线性规划常见题型大全 (2)

合集下载

例谈线性规划的常见题型及其解法

例谈线性规划的常见题型及其解法

线性规划是高考数学必考的内容,侧重于考查同学们的数学建模、数学运算、数学分析等能力.线性规划问题的类型有很多,在本文中笔者总结了几类常见的线性规划题型及其解法,以帮助同学们加深对线性规划题型及其解法的了解.类型一:求目标函数的最值求目标函数的最值是线性规划中的一类常见题型,主要有两种形式:(1)求线性目标函数的最值;(2)求非线性目标函数的最值.无论是哪一种,解题的基本思路都是:(1)画出约束条件所确定的平面区域;(2)将目标函数变形为斜截式直线方程、两点间的距离、直线的斜率等;(3)在可行域内寻找取得最优解的对应点的位置;(4)解方程组求出对应点的坐标(即最优解),代入目标函数,即可求出最值.例1.已知x、y满足以下约束条件ìíîïï2x+y-2≥0,x-2y+4≥0,3x-y -3≤0,则z=x2+y2的最大值和最小值分别是_____.解:作出如图1所示的可行域,将z=x2+y2可以看作点()x,y到原点的距离的平方,由图可知,在可行域内点A到原点的距离的平方最大,即||AO2=13,直线2x+y-2=0到原点的距离的平方最小,为d2=æèççöø÷÷||0-222+122=45,所以z=x2+y2的最大值和最小值分别是13和45.在求目标函数的最值时,同学们要注意将目标函数进行适当的变形,深入挖掘其几何意义,将其看作直线的斜率、截距、两点间的距离等,然后在可行域内寻找取得最值的点.类型二:求可行域的面积求可行域的面积的关键在于根据约束条件画出正确的图形,然后将可行域拆分、补充为规则的几何图形,如三角形、平行四边形、矩形等,再利用三角形、平行四边形、矩形等的面积公式进行求解.例2.已知不等式组ìíîïï2x+y-6≥0,x+y-3≤0,y≤2,则该不等式表示的平面区域的面积为_____.解:根据所给的不等式组作出可行域,如图2所示,由图2可知△ABC的面积即为所求.显然S△ABC=S梯形OMBC-S梯形OMAC,S梯形OMBC=12×()2+3×2=5,S梯形OMAC=12×()1+3×2=4,所以S△ABC=S梯形OMBC-S梯形OMAC=5-4=1.本题中的可行域为三角形,而该三角形的面积很难直接求得,于是将其看作梯形OMAB的一部分,将梯形OMAB的面积减去梯形OMAC的面积,便可得到三角形ABC的面积.类型三:求参数的取值或者范围很多线性规划问题中含有参数,要求其参数的取值或范围,首先要确定可行域,然后结合题意寻找符号条件的最优解,建立相对应的关系式,便可求得参数的取值或者范围.例3.已知x、y满足以下约束条件ìíîïïx+y≥5,x-y+5≤0,x≤3,使z=x+ay()a>0取得最小值的最优解有无数个,则a的值为_____.解:根据约束条件作出可行域,如图3所示,作出直线l:x+ay=0,要使目标函数z=x+ay()a>0取得最小值的最优解有无数个,可将直线l向右上方平移,使之与直线x+y=5重合,故a=1.通常含有参数的目标函数图象是不确定的,因此正确绘制出可行域十分关键,只有对问题中的所给条件进行正确的分析,才能快速找到正确的解题思路.通过对上述三类题型的分析,同学们可以发现线性规划问题都比较简单,按照基本的解题步骤:画图—变形目标函数—寻找最优解对应的点—求值便能得到答案.同学们在解答线性规划问题时还需重点关注特殊点、直线,这些特殊的点、位置常常是取得最优解的点或者位置.(作者单位:江苏省江阴市第一中学)承小华图1图2图3方法集锦45。

