图形的平移与旋转

合集下载

图形的平移和旋转(经典)

图形的平移和旋转(经典)

DCFE CBA第四讲 图形的平移与旋转【基础知识精讲】一、平移:1.平移的定义——在平面内,把一个图形沿某一个方向移动一定的距离,这样的图形运动叫图形的平移。

说明:(1)平移是图形的一种运动(变换)(2)平移的要素:①平移方向;②平移距离。

2.平移的性质:①平移前后图形的大小、形状都不改变。

即:平移前后的图形全等形。

②平移前后对应点的连线段平行(或在同一直线上)且相等;对应线段平行(或在同一直线上)且相等;对应角相等。

二、旋转1.旋转的定义——在平面内,把一个图形绕一个定点沿着某一个方向转动一个角度,这样的图形运动叫图形的旋转。

说明:(1)旋转是图形的一种运动(变换)(2)旋转的要素: ①旋转中心 ②旋转方向 ③旋转角2.旋转的性质①旋转前后图形的大小、形状都不改变。

即:旋转前后的图形全等形。

②图形上任意点都绕中心沿相同方向转动相同的角度(旋转角); ③对应点到旋转中心的距离相等。

【重难点高效突破】例1.如图,经过平移△ABC 的边AB 移到了EF ,作出平移后的三角形.例2.如图,△ABC 绕C 点旋转后,B 转到了D 处,作出旋转后的三角形。

例3.如图,在长32m 宽20m 的土地上要修筑同样宽的两条“之”字路,路宽2m ,则剩余耕地的面积为 . 例4、如图,E 为正方形ABCD 的边AB 上一点,AE=3,BE=1,P 为AC 上的动点,则PB+PE 的最小值是_________.例5、如图,△ABC 是等腰直角三角形,AB=AC ,D 是斜边BC 的中点,E 、F 分别是AB 、AC 边上的点,且DE ⊥DF ,若BC=12,CF=5,则△DEF 的面积为______________。

例6、如图,在△ABC 中,AB 2=32,∠BAC=45°, ∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,求BM+MN 的最小值。

