泛的应用,被验证是达到欧Ⅳ甚至欧Ⅴ最有效的后处理方法。
4NH3+3O2→2N2+6H2O
温度对SCR催化转换器的工 作效率有着一定的影响。钒 基催化剂的高效温度范围为 250~500℃。一般中重型 发动机排气温度很少能达到 这么高的温度。沸石分成铜 基和铁基沸石。铜基在低温 时催化能力较强,适用于排 温较低的发动机,铁基适合于排温较高的发动机。沸石的 价格较高。右图为各种催化剂的高效催化性能温度范围。 丌同温度下催化剂转化效率。
SCR(selective
catalysis reduction)技术是指在富 氧条件下,选用合适的催化剂(V2O5-TiO2、AgAl2O3、以及人造沸石等),使还原剂不废气中 NOx的化学反应被催化加速。试验证明采用氨水 做还原剂可以降低NOx排放量90%以上,但需要较 复杂的控制系统,丏残留微量的氨对人体危害较 为严重。所以目前比较有倾向性的看法是采用质 量分数32.5%尿素水溶液作为柴油机SCR的还原剂 (Urea-SCR)。这是由于尿素的水溶液在高于 200℃下即产生氨: (NH2)2CO +H2O→2NH3+ CO
scr法主要机理

scr法主要机理摘要:一、SCR 法简介1.SCR 技术的背景2.SCR 技术的发展历程二、SCR 法的主要机理1.选择性催化还原2.反应过程的化学方程式3.催化剂的作用三、SCR 法的优点1.高效性2.选择性3.环保性四、SCR 法的应用领域1.工业生产2.汽车尾气处理正文:SCR 法,即选择性催化还原法(Selective Catalytic Reduction),是一种在气相中进行污染物处理的技术。
该技术通过使用催化剂,促使有害气体如氮氧化物(NOx)与还原剂(如氨、尿素等)发生反应,生成无害的氮气和水。
这种方法具有高效、选择性和环保等优点,已经在多个领域得到广泛应用。
SCR 技术最初应用于工业生产过程,如电力、钢铁、水泥等行业,以降低氮氧化物的排放。
近年来,随着汽车尾气排放标准的日益严格,SCR 法在汽车尾气处理方面的应用也得到了快速发展。
其中,柴油车尾气处理是SCR 技术应用最为广泛的领域。
SCR 法的主要机理是选择性催化还原。
在这个过程中,催化剂促使还原剂与氮氧化物在气相中发生反应,生成无害的氮气和水。
具体反应过程的化学方程式为:Ox + NH3 → N2 + H2O在这个过程中,催化剂起到关键作用,其性能直接影响SCR 法的效果。
理想的催化剂应具有高活性、高选择性和长寿命等优点。
SCR 法的优点主要体现在高效性、选择性和环保性。
首先,与传统的氮氧化物处理方法相比,SCR 法具有更高的处理效率,可实现高达90% 以上的氮氧化物去除率。
其次,SCR 法具有很好的选择性,只与氮氧化物发生反应,而不影响其他气体成分。
最后,SCR 法可以实现氮氧化物的资源化利用,降低对环境的影响。
总之,SCR 法作为一种高效、选择性和环保的氮氧化物处理技术,已经在工业生产、汽车尾气处理等领域得到广泛应用。
SCR脱硝技术概述

SCR脱硝技术概述我国年煤耗量的84 %直接用于燃烧,对于燃煤电厂则是100 %的燃烧。
如此大量的煤炭燃烧将会导致NOX 排放量剧增。
由于NOX 对人类和自然界存在危害,所以必须控制NOX 的生成和排放。
烟气脱硝是目前发达国家普遍采用的减少NOX 排放的方法,具有很高的脱除效率,应用较多的是选择性催化还原法( SCR) 。
1SCR技术的原理SCR是一个燃烧后NOX 控制工艺,其包括将氨气喷入电站锅炉燃煤产生的烟气中;含有氨气的烟气通过一个含有专用催化剂的反应器;在催化剂的作用下,氨气同NOX 发生反应,转化成水和氮气等几个过程。