线性规划的常见题型

线性规划的常见题型

线性规划的常见题型一、基础能力【一】已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =2x +3y 的取值范围为( )A .[7,23]B .[8,23]C .[7,8]D .[7,25]【二】变量x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1,(1)设z =y2x -1,求z 的最小值;(2)设z =x 2+y 2,求z 的取值范围;(3)设z =x 2+y 2+6x -4y +13,求z 的取值范围.技能掌握1.求目标函数的最值的一般步骤为:一画二移三求.其关键是准确作出可行域,理解目标函数的意义.2.常见的目标函数有: (1)截距型:形如z =ax +by .求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求直线的截距zb 的最值,间接求出z 的最值.(2)距离型:形一:如z =(x -a )2+(y -b )2,z =x 2+y 2+Dx +Ey +F ,此类目标函数常转化为点(x ,y )与定点的距离;形二:z =(x -a )2+(y -b )2,z =x 2+y 2+Dx +Ey +F ,此类目标函数常转化为点(x ,y )与定点的距离的平方.(3)斜率型:形如z =y x ,z =ay -b cx -d ,z =ycx -d ,z =ay -b x ,此类目标函数常转化为点(x ,y )与定点所在直线的斜率.二、题型分解题型一:求线性目标函数的最值1.设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z =2x -y 的最大值为( )A .10B .8C .3D .22.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2≥0,x -y +3≥0,2x +y -3≤0,则目标函数z =x +6y 的最大值为( )A .3B .4C .18D .403.若点(x ,y )位于曲线y =|x |与y =2所围成的封闭区域,则2x -y 的最小值为( ) A .-6 B .-2 C .0D .2题型二:求非线性目标的最值4.在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x -y -2≥0,x +2y -1≥0,3x +y -8≤0所表示的区域上一动点,则直线OM斜率的最小值为( )A .2B .1C .-13D .-125.已知实数x ,y 满足⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y ,则z =2x +y -1x -1的取值范围 . 6.设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +y ≤2y -x ≤2,y ≥1,则x 2+y 2的取值范围是( )A .[1,2]B .[1,4]C .[2,2]D .[2,4]7.设D 为不等式组⎩⎪⎨⎪⎧x ≥0,2x -y ≤0,x +y -3≤0所表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为________.8.设不等式组⎩⎪⎨⎪⎧x ≥1,x -2y +3≥0,y ≥x所表示的平面区域是Ω1,平面区域Ω2与Ω1关于直线3x -4y -9=0对称.对于Ω1中的任意点A 与Ω2中的任意点B ,|AB |的最小值等于( )A .285B .4C .125D .2题型三:求线性规划中的参数9.若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是A .73B .37C .43D .3410.若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为( )A .2B .-2C .12D .-1211.x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为A .12或-1B .2或12C .2或1D .2或-112.在约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤s ,y +2x ≤4.下,当3≤s ≤5时,目标函数z =3x +2y 的最大值的取值范围是( )A .[6,15]B .[7,15]C .[6,8]D .[7,8]13.设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x 3a +y 4a ≤1,若z =x +2y +3x +1的最小值为32,则a 的值为________.题型四:线性规划的实际应用14.A,B两种规格的产品需要在甲、乙两台机器上各自加工一道工序才能成为成品.已知A产品需要在甲机器上加工3小时,在乙机器上加工1小时;B产品需要在甲机器上加工1小时,在乙机器上加工3小时.在一个工作日内,甲机器至多只能使用11小时,乙机器至多只能使用9小时.A产品每件利润300元,B产品每件利润400元,则这两台机器在一个工作日内创造的最大利润是________元.15.某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)试用每天生产的卫兵个数x与骑兵个数y表示每天的利润w(元);(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?三、练习巩固一、选择题1.已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为( ) A .(-24,7)B .(-7,24)C .(-∞,-7)∪(24,+∞)D .(-∞,-24)∪(7,+∞)2.若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +2y ≥3,2x +y ≤3,则z =x -y 的最小值是( )A .-3B .0C .32D .33.已知O 为坐标原点,A (1,2),点P 的坐标(x ,y )满足约束条件⎩⎪⎨⎪⎧x +|y |≤1,x ≥0,则z =OA →·OP →的最大值为( )A .-2B .-1C .1D .24.已知实数x ,y 满足:⎩⎪⎨⎪⎧x -2y +1≥0,x <2,x +y -1≥0,则z =2x -2y -1的取值范围是( )A .⎣⎡⎦⎤53,5B .[0,5]C .⎣⎡⎭⎫53,5D .⎣⎡⎭⎫-53,5 5.如果点(1,b )在两条平行直线6x -8y +1=0和3x -4y +5=0之间,则b 应取的整数值为( ) A .2 B .1 C .3D .06.已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x +y 的取值范围是( )A .(1-3,2)B .(0,2)C .(3-1,2)D .(0,1+3)7.在平面直角坐标系xOy 中,P 为不等式组⎩⎪⎨⎪⎧y ≤1,x +y -2≥0,x -y -1≤0,所表示的平面区域上一动点,则直线OP 斜率的最大值为( )A .2B .13C .12D .18.