例7、如图,设P 为等边△ABC 内的一点,且PA=3,PB=4,PC=5,能否确定∠APB 的大小?请说明理由。

平移与旋转的性质

平移与旋转的性质

平移与旋转的性质在数学中,平移和旋转是常见的几何变换操作。

它们分别意味着通过移动对象的位置或者旋转对象的方向来改变它们的形状或者位置。

本文将介绍平移和旋转的性质,并探讨它们在实际生活中的应用。

一、平移的性质平移是指在平面或者空间中按照规定的方向和距离,将图形的每个点都沿着相同的路径移动。

以下是平移的一些性质:1. 平移不改变图形的大小和形状,只改变了图形的位置。

例如,一张纸条平移到桌子上的另一边,纸条的形状和长度都没有发生改变。

2. 平移是保持图形内部的相对位置不变的变换。

也就是说,图形中的每一对点之间的距离和角度关系在平移前后保持不变。

3. 平移可以自由进行组合。

即使将多个图形进行平移操作,它们之间的相对位置关系仍然保持不变。

平移在日常生活中有广泛的应用。

例如,在矿山中,把挖掘出来的矿石通过平移方式运输到生产线的下一个环节,可以提高工作效率并减少人力成本。

此外,在城市规划中,规划师可以通过平移建筑物或者道路来优化城市的布局。

二、旋转的性质旋转是指围绕着一个中心点,按照一定的角度将图形沿着一个圆周或者轴线进行转动。

以下是旋转的一些性质:1. 旋转同样不改变图形的大小和形状,只改变了图形的方向。

如果我们旋转一个正方形,它仍然是正方形,只是方向改变了。

2. 旋转可以改变图形中点与点之间的距离和角度关系。

例如,旋转一个矩形,原先垂直的边可能会变为斜边。

3. 旋转也可以进行组合操作。

多个图形进行旋转后,它们的相对位置关系可能发生变化。

旋转在现实生活中也有广泛的应用。

例如,在建筑设计中,设计师可以通过旋转建筑物的平面图,探索不同的视角和光线照射下的外观效果,以便于更好地优化设计。

此外,在工业生产中,机械加工时的旋转切削操作可以使得切削工具更均匀地削减工件,提高加工质量。

总结起来,平移和旋转是常见的几何变换操作,它们在数学中具有一些共同的性质。

平移只改变图形的位置而不改变形状,而旋转不仅改变位置,还改变方向。

数学中的平移与旋转变换

数学中的平移与旋转变换

数学中的平移与旋转变换平移变换和旋转变换是数学中常见的两种几何变换方式。

它们在几何学、计算机图形学等领域有着广泛的应用。

本文将介绍平移变换和旋转变换的基本概念、数学表示和实际应用。

一、平移变换平移变换是指将一个图形在平面上移动一段距离,保持图形的形状和大小不变。

平移变换是一种刚体变换,即变换之后的图形与原始图形相似但不重合。

平移变换的数学表示是一个二维向量,表示平移的横向和纵向的距离。

如果一个平面上的点P(x, y)进行平移变换,假设平移向量为v,则变换后的点P'的坐标为P'(x + v1, y + v2)。

其中,v1和v2分别表示平移向量在x轴和y轴上的分量。

平移变换可以用来描述物体的位移、运动和位置变化。

在计算机图形学中,平移变换被广泛应用于图像处理、动画制作等领域。

二、旋转变换旋转变换是指将一个图形绕一个固定点旋转一定角度,保持图形的形状和大小不变。

旋转变换同样是一种刚体变换,变换后的图形与原始图形相似但不重合。

旋转变换的数学表示是一个旋转矩阵,通过矩阵相乘的方式实现旋转。

设点P(x, y)绕一个点O旋转θ角度,变换后的点P'的坐标可表示为:```P' = |cosθ -sinθ | * P|sinθ cosθ |```其中,cosθ和sinθ分别表示角度θ的余弦和正弦值。

旋转变换在几何学、物理学和计算机图形学中有着广泛的应用。

它可以用来描述物体的旋转、变形和方向的变化。

三、平移与旋转的组合变换平移变换和旋转变换可以通过组合运算,实现更加复杂的图形变换。

在组合变换中,先进行平移变换,然后再进行旋转变换。

设点P(x, y)先进行平移变换,假设平移向量为v,则平移后的点为P'(x + v1, y + v2)。

再将平移后的点P'绕一个点O旋转θ角度,变换后的点为P''。

组合变换的数学表示为:```P'' = R * P'= R * (P + v)```其中,R表示旋转矩阵,P表示原始点的坐标,v表示平移向量。

图形的平移和旋转通过图形的平移和旋转帮助学生理解图形的平移和旋转的概念和方法

图形的平移和旋转通过图形的平移和旋转帮助学生理解图形的平移和旋转的概念和方法

图形的平移和旋转通过图形的平移和旋转帮助学生理解图形的平移和旋转的概念和方法图形的平移和旋转图形的平移和旋转是空间几何中非常重要的概念,它们帮助学生更好地理解图形的变换和运动。

本文将详细介绍图形的平移和旋转的概念和方法,并通过实例加深读者对这些概念的理解。

一、图形的平移平移是指将图形在平面上沿着指定的方向移动一段距离,而保持图形的形状和大小不变。

在平面坐标系中,平移可以通过改变图形的坐标来实现。

对于二维平面中的图形,平移涉及两个要素:平移的向量和平移的距离。

以坐标平面上的一个点P(x, y)为例,如果向量V(a, b)表示平移向量,则平移后的新点P'(x', y')的坐标可表示为:x' = x + ay' = y + b这样,对于平面上的其他点也可以进行同样的平移操作。