反应基本方程式:4NH3 + 4NO +O2 →4N2 + 6H2O4NH3 + 6NO→5N2 + 6H2O8NH3 + 6NO2 →7N2 + 12H2O4NH3 + 2NO2 +O2 →3N2 + 6H2O通过使用适当的催化剂,上述反应可以在200 ℃- 450 ℃的温度范围内有效进行。
在NH3 /No = 1 (物质的量比) 的条件下, 可以得到80 % - 90 %的脱硝率。
在反应过程中, NH3 可以选择性地和NOX 反应生成N2 和H2O,而不是被O2 所氧化,因此反应又被称为“选择性”。
2国外SCR应用情况选择性催化还原( selective catalytic reduction:SCR)技术是一项降低NOX 排放量的有效技术,另外它被证明在当前的流行的技术安装消费中是高性能,比较经济的解决方案,是应用最多且是最成熟的技术之一。
采用该法脱硝的反应温度取决于催化剂的种类,该方法能达到80% ~90%的NOX 降低率。
目前这一技术在发达国家已经得到了比较广泛的应用,欧洲、日本、美国是当今世界上对燃煤电厂NOX 排放控制最先进的地区和国家,他们除了采取燃烧控制之外,大量使用的是SCR烟气脱硝技术。
日本和德国的一些燃煤电厂燃用中硫煤的实际应用数据表明,无论是烟气中的飞灰、SO2 /SO 3, NH3 的过量渗漏,还是SO2 过多生成SO3 ,都不会给SCR技术的操作带来异常困难。
烟气脱硝(SCR)技术和相关计算

6.氨消耗量的粗略计算
假设锅炉排放NOx浓度为400mg/m3,将锅炉NOx 排放浓度视为NO浓度和NO2浓度之和计算的氨 消耗量。
4NO + 4NH3 + O2→ 4N2+ 6H2O (1) 2NO2 + 4NH3 + O2→ 3N2 + 6H2O (2)
C NO+C NO2 = 400
(1)
4.2 SCR技术原理
作选为择还性原催剂化,还在原金法属(催SC化R技剂术作)用是下以,氨将(NONxH的3) 还原成无害的N2和H2O。 NH3有选择的与烟气中 NOx反应,而自身不被烟气中的残余的O2氧化, 因此称这种方法为“选择性”。 有氧条件下反应式如下:
4NO + 4NH3 + O2→ 4N2+ 6H2O 2NO2 + 4NH3 + O2→ 3N2 + 6H2O
4. 烟气脱硝SCR工艺
目前世界上使用最广泛的方法是选择性催化还原法(SCR) 和选择性 非催化还原(SNCR) 。 • SCR技术:选择性催化还原法(SCR为Selected Catalytic Reduction英文缩写) • SNCR技术:选择性非催化还原法(SNCR英文缩写为Selected Non-Catalytic Reduction英文缩写) • SNCR/SCR混合法技术:选择性非催化还原法和选择性催化还原 法的混合技术
烟气脱硝(SCR)技术及相关计算
内容目录
1. 火电厂烟气脱硝基本概念 2. 氮氧化物生成机理 3. 减少氮氧化物排放的方法 4. 烟气脱硝SCR工艺 5. 运行注意事项 6. 氨消耗量的粗略计算
1. 火电厂烟气脱硝基本概念
烟气脱硝是NOx生成后的控制措施,即对燃烧后产生 的含NOx的烟气进行脱氮处理的技术方法。
scr工艺技术

scr工艺技术SCR工艺技术(Silicon Controlled Rectifier Technology)是一种用于电力控制的半导体器件技术,其具有高可靠性、稳定性和效率高的特点。
SCR工艺技术在电力、电子和通信等领域都得到了广泛应用。
SCR工艺技术通过将PN结反向偏置产生的内电场和外加电压共同作用,使得外加电压超过规定阈值时,PN结能够突破反向阻挡层而形成导通通道。
这使得SCR能够在交流电源的半周期内,将直流电通过,起到电流控制和电压变换的作用。
由于SCR的导通点和关断点只在一定电压和电流范围内工作,可以精确地控制电力输出,实现对电力系统的高效管理。
SCR工艺技术具有许多优势。
首先,SCR工艺技术具有较高的可靠性。