在平面直角坐标系xOy 中,已知平面区域A ={(x ,y )|x +y ≤1,且x ≥0,y ≥0},则平面区域B ={(x +y ,x -y )|(x ,y )∈A }的面积为( )A .2B .1C .12D .149.设x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -2≤0,x -y ≥0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为4,则ab的取值范围是( )A .(0,4)B .(0,4]C .[4,+∞)D .(4,+∞)10.设动点P (x ,y )在区域Ω:⎩⎪⎨⎪⎧x ≥0,y ≥x ,x +y ≤4上,过点P 任作直线l ,设直线l 与区域Ω的公共部分为线段AB ,则以AB 为直径的圆的面积的最大值为( )A .πB .2πC .3πD .4π11.变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥-1,x -y ≥2,3x +y ≤14,若使z =ax +y 取得最大值的最优解有无穷多个,则实数a 的取值集合是( )A .{-3,0}B .{3,-1}C .{0,1}D .{-3,0,1}12.设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a =( )A .-5B .3C .-5或3D .5或-313.若a ≥0,b ≥0,且当⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1时,恒有ax +by ≤1,则由点P (a ,b )所确定的平面区域的面积是( )A .12B .π4C .1D .π214.设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m <0,y -m >0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2.求得m 的取值范围是( )A .⎝⎛⎭⎫-∞,43B .⎝⎛⎭⎫-∞,13 C .⎝⎛⎭⎫-∞,-23D .⎝⎛⎭⎫-∞,-53 15.设不等式组⎩⎪⎨⎪⎧x +y -11≥0,3x -y +3≥0,5x -3y +9≤0表示的平面区域为D .若指数函数y =a x 的图象上存在区域D 上的点,则a 的取值范围是 ( )A .(1,3]B .[2,3]C .(1,2]D .[3,+∞)16.已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为( )A .5B .29C .37D .4917.在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧y ≥0,y ≤x ,y ≤k (x -1)-1表示一个三角形区域,则实数k 的取值范围是( )A .(-∞,-1)B .(1,+∞)C .(-1,1)D .(-∞,-1)∪(1,+∞)18.已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,|x |-y -1≤0,则z =2x +y 的最大值为( )A .4B .6C .8D .1019.当变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥x x +3y ≤4x ≥m 时,z =x -3y 的最大值为8,则实数m 的值是( )A .-4B .-3C .-2D .-120.已知O 为坐标原点,A ,B 两点的坐标均满足不等式组⎩⎪⎨⎪⎧x -3y +1≤0,x +y -3≤0,x -1≥0,则tan ∠AOB 的最大值等于( )A .94B .47C .34D .12二、填空题21.不等式组 ⎩⎪⎨⎪⎧x +y -2≥0,x +2y -4≤0,x +3y -2≥0表示的平面区域的面积为________.22.若实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1,则x +y 的取值范围是________.23.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,x -3y +4≤0,则目标函数z =3x -y 的最大值为____.24.已知实数x ,y 满足⎩⎪⎨⎪⎧x +y -1≤0,x -y +1≥0,y ≥-1,则w =x 2+y 2-4x -4y +8的最小值为________.25.在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x +3y -6≤0,x +y -2≥0,y ≥0所表示的区域上一动点,则|OM |的最小值是________.26.某企业生产甲、乙两种产品,已知生产每吨甲产品要用水3吨、煤2吨;生产每吨乙产品要用水1吨、煤3吨.销售每吨甲产品可获得利润5万元,销售每吨乙产品可获得利润3万元,若该企业在一个生产周期内消耗水不超过13吨,煤不超过18吨,则该企业可获得的最大利润是______万元.27.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表:________亩. 28.若A 为不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x ≤2表示的平面区域,则当a 从-2连续变化到1时,动直线x +y =a 扫过A 中的那部分区域的面积为________.29.当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值范围是________.30.已知动点P (x ,y )在正六边形的阴影部分(含边界)内运动,如图,正六边形的边长为2,若使目标函数z =kx +y (k >0)取得最大值的最优解有无穷多个,则k 的值为________.31.设m >1,在约束条件⎩⎪⎨⎪⎧y ≥x ,y ≤mx ,x +y ≤1下,目标函数z =x +my 的最大值小于2,则m 的取值范围 .32.已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,若目标函数z =x -y 的最小值的取值范围是[-2,-1],则目标函数的最大值的取值范围是________.33.给定区域D :⎩⎪⎨⎪⎧x +4y ≥4,x +y ≤4,x ≥0.令点集T ={(x 0,y 0)∈D |x 0,y 0∈Z ,(x 0,y 0)是z =x +y 在D 上取得最大值或最小值的点},则T 中的点共确定________条不同的直线.34.已知向量a =(x +z,3),b =(2,y -z ),且a ⊥b .若x ,y 满足不等式|x |+|y |≤1,则z 的取值范围为__________.35.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +4y -13≤02y -x +1≥0x +y -4≥0且有无穷多个点(x ,y )使目标函数z =x +my 取得最小值,则m =________.。