通过改变平移向量V的值,可以实现不同的平移方向和距离。

二、图形的旋转旋转是指将图形绕着某个固定点旋转一定角度,而保持图形的形状和大小不变。

在平面几何中,旋转可以通过改变图形中每个点的坐标来实现。

旋转涉及三个要素:旋转中心、旋转角度和旋转方向。

假设旋转中心为点O(x0, y0),旋转角度为θ,旋转方向为顺时针。

对于平面上的任一点P(x, y),其旋转后的新点P'的坐标可表示为:x' = (x - x0) * cosθ - (y - y0) * sinθ + x0y' = (x - x0) * sinθ + (y - y0) * cosθ + y0类似地,通过改变旋转角度和旋转中心的值,可以实现不同的旋转效果。

需要注意的是,对于逆时针旋转,只需将旋转角度取负。

三、图形的平移和旋转实例为了更好地理解图形的平移和旋转,下面举例说明。

例一:平移操作考虑一个正方形,其中心点为O(0, 0),边长为2。

要将这个正方形向右平移4个单位,可将平移向量设为V(4, 0)。

根据平移公式,正方形的每个顶点的新坐标可计算如下:A(0, 0) 平移 4 个单位后的新坐标:A'(4, 0)B(2, 0) 平移 4 个单位后的新坐标:B'(6, 0)C(2, 2) 平移 4 个单位后的新坐标:C'(6, 2)D(0, 2) 平移 4 个单位后的新坐标:D'(4, 2)如此,正方形向右平移4个单位后,每个顶点的新坐标确定,从而实现了整个图形的平移操作。