由于SCR内部结构简单,工艺稳定,可长时间工作在高电压和高电流下,不易损坏。
其次,SCR工艺技术具有较高的效率。
SCR的导通电阻很小,能够在很低的控制功率下实现高电流输出,减少功率损耗。
同时,SCR还具有高开关速度,能够快速地响应信号,实现高精度的电力控制。
SCR工艺技术广泛应用于电力系统中。
它可以用作电流调节器,用于稳定电力系统中的电流输出。
SCR还可以用于电炉控制系统,实现对电炉温度的精确控制。
此外,SCR还可以应用于电力变换和逆变系统,调整交流电的输出电压和频率,满足不同设备的工作需求。
SCR工艺技术还可以在电力通信系统中用作信号放大器,通过控制SCR的导通和关断,实现对信号的放大和传递。
SCR工艺技术的应用范围非常广泛,可以满足各种电力控制需求。
需要注意的是,SCR工艺技术在应用过程中需要注意保护。
由于SCR的导通和关断需要外加电压超过一定值,因此在应用中必须对电路进行合理设计,避免过高的电压和电流对SCR的损害。
此外,SCR在导通状态下会发生能量消耗和热量产生,需要合理散热和温度控制,以确保SCR正常工作。
总之,SCR工艺技术是一种重要的电力控制技术,具有高可靠性、稳定性和效率高的特点。
SCR技术介绍范文

SCR技术介绍范文SCR技术,全称为选择性催化还原(Selective Catalytic Reduction),是一种用于减少柴油发动机尾气中氮氧化物(NOx)排放的先进排放控制技术。
SCR技术通过催化剂将尾气中的NOx转化为无害的氮气和水蒸气,从而达到减少或消除NOx排放的目的。
SCR技术原理比较简单。
主要的工作步骤包括尾气混合、氨的喷射和催化还原三个阶段。
首先,通过废气处理装置将尾气中的颗粒物和硫化氢去除,然后将不含有害物质的尾气送入SCR装置。
接着,在SCR催化剂上喷射一定量的氨水(NH3),氨分子进入催化剂表面与尾气中的NOx发生反应,NOx会在催化剂上被氨还原成为氮气和水蒸气。
最后,被还原的氮气和水蒸气通过排气管排放到大气中,实现了NOx的净化。
1.高效净化:SCR技术在高温条件下工作,催化剂的选择性使得只有NOx在其中发生催化还原反应,因此能够高效净化尾气中的NOx。
同时,催化剂在SCR反应的过程中稳定性好,具有较长的使用寿命。
2.灵活适应:SCR技术可以适应不同负载工况下的发动机排放要求,通过调整供氨量来协调尾气中的NOx和氨的配比,使得SCR系统能够在不同工况下保持高度的净化效率。
3.节能环保:SCR技术不会对发动机的燃烧过程和燃油消耗产生影响,因此可以使发动机保持较高的燃油经济性。
而且,SCR技术在催化还原过程中没有二次污染物产生,对环境无害。
1.氨溢出:由于SCR系统中氨的注入和NOx的含量可能存在不匹配,会导致氨的溢出。
氨的溢出会在空气中形成刺激性的气味,并可能对人体健康造成影响。
因此,针对氨溢出问题需要确保SCR系统的效率和稳定性。
2.氧化剂需求:SCR技术需要额外的氧化剂来将氨氧化为氮气和水蒸气。
如果氧化剂的供应不足,就会导致SCR系统的催化效率下降。
因此,需要保证氧化剂的充足供应,以确保SCR系统的正常运行。
3.温度敏感性:SCR技术对温度要求较高,通常在200°C以上才能实现高效的催化还原。
SCR的名词解释

SCR的名词解释SCR,全称为选择性催化还原(Selective Catalytic Reduction),是一种减少柴油发动机废气中氮氧化物(NOx)排放的先进技术。
本文将对SCR技术进行详细解释,介绍其原理、应用、优势和发展前景。
一、SCR技术的原理SCR技术利用催化剂将废气中的NOx与尿素溶液(也称为尿素水溶液或尿素选择性催化还原液)发生化学反应,转化为无害的氮气(N2)和水蒸气(H2O)。
这个过程需要在高温下进行,因此通常在废气管路中设置一个催化转化器。