八种经典线性规划例题(超实用)

八种经典线性规划例题(超实用)

线性规划常见题型及解法由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。

一、求线性目标函数的取值范围例1、 若x 、y 满足约束条件222x y x y ≤⎧⎪≤⎨⎪+≥⎩,则z=x+2y 的取值范围是 ( )A 、[2,6]B 、[2,5]C 、[3,6]D 、(3,5]解:如图,作出可行域,作直线l :x+2y =0,将l 向右上方平移,过点A (2,0)时,有最小值 2,过点B (2,2)时,有最大值6,故选 A二、求可行域的面积例2、不等式组260302x y x y y +-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为 ( )A 、4B 、1C 、5D 、无穷大解:如图,作出可行域,△ABC 的面积即为所求,由梯形OMBC的面积减去梯形OMAC 的面积即可,选 B三、求可行域中整点个数例3、满足|x|+|y|≤2的点(x ,y )中整点(横纵坐标都是整数)有( ) A 、9个 B 、10个 C 、13个 D 、14个解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0)2(0,0)x y x y x y x y x y x y x y x y +≤≥≥⎧⎪-≤≥⎪⎨-+≤≥⎪⎪--≤⎩作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 D四、求线性目标函数中参数的取值范围例4、已知x 、y 满足以下约束条件5503x y x y x +≥⎧⎪-+≤⎨⎪≤⎩,使z=x+ay(a>0)取得最小值的最优解有无数个,则a 的值为 ( ) A 、-3 B 、3 C 、-1 D 、1解:如图,作出可行域,作直线l :x+ay =0,要使目标函数z=x+ay (a>0)取得最小值的最优解有无数个,则将l 向右上方平移后与直线x+y =5重合,故a=1,选 D五、求非线性目标函数的最值例5、已知x 、y 满足以下约束条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z=x 2+y 2的最大值和最小值分别是( )A 、13,1B 、13,2C 、13,45D 、5解:如图,作出可行域,x 2+y 2是点(x ,y )到原点的距离的平方,故最大值为点A (2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x +y -2=0的距离的平方,即为45,选 C 六、求约束条件中参数的取值范围例6、已知|2x -y +m|<3表示的平面区域包含点(0,0)和(-1,1),则m 的取值范围是 ( ) A 、(-3,6) B 、(0,6) C 、(0,3) D 、(-3,3)解:|2x -y +m|<3等价于230230x y m x y m -++>⎧⎨-+-<⎩由右图可知3330m m +>⎧⎨-<⎩ ,故0<m <3,选 C七·比值问题当目标函数形如y az x b-=-时,可把z 看作是动点(,)P x y 与定点(,)Q b a 连线的斜率,这样目标函数的最值就转化为PQ 连线斜率的最值。

线性规划常见题型及解法 均值不等式(含答案)

线性规划常见题型及解法 均值不等式(含答案)

线性规划常见题型及解法一.基础知识:(一)二元一次不等式表示的区域二元一次不等式0>++C By Ax 表示直线0=++C By Ax 某一侧的所有点组成的区域,把直线画成虚线表示不包括边界, 0≥++C By Ax 所表示的区域应包括边界,故边界要画成实线.由于在直线0=++C By Ax 同一侧的所有点(x,y ),把它的坐标(x,y )代入C By Ax ++,所得的符号相同,所以只需在此直线的某一侧取一个特殊点(0,0y x ),从C By Ax ++00的正负即可判断0≥++C By Ax 表示直线哪一侧的平面区域。

通常代特殊点(0,0)。

(二)线性规划(1)不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件.z =A x +B y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于z =A x +B y 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数.另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示.(2)一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.(3)那么,满足线性约束条件的解(x ,y )叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解(11,y x )和(22,y x )分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解.线性目标函数的最值常在可行域的顶点处取得;而求最优整数解必须首先要看它们是否在可行(4)用图解法解决简单的线性规划问题的基本步骤:1.首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域).2.设z =0,画出直线l 0.3.观察、分析,平移直线l 0,从而找到最优解.4.最后求得目标函数的最大值及最小值. (5) 利用线性规划研究实际问题的解题思路:首先,应准确建立数学模型,即根据题意找出约束条件,确定线性目标函数.然后,用图解法求得数学模型的解,即画出可行域,在可行域内求得使目标函数取得最值的解. 最后,还要根据实际意义将数学模型的解转化为实际问题的解,即结合实际情况求得最优解.线性规划是新教材中新增的内容之一,由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下常见题型。

线性规划题及答案

线性规划题及答案

线性规划题及答案引言概述:线性规划是运筹学中的一种数学方法,用于寻觅最优解决方案。

在实际生活和工作中,线性规划问题时常浮现,通过对问题进行建模和求解,可以得到最优的决策方案。

本文将介绍一些常见的线性规划题目,并给出详细的答案解析。

一、生产规划问题1.1 生产规划问题描述:某工厂生产两种产品A和B,产品A每单位利润为100元,产品B每单位利润为150元。

每天工厂有8小时的生产时间,产品A每单位需要2小时,产品B每单位需要3小时。

问工厂每天应该生产多少单位的产品A 和产品B,才干使利润最大化?1.2 生产规划问题答案:设产品A的生产单位为x,产品B的生产单位为y,则目标函数为Max Z=100x+150y,约束条件为2x+3y≤8,x≥0,y≥0。

通过线性规划方法求解,得出最优解为x=2,y=2,最大利润为400元。

二、资源分配问题2.1 资源分配问题描述:某公司有两个项目需要投资,项目A每万元投资可获得利润2万元,项目B每万元投资可获得利润3万元。

公司总共有100万元的投资额度,问如何分配投资额度才干使利润最大化?2.2 资源分配问题答案:设投资项目A的金额为x万元,投资项目B的金额为y万元,则目标函数为Max Z=2x+3y,约束条件为x+y≤100,x≥0,y≥0。