图形的平移与旋转

图形的平移与旋转

我喜欢的艺术形式在我的生命中,艺术一直是我的灵魂之一。

它们给予我灵感,帮助我看到其他方面未曾看到的东西,深化了我的思考方式。

我的喜欢的艺术形式包括音乐、书法和雕塑。

音乐是我最喜欢的艺术形式之一。

它可以带你进入一个崭新的世界,让你在充满情感的旋律中沉浸。

对我而言,音乐是一种信仰,它让我进入一个完全与外界隔离的领域。

听音乐时,我可以独自思考、反省和放松。

对这个世界形形色色的音乐,我都有所了解和欣赏,但我最喜欢的还是爵士。

爵士曲风包含了丰富的文化、历史和音乐元素,是音乐中的瑰宝。

它的旋律富有情感、节奏感强烈、变化多端,每一首都带有与别不同的灵魂和风韵。

每次听爵士音乐时,我都会感受到其中复杂的调和和深层的意义,同时在欣赏中不断找寻着自我。

我也非常喜欢书法。

书法艺术是东方文化的瑰宝,随着时间的推移,逐渐成为了具有独特形式的艺术。

用毛笔和墨水写字,书法艺术呈现出的充满个性和灵气,可以表达出动人心魄的视觉冲击力,同时涵盖丰富的思想和意涵。

对我而言,书法是一种美丽的表达方式,是一种能够帮我表达自己想法的方式。

当我坐下来,拿起笔、墨水和纸时,我进入了一个完全不同的世界,并沉浸在其中。

我能够用笔的用心制作出独特的笔划和彩墨,而且在用毛笔写字的那段时间,我可以把所有的愤怒和烦恼都表达出来。

在那一瞬间,我只有墨、纸和我的心思,而它们成为了我的思想积累。

最后,我非常喜欢雕塑。

在每件雕塑作品里,雕塑家都融入了他们的灵魂和观点,这对我来说是令人震撼的。

每一个雕塑作品都可以让我感受到雕塑家灵魂对这个世界的见解,同时也给我提供了一个新的观点来看待这个世界。

我欣赏那些流畅、精致和内涵丰富的作品,更喜欢那些把现实与虚幻结合在一起的作品,同时欣赏那些充满奇异与幻想的作品。

总的来说,音乐、书法、雕塑三种艺术形式均具有自己的独特之处,它们各自呈现出来的灵感和意味让人们无限想象。

在我看来,艺术不仅是为了娱乐,更为了能够帮我们了解自己、世界和生命的真谛。

图形的旋转与平移

图形的旋转与平移

图形的旋转与平移图形的旋转与平移在几何学中起着重要的作用,它们能够帮助我们理解和描述物体在平面上的位置和形态的变化。

本文将介绍图形的旋转和平移的概念、特性及其应用。

一、图形的旋转旋转是指围绕某一点或某一轴线进行转动,使图形按一定角度沿轴旋转后得到的新图形。

图形的旋转有以下几个重要特性:1. 旋转角度:指图形旋转的角度,可以是逆时针方向的正角度或顺时针方向的负角度。

2. 旋转中心:指图形旋转的中心点,可以是图形内部的某个点,也可以是图形外部的某个点。

3. 旋转方向:旋转可以按逆时针方向或顺时针方向进行。

图形的旋转可以应用于许多领域,如计算机图形学、工程制图等。

在计算机图形学中,旋转可用于实现图像的变换和动画效果。

二、图形的平移平移是指沿着平行于某一方向的轴线移动图形,使图形在平面上平行地移动到另一个位置,但形状和大小保持不变。

图形的平移有以下几个重要特性:1. 平移向量:指平移移动的方向和距离,可以用向量表示。

2. 平移方向:平移可以沿着任意方向进行,只要是平行于轴线即可。

3. 平移距离:指图形平移的具体距离。

平移常用于地图上的位置标记、机械设计、建筑设计等领域。

在计算机图形学中,平移可用于实现图像的拖动和位置调整。

三、旋转与平移的组合应用旋转和平移常常需要组合应用,以实现更加复杂的变换效果。

例如,在游戏开发中,我们可以利用旋转和平移将一个平面上的二维图形转换为在三维空间中的位置和姿态,以实现更真实的游戏画面。

旋转和平移的组合应用还可用于机器人控制、航天器轨道设计等领域。

通过将图形围绕不同的方向旋转和平移,可以控制机器人或航天器在空间中的位置和方向。

总结:图形的旋转与平移是几何学中的基本概念,它们能够帮助我们描述和理解物体的位置和形态变化。

通过旋转和平移,我们可以实现图像的变换、位置调整和动画效果等。

无论是在计算机图形学还是实际应用中,旋转与平移都具有重要的意义。

理解和掌握图形的旋转与平移,对于几何学的学习和应用都具有重要的帮助。

什么是平移 什么是旋转

什么是平移 什么是旋转

很多同学学习几何时对于一些概念都不是很了解。

那么什么是平移?什么是旋转呢?
平移简介
平移,是指在同一平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。