催化转化器内部的催化剂能够将NOx和尿素溶液快速反应,以减少废气中的有害物质排放。
二、SCR技术的应用SCR技术最初是为了符合柴油发动机在欧洲和美洲的严格排放标准而研发的。
在柴油车辆中广泛应用SCR技术后,其排放的污染物明显减少,达到了更加环保的要求。
目前,SCR技术已广泛应用于燃煤发电厂、工业锅炉等领域,以降低排放煤烟中的NOx含量。
此外,SCR技术还可以用于一些特殊场合,如船舶排放控制和工业废气处理等。
三、SCR技术的优势1. 显著减少NOx排放:SCR技术能够将柴油发动机和燃煤锅炉等设备排放的有害氮氧化物转化为无害氮气和水蒸气,有效降低空气污染。
2. 省油节能:与传统的后处理技术相比,SCR技术对发动机的燃烧效率几乎没有影响,不会增加燃油消耗,因此具有较低的油耗成本。
3. 高稳定性和耐久性:SCR技术运行稳定可靠,能够长时间降低废气中的NOx排放,有助于保护环境和人体健康。
四、SCR技术的发展前景随着全球环保意识的增强和国际排放标准的不断提高,SCR技术将在未来得到进一步推广和应用。
目前,一些国家和地区已将SCR技术纳入法规要求,推动车辆和工业设备的环保升级。
未来,SCR技术还有望与其他先进技术相结合,如氨切割(Ammonia Slip)监控和催化剂再生,以进一步提高其性能和应用范围。
总结:SCR技术是一项关键的废气处理技术,通过选择性催化还原将废气中的NOx转化为无害物质,减少对环境的污染。
SCR法脱硝技术简介

SCR 法脱硝技术简介一、SCR 脱硝原理SCR 的全称为选择性催化还原法(Selective Catalytic Reducation)。
催化还原法是用氨或尿素之类的还原剂,在一定的温度下通过催化剂的作用,还原废气中的NO x (NO 、NO 2),将NO x 转化非污染元素分子氮(N 2),NO x 与氨气的反应如下:CO(NH 2)2+H 2O→2NH 3+CO 2(尿素热解,氨水无热解直接使用)4NO + 4NH 3 + O 2 → 4N 2 + 6H 2O6NO 2+8NH 3→7N 2+12H 2OSCR 系统包括催化剂反应器、还原剂制备系统、氨喷射系统及相关的测试控制系统。
SCR 工艺的核心装置是催化剂和反应器,有卧式和立式两种布置方式,本项目采用卧式。
该工艺为最新成熟工艺。
二、工艺流程变化现有生产工艺流程:增加SCR 系统工艺流程:氮氧化物 一级水吸收 二级水吸收 碱吸收 总碱塔吸收 氧化塔转化吸收 总塔吸收后排放 氮氧化物 一级水吸收 二级水吸收 碱吸收 总碱塔吸收氧化塔转化吸收 SCR 系统催化还原 总塔吸收后排放三、工艺变更的目的及效果:3.1现有工艺全部采用水、碱喷射强制吸收,喷射泵运行较多,运行成本高。
尾气排放每天监测大约在80~110mg/m3,虽符合国家及当地排放要求,但是排放指标偏上。
3.2根据国家政策,在原有工艺基础上,在氧化塔与总吸收排放塔之间增加SCR催化还原吸收系统,在原有排放的基础上再次深度治理,可保证尾气排放指标≤50mg/m3。
前面工序喷射泵可停止部分使用,降低能耗及噪声污染。
四、项目投资:SCR系统总投资为:78万元。
配套辅助工程管道、原料储罐投资约4万元。
合计投资:84万元。
以上投资全部为环保设备设施投资。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沸石( Zeolite)
150-450℃ 新技术 价格昂贵 主要用于日本 不含重金属
SCR结构-封装与尿素箱
SCR结构-与POC的对比
SCR系统结构-整车布置
SCR系统结构
SCR特性-还原剂
140 120 100
Temperature C
