图形的平移与旋转提高题
图形的平移与旋转练习题

图形的平移与旋转1.△ABC各极点的坐标别离为A(-3,5)、B(-4,3)、C(-1,1),将△ABC先向上平移3个单位长度,再向右平移4个单位长度,取得△DEF。
(1)别离写出点D、E、F的坐标;(2)若是将△DEF看成是由△ABC通过一次平移取得的,计算出平移距离。
2.如下图,△ABC沿着由点B到点E的方向,平移到△DEF,已知BC=5,EC=3,那么平移的距离是多少?3.通过平移把点A(1,3)移到点B(3,0),按一样的平移方式把点(2,3)移到点P,那么点P的坐标是多少?4.五边形ABCDE的极点坐标别离为A(0,6)、B(-3,-3)、C(0,-3)、D(2,0)、E(3,3),将五边形ABCDE通过一次平移后取得五边形FGHIJ,其中极点A的对应点是F(-3,10)。
(1)写出其他对应点的坐标;(2)请指出这一平移的平移距离。
5.如下图,两个边长为a的正方形,让一个正方形的极点在另一个正方形的中a2,现把其中一个正方形固定不动,另一个正心上,现在重叠部份的面积为14方形绕中心旋转,那么在旋转进程中,两个正方形重叠部份的面积是不是发生转变?什么缘故?6.如下图,设D是△ABC中BC边的中点,P是AB边上一点,Q是AC边上一点,且PD⊥DQ,试说明:BP+CQ>PQ7.如下图,在等边△ABC中,AB=6,D是BC的中点,将△ABD绕点A旋转后取得△ACE,那么线段DE的长度是多少?8.如下图,将周长是8的△ABC沿BC方向平移1个单位长度取得△DEF,那么四边形ABFD的周长是多少?9.如下图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标别离为(1,0),(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积是多少?10.如下图,将等边△ABC沿BC方向平移取得△A1B1C1,假设BC=3,S△PB1C=√3,那的长度是多少?么BB1。
图形的平移,对称与旋转的经典测试题含答案

【点睛】
本题主要考查图形的轴对称以及勾股定理的实际应用,把立体图形化为平面图形,掌握“马饮水”模型,是解题的关键.
11.下列字母中:H、F、A、O、M、W、Y、E,轴对称图形的个数是()
A.5 B.4 C.6 D.7
【答案】D
【解析】从第一个字母研究,只要能够找到一条对称轴,令这个字母沿这条对称轴折叠后,两边的部分能够互相重合,就是轴对称图形,可以得出:字母H、A、O、M、W、Y、E这七个字母,属于轴对称图形.
本题考查了平行四边形的性质、折叠的性质、三角形的内角和定理等知识,属于常考题型,熟练掌握上述基本知识是解题关键.
15.下列几何图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A、是轴对称图形,不是中心对称图形,故本选项错误;
B、可以通过平移得到,不符合题意;
C、不可以通过平移得到,符合题意;
D、可以通过平移得到,不符合题意.
故选C.
【点睛】
本题考查平移的性质,属于基础题,要掌握图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.
2.在平行四边形、菱形、矩形、正方形这四种图形中,是轴对称图形的有( )
故选:D.
12.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=4,CD=5.把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为()
A. B. C. D.4
【答案】A
【解析】
五年级平移与旋转练习题

五年级平移与旋转练习题在五年级数学学习中,平移和旋转是重要的概念。
平移是指将一个图形在平面上按照一定的方向和距离进行移动,而不改变其形状和大小。
旋转则是指将一个图形绕着一个中心点进行旋转,角度可以是任意的。
为了帮助同学们更好地理解和应用平移和旋转,下面将给出一些练习题。
练习一:平移练习题1. 小明在一张方格纸上画了一个三角形ABC,其中A(1, 2),B(3, 4),C(5, 6)。
现在他想将这个三角形向右平移2个单位,你能告诉他平移后的三角形顶点坐标是多少吗?2. 在一张纸上画一个中心坐标为(2, 3)的矩形,其中矩形的长为4个单位,宽为2个单位。
现在请你帮助小明将这个矩形向左平移3个单位,并写出平移后矩形的顶点坐标。
3. 小华在一张方格纸上画了一个正方形ABCD,其中A(1, 1),B(1,4),C(4, 4),D(4, 1)。
现在小华向右平移了3个单位,你能告诉他平移后正方形的顶点坐标吗?练习二:旋转练习题1. 在一张方格纸上,小明画了一个图形。
他围绕坐标为(2, 3)的点将这个图形逆时针旋转90度,请你写出旋转后图形的顶点坐标。
2. 小华在纸上画了一个三角形,顶点分别为A(2, 3),B(4, 2),C(6, 4)。
他想将这个三角形绕坐标为(2, 2)的点顺时针旋转180度,请你告诉他旋转后的三角形顶点坐标。
3. 在一张纸上,小明画了一个图形,他围绕坐标为(3, 2)的点将这个图形逆时针旋转270度,请你帮他写出旋转后图形的顶点坐标。
通过上述练习题,我们可以加深对平移和旋转的理解。
在解答这些问题时,需要注意坐标的变化和计算方法。
同时,我们还可以通过绘图工具来验证结果的准确性,加深对平移和旋转的感性认识。
平移和旋转是数学中的基本概念,也是我们生活中常见的现象。
通过学习和练习,我们可以更好地理解和应用这些概念,培养我们的几何思维和空间想象力。
希望同学们能够认真思考和解答这些练习题,提高自己的数学水平。
北师大版八年级数学下册 《图形的平移与旋转》全章复习与巩固(提高)巩固练习 含答案解析