通过线性规划方法求解,得出最优解为x=40,y=60,最大利润为240万元。

三、运输问题3.1 运输问题描述:某公司有两个仓库和三个销售点,每一个销售点的需求量分别为100、150、200,每一个仓库的库存量分别为80、120。

仓库到销售点的运输成本如下表所示,问如何安排运输方案使得总成本最小?3.2 运输问题答案:设从仓库i到销售点j的运输量为xij,则目标函数为Min Z=∑(i,j) cij*xij,约束条件为每一个销售点的需求量得到满足,每一个仓库的库存量不超出。

通过线性规划方法求解,得出最优的运输方案,使得总成本最小。

四、投资组合问题4.1 投资组合问题描述:某投资者有三种投资标的可选择,预期收益率和风险如下表所示。

线性规划常见题型及解法例析

线性规划常见题型及解法例析

品有直接限 制 因 素 的 是 资 金 和 劳 动 力,通 过 调 查,得
到这两种产品的有关数据如表 2.
资金
成本
劳动力(工资)
单位利润
单位产品所需资金/百元
月资金供应
电子琴(架) 洗衣机(台)
量/百元
30
20



10
300
110
试问:怎 样 确 定 这 两 种 产 品 的 月 供 应 量,才 能 使
故选:
B.
思路与方法:本 题 运 用 数 形 结 合 思 想,采 用 了 图
组作 出 可 行 域,如 图 3 所 示 .

图 3 可 知,△ABC 的 面 积 即 为
所求 .
易得
S梯 形OMBC =

×(
2+3)×2=5,

图3

S梯 形OMAC = × (
1+3)×2=4.

所以 S△ABC =S梯 形OMBC -S梯 形OMAC =5-4=1.
思路与方法:本 题 中 的 可 行 域 是 三 角 形,而 这 个
不规则的三角形面积很 难 直 接 求 解,于 是 将 它 看 作 梯
解法求最值,先 在 平 面 直 角 坐 标 系 中 画 出 可 行 域,然
形 OMBC 的一部 分,利 用 梯 形 OMBC 与 梯 形 OMAC
后平行移动直线 z=3x+4y 即可求出最大值 .
ï
,
且当
b≥0
b为
íy≥0, 时,恒有ax+by≤1,求以a,
ï
îx+y≤1
坐标的点 P (
a,
b)所构成的平面区域的面积 .
解析:设 z=ax +by,根 据 题 意 可 知,想 要 ax +

题型02 线性规划(解析版)

题型02 线性规划(解析版)

秒杀高考数学题型之线性规划【秒杀题型一】:线性规划求最值。

『秒杀策略』:确定线性区域:二元一次不等式0(0)Ax By C ++><区域的确定只与系数B 有关,当B 与 后面的符号一致在直线上方,不一致在直线下方,或简记为“同上异下”,或通过移项等方式把B 变为正值, 若0>,则在直线上方;若0<,则在直线下方。

另注意实虚线(有等号为实线)。

【题型1】:构造截距求最值。

『秒杀策略』:对于线性目标函数:a z z ax by y x b b=+⇒=-+,可看作直线平行移动穿过可行域时截距的范围。

注意:①可行域边界的斜率与平行直线系斜率的大小比较,然后确定直线平移规律;②b 的符号,当0b >时,当直线过可行域且在y 轴上截距最大时,z 最大;反之,z 最小。

当0b <时,与上面正好相反,且0b <是考生最容易出错的一个知识点。

1.(2009年新课标全国卷6)设y x ,满足:⎪⎩⎪⎨⎧≤--≥-≥+22142y x y x y x ,则y x z += ( )A.有最小值2,最大值3B.有最小值2,无最大值C.有最大值3,无最小值D.既无最小值,也无最大值【解析】:如图画出区域,选B 。

2.(2012年新课标全国卷14)设,x y 满足约束条件,013x y x y x y ≥⎧⎪-≥-⎨⎪+≤⎩;则2z x y =-的取值范围为 。

【解析】:画出区域可得取值范围为[]3,3-。

3.(2013年新课标全国卷II9)已知0>a ,y x ,满足约束条件()133x x y y a x ⎧≥⎪+≤⎨⎪≥-⎩,若y x z +=2的最小值为1,则a = ( )A.14B.12C.1D.2 【解析】:画出区域,选B 。

4.(2016年新课标全国卷III13)若y x ,满足约束条件⎪⎩⎪⎨⎧≤-+≤-≥+-0220201y x y x y x ,则y x z +=的最大值为 。