平移不改变图形的形状和大小。

图形经过平移,对应线段相等,对应角相等,对应点所连的线段相等。

它是等距同构,是仿射空间中仿射变换的一种。

它可以视为将同一个向量加到每点上,或将坐标系统的中心移动所得的结果。

即是说,若是一个已知的向量,是空间中一点,平移。

旋转的定义
在平面内,一个图形绕着一个定点旋转一定的角度得到另一个图形的变化叫做旋转。

这个定点叫做旋转中心,旋转的角度叫做旋转角,如果一个图形上的点A经过旋转变为点A',那么这两个点叫做旋转的对应点。

平移和旋转的区别与联系
1、区别:旋转不改变物体在空间上的位置不发生位移,平移将一个图形上的所有点都按照某个直线方向做相同距离的移动发生了位移。

2、联系:旋转和平移都是物体运动现象,在运动中都没有改变本身的形状、大小与自身性质特征。

以上就是一些有关于平移和旋转的相关信息,供大家参考。

图形的平移和旋转知识点

图形的平移和旋转知识点

图形的平移和旋转【图形的平移】(1) 平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状和大小.注意:①平移是运动的一种形式,是图形变换的一种,本讲的平移是指平面图形在同一平面内的变换.②图形的平移有两个要素:一是图形平移的方向,二是图形平移的距离,这两个要素是图形平移的依据.③图形的平移是指图形整体的平移,经过平移后的图形,与原图形相比,只改变了位置,而不改变图形的大小,这个特征是得出图形平移的基本性质的依据.(2)平移的基本性质:由平移的基本概念知,经过平移,图形上的每一个点都沿同一个方向移动相同的距离,平移不改变图形的形状和大小,因此平移具有下列性质:经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.注意:①要正确找出“对应线段,对应角”,从而正确表达基本性质的特征.②“对应点所连的线段平行且相等”,这个基本性质既可作为平移图形之间的性质,又可作为平移作图的依据.(3)简单的平移作图平移作图:确定一个图形平移后的位置所需条件为:①图形原来的位置;②平移的方向;③平移的距离.1, 【典型例题】例 1.如图,△ABC 绕 C 点旋转后,顶点 A 的对应点为点 D ,试确定顶点 B 对应点的位置,以及旋转后的三角形.分析:绕 C 点旋转,A 点的对应点是 D 点,那么旋转角就是∠ACD ,根据对应点与旋转中心所连线段的夹角等于旋转角即∠BCB′=ACD, 又由对应点到旋转中心的距离相等,即CB=CB ′,就可确定 B′的位置,如图所示.解:(1)连结 CD(2) 以 CB 为一边作∠BCE,使得∠BCE=∠ACD(3) 在射线 CE 上截取 CB′=CB则 B′即为所求的 B 的对应点.(4) 连结 DB′则△DB′C 就是△ABC 绕 C 点旋转后的图形.例 2.如图,四边形 ABCD 是边长为 1 的正方形,且 DE= 1 ,4△ABF 是△ADE 的旋转图形.(1) 旋转中心是哪一点?(2) 旋转了多少度?(3) AF 的长度是多少?(4) 如果连结 EF ,那么△AEF 是怎样的三角形?分析:由△ABF 是△ADE 的旋转图形,可直接得出旋转中心和旋转角,要求AF 的长度,根据旋转前后的对应线段相等,只要求 AE 的长度,由勾股定理很容易得到. △ABF 与△ADE 是完全重合的,所以它是直角三角形.解:(1)旋转中心是 A 点.(2)∵△ABF 是由△ADE 旋转而成的∴B 是 D 的对应点∴∠DAB=90°就是旋转角(3)∵AD=1,DE= 1412 (1)2 4∴AE= = 4∵对应点到旋转中心的距离相等且 F 是 E 的对应点∴AF= 174(4)∵∠EAF=90°(与旋转角相等)且 AF=AE ∴△EAF 是等腰直角三角形.【图形的旋转】(1) 旋转的概念:图形绕着某一点(固定)转动的过程,称为旋转,这一固定点叫做旋转中心。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章图形的平移与旋转
2.图形的旋转(一)
吴丹妮罗湖外语学校初中部
一、学生起点分析
学生在七年级下学期已经学习了“生活中的轴对称”一节,而且在本章的第一节,学生又经历了探索图形平移性质的过程,已经积累了相当丰富的图形变换的数学活动经验,同时八年级学生逻辑思维从经验型逐步向理论型发展,观察能力、记忆能力和想象能力也在迅速发展,他们有强烈的独立思考、自主探索的愿望,这些对本节的学习都会有帮助。

但旋转是三种变换中难度较大的一种,图形也比较复杂,因此,学生对旋转图形的形成过程的理解仍会有一定的困难。

二、教学任务分析
图形的旋转是继平移、轴对称之后的又一种图形基本变换,是义务教育阶段数学课程标准中图形变换的一个重要组成部分。

教材从学生实际接触、观察到的一些现象出发,从具体到抽象,从感性到理性,从实践到理论,再用理论检验实践,循序渐进地指导学生认识自然界和生活中的旋转,进而探索其性质。

因此,旋转是培养学生思维能力、树立运动变化观点的良好素材;同时“图形的旋转”也为本章后续学习对称图形、中心对称图形做好准备,为今后学习“圆”的知识内容做好铺垫。

教学目标
知识与能力:通过具体事例认识旋转,理解旋转前后两个图形对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角彼此相等的性质。