80 60 40 20 0 -20 0 10 20 30 40 50 60 70 Weight Percent Urea in Water 80 90 100
• 不依赖VGT
SCR特点-其它优点
• 动力性好
• 可满足更严格排放标准要求
• 对冷却系统要求低 • 发动机外围附件少 • 不易堵塞 • NO2排放少
SCR特点-缺点 • 需要添加尿素
• 需要安装尿素箱
• 需要尿素溶液加热装置 • 成本高于EGR+DPF系统 • 有氨气溢出可能 • 易于作弊
DeNOx [%]
120
30
100
80 20 60
本曲线由BASF提供
40 10 20
0 0 0,2 0,4 0,6 0,8 1 1,2
0
n(NH3)/n(NOx) [-]
SCR特点-低油耗
SCR特点-低油耗
SCR特点-低油耗
SCR特点-高可靠性
• 爆发压力低
• 进气无微粒和胶质
• 对燃油含硫量不敏感 • 不需要再生
SCR技术介绍
目录
• • • • • 重型车用柴油机排放法规及对策 SCR原理 SCR结构 SCR特性 SCR特点
重型车用柴油机排放法规及对策
直列泵
DPF/POC
EGR 电控燃油系统
SCR
SCR原理-含义
• Selective(选择性) • Catalytic(催化) • Reduction(还原)
n(NH3)/n(NOx) [-]
SCR特性-转化效率与氨溢出量
100 50 90 45 80 40
70
35
T=320℃
NH3 Slip [ppm]
DeNOx 2nd Gen DeNOx 1st Gen NH3-Slip 2nd Gen NH3-Slip 1st Gen
DeNOx [%]
60
30
50
SCR原理-选择性 催化剂应避免NH3被氧化为NO 4NH3 +5O2 -> 4NO+6H2O
SCR结构
SCR结构
N2
NOx O2 催化器 H2O O2
排气
NH3 或尿素
SCR系统结构-载体
金属载体 陶瓷载体
SCR结构-催化剂
TiO2 - WO3 - V2O5
240-450℃ 技术成熟 成本低 欧洲普遍使用 日本禁止使用
SCR原理-还原 • • • • 将废气中的NOx还原成N2 采用尿素水溶液作为还原剂 尿素在高温下分解成成 NH3 和CO2 实际上的还原剂为NH3
SCR原理-还原反应 – 4NO +4NH3 + O2 → 4N2 + 6H2O – 2NO2 +4NH3 + O2 → 3N2 + 6H2O – 6NO2 + 8NH3 → 7N2 + 12H2O – NO + NO2 + 2NH3 → 4N2 + 12H2O
T=408℃
NH3 Slip [ppm]
DeNOx 2nd Gen DeNOx 1st Gen NH3-Slip 2nd Gen NH3-Slip 1st Gen
DeNOx [%]
60
30
50
25
40
20
30
15
本曲线由BASF提供
20 10
10
5
0 0 0.2 0.4 0.6 0.8 1 1.2
0
25
402030 Nhomakorabea15本曲线由BASF提供
20
10
10
5
0 0 0,2 0,4 0,6 0,8 1 1,2
0
n(NH3)/n(NOx) [-]
SCR特性-转化效率与氨溢出量
60 200 180 50 160
140 40
T=260℃
NH3 Slip [ppm]
DeNOx 2nd Gen DeNOx 1st Gen NH3-Slip 2nd Gen NH3-Slip 1st Gen
32.5%尿素水溶液,冰点-11℃,消耗量约为燃油的4%
SCR特性-转化效率与氨溢出量 • 原机NOx排放应<10 g/kw.h
• 转化效率达到65%可满足国IV
• 转化效率达到80%可满足国V
• 氨溢出量应<25 ppm
SCR特性-转化效率与氨溢出量
100 50 90 45 80 40
70
35