线性规划全部题型和解析

线性规划全部题型和解析

线性规划什么是线性规划?线性规划的题一般都是大括号下面三个式子,把三条线画出来,然后找到一个区域,然后再找到一条直线,去平移,求一个点的坐标,带进去,求最值。

那么,大括号里面的式子我们叫做约束条件,在高中阶段学习的线性的约束条件,也就是所有的约束条件都是一次的,都是直线。

形成的区域叫做可行域。

Z=几x+几y 叫做目标函数,一般线性规划问题都是线性目标函数。

要解决目标函数的最大值和最小值,就是最值问题。

所以线性规划问题的完成表述就是线性规划条件形成可行域内目标函数的最值问题。

取到最值得x 和y 叫做最优解。

考点1:典型的线性规划问题(可行域和目标函数都是线性的)关键:如何把一个不等式转化为可行域上的一个区域。

方法一:把直线转化为斜截式处理。

3260x y +-≥,化成斜截式,332y x ≥-+,直线画出来大于等于,可行域取直线上面。

缺点:转化为斜截式比较麻烦。

优点:大于等于在上面小于等于在下面不会错 方法二:一般式(截距)直线。

3260x y +-≥,与x 轴y 轴的交点分别是(2,0)和(0,3)。

然后判断(0,0)是不是满足不等式,判断可行域取直线上面还是下面。

分析目标函数:目标函数得到的直线靠上好还是靠下好。

例如222x zz x y y =+⇒=-+,截距越大,z 越大,条直线越靠上越好。

如果222x zz x y y =-+⇒=+,还是越靠上越好。

所以直线靠上还是靠下,取决于y 前面的正负。

例题1:若变量,x y ,满足约束条件11y x x y y ≤⎧⎪+≤⎨⎪≤-⎩,且2z x y =+的最大值和最小值分别为M 和m ,则M-m=?解析:正常可以画出可行域,通过直线的平移来解决此类问题。