过程与方法:经历对生活中与旋转现象有关的图形进行观察、分析、欣赏、以及动手操作、画图等过程,掌握有关画图的操作技能,发展初步的审美能力,增强对图形欣赏的意识。

情感态度价值观:引导学生用数学的眼光看待有关问题,发展学生的数学观,学到活生生的数学。

重点:类比平移与旋转的异同,掌握旋转的定义和基本性质,并利用数学知识解释生活中的旋转现象。

难点:探索旋转的性质,特别是,对应点到旋转中心的距离相等。

三、教学过程设计
第一环节 创设情境,引入新知
通过俄罗斯方块游戏的演示,让学生观察发现,生活中除了平移运动之外还有旋转运动。

引导学生列举出一些具有旋转现象的生活实例,引出课题:“生活中的旋转”。

向学生展示有关的图片:
(1)车轮的旋转把我们带往远方; (2)风扇的旋转给我们带来凉爽的夏天; 请问闹钟指针的运动是旋转吗?到底什么是旋转呢? 第二环节 探索新知,形成概念
1.建立旋转的概念
如果把指针末端看成一个点,那么末端运动过程可以看成是点A 运动到点B 的过程,请问点的运动有什么特点呢?
先抽象出点的旋转,进而在几何画板上通过点的旋转、线的旋转、三角形的旋转让学生感受运动的过程,通过学生自主发现并指出图中不动的部分、运动的部分,
运动的部分对应转动的特点。

图1 图2 图3
学生通过小组讨论得到:
图1:在同一平面内,点A 绕着定点O 旋转某一角度得到点B ; 图2:在同一平面内,线段AB 绕着定点P 旋转某一角度得到线段CD ; 图3:在同一平面内,三角形ABC 绕着定点Q 旋转某一角度得到三角形DEF 。

观察了上面图形的运动,引导学生归纳图形旋转的概念;
在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转。

这个定点称为旋转中心,转动的角称为旋转角,旋转不改变图形的形状和大小。

注意:①一个定点 →旋转中心 ②一个方向 →旋转方向 ③一个角度 →旋转角度
设计意图:让学生带着疑问讨论。

由形到点,由点到线,由线到角,引导学生合作交流,归纳“旋转”基本规律。

重点突出旋转的三个要素:旋转中心、旋转方向和旋转角度。

2.应用旋转的概念解决问题
三要素
设计意图: ①及时巩固新知,使每个学生都有收获;
②感受成功的喜悦,肯定探索活动的意义。

这一环节让学生进行问题的研究与解答,培养应用数学知识的意识及解决数学问题的能力。

探索得出下列性质(文字语言):
1.旋转前后的图形全等; 2.对应点到旋转中心的距离相等;
3.对应点与旋转中心连线段的夹角等于旋转角。

由旋转可得(符号语言):
AQ=DQ 、BQ=EQ 、CQ=FQ ∠AQD=∠BQE=∠CQF
设计意图:通过学生自主实践来巩固对旋转相关概念的理解,并且在观察总结的过程中自主总结出旋转的性质,用文字语言和符号语言的并列叙述,能够让学生在掌握知识的同时获得知识的实际运用方法。

D ABC EF
≌△△
第三环节巩固新知,形成技能
1.在图形旋转中,下列说法中错误的是()
A. 图形上的每一点与对应点到旋转中心的距离相等
B. 图形上的每一点旋转的角度相同
C. 图形上对应线段平行且相等
D. 图形上任意两点的连线与其对应两点的连线相等
设计意图:及时加深学生对概念和性质的理解。

在四个选项的判别之后再结合第一个选项进行追问:图形上的每一点到旋转中心的距离相等吗?让学生对比加深旋转的性质。

2、将如图所示的图案按顺时针方向旋转90°后可以得到的图案是()
A B C D
设计意图:把运动后的结果放在一起让学生辨认.有利于他们理解三种图形运动形式的不同之处,从而把握平移、旋转和轴对称的基本特征。

3、如图,该图形围绕点O按下列角度旋转后,不能与其自身重合的是()
A.72°
B.108°
C.144°
D.216°
O
4.如图,正方形ABCD中,E是AD上一点,将△CDE逆时针旋转后得到△CBM.如连接EM,那么△CEM是三角形。