但是针对这道题有简单的方法计算,这三条直线围成的区域围成的是三角形,如果是三角形的话那么一定在三个顶点的位置取得最大值和最小值。

所以只需要求出三个顶点的值最大的是最大值,最小的是最小值。

1)y x =和1x y +=的交点(0.5,0.5), 1.5z =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前2014-2015学年度???学校8月月考卷试卷副标题注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、选择题(题型注释)1.已知实数x ,y 满足002x y x y ≥⎧⎪≥⎨⎪+≤⎩,则z =4x +y 的最大值为( )A 、10B 、8 C 、2 D 、0 【答案】B 【解析】试题分析:画出可行域,根据图形可知,当目标函数经过A(2,0)点时,z =4x +y 取得最大值为8考点:线性规划.2.若不等式组0220x y x y y x y a-≥⎧⎪+≤⎪⎨≥⎪⎪+≤⎩,表示的平面区域是一个三角形区域,则a 的取值范围是() B.01a <≤ D.01a <≤或【答案】D【解析】根据0 220 x yxyy-≥⎧⎪+≤⎪⎨≥⎪⎪⎩画出平面区域(如图1所示),由于直线x y a+=斜率为1-,纵截距为a,自直线x y a+=经过原点起,向上平移,当01a<≤时,22x yx yyx y a-≥⎧⎪+≤⎪⎨≥⎪⎪+≤⎩表示的平面区域是一个三角形区域(如图2所示);当413a<<时,22x yx yyx y a-≥⎧⎪+≤⎪⎨≥⎪⎪+≤⎩表示的平面区域是一个四边形区域(如图3所示),当43a≥时,22x yx yyx y a-≥⎧⎪+≤⎪⎨≥⎪⎪+≤⎩表示的平面区域是一个三角形区域(如图1所示),故选D.图1 图2 图3考点:平面区域与简单线性规划.3.已知变量x,y满足约束条件20170x yxx y-+≤,⎧⎪≥,⎨⎪+-≤,⎩则yx的取值范围是( )A.9[6]5, B.9(][6)5-∞,⋃,+∞ C.(3][6)-∞,⋃,+∞ D.(3,6]【解析】试题分析:画出可行域,yx可理解为可行域中一点到原点的直线的斜率,可知可行域的边界交点为临界点(59 , 22),(1,6)则可知k=yx的范围是9[6]5,.考点:线性规划,斜率.4.(5分)(2011•广东)已知平面直角坐标系xOy上的区域D由不等式组给定.若M(x,y)为D上的动点,点A的坐标为,则z=•的最大值为()A.3B.4C.3D.4【答案】B【解析】试题分析:首先做出可行域,将z=•的坐标代入变为z=,即y=﹣x+z,此方程表示斜率是﹣的直线,当直线与可行域有公共点且在y轴上截距最大时,z 有最大值.解:首先做出可行域,如图所示:z=•=,即y=﹣x+z做出l0:y=﹣x,将此直线平行移动,当直线y=﹣x+z经过点B时,直线在y轴上截距最大时,z有最大值.因为B(,2),所以z的最大值为4故选B点评:本题考查线性规划、向量的坐标表示,考查数形结合思想解题.5.已知不等式组202020x yxax y+-⎧⎪-⎨⎪-+⎩≥≤≥表示的平面区域的面积等于3,则a的值为()﹙A ﹚1- (B )52 ﹙C ﹚2 (D )12【答案】D 【解析】试题分析:由题意,要使不等式组表示平面区域存在,需要1a >-,不等式组表示的区域如下图中的阴影部分,面积1(22)232Sa =⋅+⋅=,解得12a =,故选D.考点:1.线性规划求参数的取值.6.设x ,y 满足约束条件,若z=的最小值为,则a 的值为( )A .1B .2C .3D .4【答案】A 【解析】 ∵=1+而表示点(x ,y)与点(-1,-1)连线的斜率.由图知a>0,否则无可行域,且点(-1,-1)与点(3a ,0)的连线斜率最小,即==a=17.已知实数x,y满足条件22(3)(2)110x yx y⎧-+-≤⎨--≥⎩,则2yzx=-的最小值为()A.32+ B.22+ C.34D.43【答案】C【解析】试题分析:如下图可行区域为上图中的靠近x轴一侧的半圆,目标函数22y yzx x-==--,所表示在可行区域取一点到点(2,0)连线的斜率的最小值,可知过点(2,0)作半圆的切线,切线的斜率2yzx=-的最小值,设切线方程为y=k(x-2),则A到切线的距离为1,故223141kkk-=⇒=+.考点:1.线性规划;2.直线与圆的位置关系.8.若在区间[0,2]中随机地取两个数,则这两个数中较大的数大于12的概率是( )(A)916(B)34(C)1516(D)1532【解析】试题分析:设这两个数为:,x y,则02 02xy≤≤⎧⎨≤≤⎩.,作出以上不等式组表示的区域,由几何概型选C.考点:1、几何概型;2、不等式组表示的区域.第II卷(非选择题)请点击修改第II卷的文字说明评卷人得分二、填空题(题型注释)9.若实数x,y满足线性约束条件3122x yx y x+≤⎧⎪⎨≤≤⎪⎩,则z=2x y+的最大值为________.【答案】5.【解析】试题分析:作出不等式组3122x yx y x+≤⎧⎪⎨≤≤⎪⎩表示的平面区域,即可行域,则可知直线03=-+yx与直线xy21=的交点)1,2(M,作直线l:02=+yx,平移直线l,可知当2=x,1=y时,5122max=+⋅=z.考点:线性规划.10.已知变量,x y满足约束条件23110,480,20,x yx yx y+-≤⎧⎪+-≥⎨⎪-+≥⎩若目标函数()0z x ay a=->的最大值为1,则a=.【答案】3【解析】试题分析:约束条件所满足的区域如图所示,目标函数过B(4,1)点是取得最大值,所以141a=-⨯,所以3a=.考点:线性规划.11.设z=kx+y,其中实数x,y满足20240240x yx yx y+-≥⎧⎪-+≥⎨⎪--≤⎩若z的最大值为12,则实数k= .【答案】2作出可行域(如图),其中A(4,4),B(0,2),C(2,0)过原点作出直线kx+y=0k=0时,y=0,目标函数z=y 在点A 处取得最大值4,与题意不符 ②102k <-≤即102k -≤<时,直线kx+y=0即y=-kx 经过一、三象限,平移直线y=-kx 可知,目标函数z=kx+y 在点A 处取得最大值,即,此时k=2与102k -≤<不符; ③-k>12即k<-12时,直线kx+y=0即y=-kx 经过一、三象限,平移直线y=-kx 可知,目标函数z=kx+y 在点B 处取得最大值,即max 022z =+=,此式不成立④-k<0即k>0时,直线kx+y=0即y=-kx 经过二、四象限,平移直线y=-kx 可知,目标函数z=kx+y 在点A 处取得最大值,即max 4412z k =+=,此时k=2与k>0相符,所以k=212.点(,)M x y 0333x y x y ⎧≤≤⎪≤⎨⎪≤⎩Ω内的一动点,且不等式20x y m -+≥总成立,则m 的取值范围是________________.【答案】3m ≥ 【解析】试题分析:将不等式化为2m y x ≥-,只需求出2y x -的最大值即可,令2z y x =-,就是满足不等式0333x y x y⎧≤≤⎪≤⎨⎪≤⎩的最大值,由简单的线性规划问题解法,可知在()0,3处z取最大值3,则m 取值范围是3m ≥.考点:简单的线性规划和转化思想.13.设变量x ,y 满足|3|2,43:y x z x y x x y -=⎪⎩⎪⎨⎧-≥≤+≥则的最大值为.【解析】 试题分析:这是如图可行域,表示可行域内的点到直线03=-y x 的距离的2倍,很显然点A 到直线的距离最大,点()22,-A ,将其代入点到直线的距离公式得到考点:1.线性规划;2.点到直线的距离公式.14.已知实数x ,y 满足6003x y x y x ≥⎧⎪≥⎨⎪≤⎩-+,+,,若z =ax +y 的最大值为3a +9,最小值为3a -3,则实数a 的取值范围为__________. 【答案】[-1,1]【解析】作出可行域如图中阴影部分所示,即-1≤a≤1.15.设实数,x y满足,102,1,x yy xx≤⎧⎪≤-⎨⎪≥⎩向量2,x y m=-()a,1,1=-()b.若//a b,则实数m的最大值为.【答案】6;【解析】试题分析:因为//a br r,所以202x y m m y x-+=⇒=-,故根据线性规划的知识画出可行域如图,则目标函数在点(1,8)处取得最大值6.考点:向量平行线性规划16.已知点(3,3)A,O为坐标原点,点(,)P x y满足30320x yx yy⎧-≤⎪⎪-+≥⎨⎪≥⎪⎩,则||OA OPZOA⋅=u u u r u u u ru u u r的最大值是【答案】3【解析】试题分析:作出可行域如图,则||||OA OPOP cos AOPOA⋅∠u u u r u u u ru u u r=,又AOP∠是,OA OPu u u r u u u r的夹角, ∴目标函数OA OPZ⋅=u u u r u u u ru u u r表示OPuuu r在OAu u u r上的投影,过P 作OA u u u r的垂线PH ,垂足为H ,时,OP uuu r 在OA u u u r 上的投影OH 最大,此∴Z =u u u ru u u r考点:简单线性规划的应用,平面向量的数量积,平面向量的投影. 17.若实数x 、y 满足()222x y x y +=+,则x y +的最大值是_________. 【答案】4【解析】试题分析:将()222x y x y +=+变形为22(1)(1)2x y -+-=,表示圆心为(1,1),半令z x y =+,即0x y z +-=。

由图像分析可知圆心到直线0x y z +-=,解得04z ≤≤,所以x y +的最大值是4。

考点:1线性规划、数形结合思想;2点到线的距离;18.已知O 为坐标原点,2(A ,)1,x P (,)y 满足⎪⎩⎪⎨⎧≥-≤+≤+-012553034x y x y x ,则【解析】,设y x z +=2,如图:做出可行域当目标函数平移到C点取得最大值,⎩⎨⎧=-+=+-255334yxyx解得⎩⎨⎧==25yx,()25,C,代入目标函数12252max=+⨯=z,AOPOP∠⋅cos的最大值为5512.考点:1.向量的数量积的坐标表示;2.线性规划.19.已知实数x,y满足222242(1)(1),(0)y xx yyx y r r≤⎧⎪≤⎪⎨≥⎪⎪>⎩,+,-,++-=则r的最小值为________.【答案】2【解析】作出约束条件242y xx yy≤⎧⎪≤⎨⎪≥⎩,+,-,表示的可行域,如图中的三角形,三角形内(包括边)到圆心的最短距离即为r的值,所以r的最小值为圆心到直线y=x 的距离,所以r的最小值为2.20.已知P(x,y)满足0102xx y≤≤⎧⎨≤+≤⎩则点Q(x+y,y)构成的图形的面积为_____.【答案】2【解析】令x+y=u,y=v,则点Q(u,v)满足0102u vu≤-≤⎧⎨≤≤⎩,在uOv平面内画出点Q(u,v)所构成的平面区域如图,易得其面积为2.21.已知实数x,y满足约束条件333x yyx+⎧⎪⎨⎪⎩≥≤≤,,,则225z x y=--的最大值为.【答案】12【解析】试题分析:解线性规划问题,不仅要正确确定可行域,本题是直角三角形,((0,3),(3,0),(3,3))ABC A B C及其内部,而且要挖出目标函数的几何意义,本题中22x y+可理解为坐标原点到可行域中点的距离的平方.要求目标函数最大值,就是求22x y+的最小值,即坐标原点到直线3x y+=的距离的平方,为2315()22-=.考点:线性规划求最值22.曲线y=sin xx在点M(π,0)处的切线与两坐标轴围成的三角形区域为D(包含三角形内部与边界).若点P(x,y)是区域D内的任意一点,则x+4y的最大值为.【答案】4【解析】试题分析:sin xyx=Q,2cos sinx x xyx-'∴=,2cos sin1|xyππππππ=-'==-,所以曲sin xyx=在点(),0Mπ处的切线程为:()1y xππ=--,即:0x yππ+-=,它与两坐标轴所围成的三角形区域如下图所示:令4z x y =+,将其变形为144z y x =-+ ,当z 变化时,它表示一组斜率为14-,在y 轴上的截距为4z的平行直线,并且该截距越在,z 就越大,由图可知,当直线经过()0,1A 时,截距最大,所以max z =0414+⨯=,故答案为:4.考点:1、导数的几何意义;2、求导公式;3、线必规划.23.已知实数x ,y 满足302500x y x y y +-+-⎧⎪⎨⎪⎩≥≤≥,则()221z x y =-+的最小值是 . 【答案】2 【解析】试题分析:线性不等式组表示的可行域如图:300(3,0)x y y A +-==⎧⇒⎨⎩,250(5,0)0x y B y +-=⎧⇒⎨=⎩,30250(1,2)x y x y C +-=+-=⎧⇒⎨⎩。

相关文档
最新文档