设计意图:利用旋转前后图形的性质来解题。

分析过程中注意引导学生如何结合猜想来逆向推理,找到证明的条件。

第四环节回顾反思,深化提高
1、图形旋转的概念
在平面内,将一个图形绕一个定点按某个方向
转动一个角度,这样的图形运动称为旋转。

三要素:旋转中心、旋转方向、旋转角度。

2、图形旋转的基本性质
①旋转前后的图形全等;
②对应点到旋转中心的距离相等;
③对应点与旋转中心连线段的夹角等于旋转角。

第五环节作业布置,巩固提高
必做题:
1、如图,将正方形图案绕中心O旋转180°后,得到的图案是( )
2、如图所示,已知正方形ABCD中的△DCF可以经过旋转得到△BCE。

(1)图中哪一个点是旋转中心?
(2)按什么方向旋转了多少度?
(3)如果CF=3cm,求EF的长
3、如图,将△AOB绕点O按逆时针方向旋转45°得到△A'OB',若∠AOB=15°,求∠AOB'的度数。

选做题:已知两个全等的直角三角形纸片△ABC、△DEF,如图1放置,点B、D 重合,点F在BC上,AB与EF交于点G。

∠C=∠EFB=90°,∠E=∠ABC=30°,AB=DE=4。

(1)若纸片△DEF不动,△ABC绕点F逆时针旋转30°,连结CD,AE,如图2。

①AC与ED有什么关系,并说明理由;
②求四边形ACDE的面积。

(2)将图1中的△ABC绕点F按每秒10°的速度沿逆时针方向旋转一周,在旋转的过程中,直接写出△ABC恰有一边与DE平行的时间。

(写出所有可能的结果)
第六环节小组合作,实践创新
活动形式:为小组设计一个利用这节课学到的旋转知识制作的美丽图案,并
给美丽的图案命名。

活动时间:五分钟
作品展示:每组选一幅美丽的作品,在黑板上进行展示。

最后通过投票选出
两幅最优作品。

附:板书设计
3.4图形的旋转(1)
1、旋转的概念 在平面内,将一个图形绕一个定点
按某个方向转动一个角度,这样的 图形运动称为旋转。

三要素:①旋转中心
②旋转方向 ③旋转角度。

四、教学设计反思
本设计力图:以观察为起点,以问题为主线,以培养能力为核心的宗旨;遵照教师为主导,学生为主体,训练为主线的教学原则;遵循特殊到一般,具体到抽象,由浅入深,由易到难的认知规律。

具体设计中突出了以下构想: (1) 创设情境,引人入胜
首先通过俄罗斯方块游戏的运动形式:平移和旋转来引入课题,激发学生的求知欲,为新课的开展创设良好的教学氛围,同时培养学生从数学的角度观察生活,思考问题的能力。

(2) 过程凸现,紧扣重点
旋转概念的形成过程及旋转性质得到的过程是本节的重点,所以本节突出 概念形成过程和性质探究过程的教学,首先列举学生熟悉的例子,从生活问题中抽象出数学本质,引导学生观察、分析后归纳,然后提出注意问题,帮助学生把握概念的本质特征,再引导学生运用概念并及时反馈。

同时在概念的形成过程中,
2、旋转的基本性质 (1)旋转前后的图形全等;
(2)对应点到旋转中心的距离相等; (3)对应点与旋转中心连线段的夹角 等于旋转角。

由旋转可得: (1) (2)AQ=DQ 、BQ=EQ 、CQ=FQ
(3)∠AQD=∠BQE=∠CQF
D ABC EF ≌△△
着意培养学生观察、分析、抽象、概括的能力,引导学生从运动、变化的角度看问题,向学生渗透辨证唯物主义观点。

(3)动态显现,化难为易
教学活动中有声、有色、有动感的画面,不仅叩开学生思维之门,也打开了他们的心灵之窗,使他们在欣赏、享受中,在美的熏陶中主动的、轻松愉快的获得新知。

(4)例子展现,多方渗透
为了使抽象的概念具体化,通俗易懂,本节借组了生活中的例子,培养学生的发散思维,也增强学生用数学的意识。

相关文档
最新文档