《图形的平移与旋转》全章复习与巩固(提高)巩固练习【巩固练习】 一、选择题1.轴对称与平移、旋转的关系不正确的是( ).A .经过两次翻折(对称轴平行)后的图形可以看作是原图形经过一次平移得到的B .经过两次翻折(对称轴不平行)后的图形可以看作是原图形经过一次平移得到的C .经过两次翻折(对称轴不平行)后的图形可以看作是原图形经过旋转得到的D .经过几次翻折(对称轴有偶数条且平行)后的图形可以看作是经过一次平移得到的 2.在旋转过程中,确定一个三角形旋转的位置所需的条件是( ). ①三角形原来的位置;②旋转中心;③三角形的形状;④旋转角. A .①②④ B .①②③ C .②③④ D .①③④3.下列图形中,既可以看作是轴对称图形,又可以看作是中心对称图形的为( ).A B C D4.(2016·株洲)如图,在△ABC 中,∠ACB=90°,∠B=50°,将此三角形绕点C 顺时针方向旋转后得到△A ’B ’C ’,若点B ’恰好落在线段AB 上,AC 、A ’B ’交于点O ,则∠COA ’的度数是( )A .50°B .60°C .70°D .80°5.如图,把矩形纸条ABCD 沿EF GH ,同时折叠,B C ,两点恰好落在AD 边的P 点处, 若90FPH =o∠,8PF =,6PH =,则矩形ABCD 的边BC 长为( ). A.20 B.22 C.24 D.30第4题 第5题6.如图,正方形硬纸片ABCD 的边长是4,点E 、F 分别是AB 、BC 的中点,若沿左图中的虚线剪开,拼 成如下图的一座“小别墅”,则图中阴影部分的面积是( ). A .2 B .4 C .8 D .107. 如图,在Rt △ABC 中,∠ACB=90°,AC=BC=2,将Rt △ABC 绕A 点按逆时针方向旋转30°后得到Rt △ADE ,点B 经过的路径为弧BD ,则图中阴影部分的面积是( ).A.6π B.3π C.16π+ D.18.如图,在正方形ABCD 外取一点E ,连接AE ,BE ,DE. 过点A 作AE 的垂线交DE 于点P .若AE=AP=1,PB=5.下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为2;③EB ⊥ED ;④S △APD +S △APB =1+6;⑤S 正方形ABCD =4+6.其中正确结论的序号是( ). A .①③④ B .①②⑤ C .③④⑤ D .①③⑤二、填空题9. 如图,图B 是图A 旋转后得到的,旋转中心是 ,旋转了 .10.在Rt ∆ABC 中,∠A <∠B,CM 是斜边AB 上的中线,将∆ACM 沿直线CM 折叠,点A 落在点D 处,如果CD 恰好与AB 垂直,那么∠A 等于 度.第9题第10题第12题11.(2016•大连)如图,将△ABC绕点A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD= .12. 如图,正方形ABCD经过顺时针旋转后到正方形AEFG的位置,则旋转中心是,旋转角度是度.13. 时钟的时针不停地旋转,从上午8:30到上午10:10,时针旋转的旋转角是 .14. 如图所示,可以看作是一个基本图形经过次旋转得到的;每次旋转了度.15.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=43,BC的中点为D,将△ABC绕点C顺时针旋转任意一个角度得到△FEC,EF的中点为G,连接DG.在旋转过程中,DG的最大值是 .16.如图所示,按下列方法将数轴的正半轴绕在一个圆上(该圆周长为3个单位长,且在圆周的三等分点处分别标上了数字0、1、2)上:先让原点与圆周上0所对应的点重合,再将正半轴按顺时针方向绕在该圆周上,使数轴上1、2、3、4、…所对应的点分别与圆周上1、2、0、1、…所对应的点重合.这样,正半轴上的整数就与圆周上的数字建立了一种对应关系.(1)圆周上数字a 与数轴上的数5对应,则a=_________;(2)数轴上的一个整数点刚刚绕过圆周n圈(n为正整数)后,并落在圆周上数字1所对应的位置,这个整数是_________(用含n的代数式表示).三、解答题17. 如图,在正方形ABCD中,F是AD的中点,E是BA延长线上一点,且AE=12 AB.①你认为可以通过平移、轴对称、旋转中的哪一种方法使△ABF变到△ADE的位置?若是旋转,指出旋转中心和旋转角.②线段BF和DE之间有何数量关系?并证明.18.阅读:我们把边长为1的等边三角形PQR沿着边长为整数的正n(n>3)边形的边按照如图1的方式连续转动,当顶点P回到正n边形的内部时,我们把这种状态称为它的“点回归”;当△PQR回到原来的位置时,我们把这种状态称为它的“三角形回归”.例如:如图2,边长为1的等边三角形PQR的顶点P在边长为1的正方形ABCD内,顶点Q与点A重合,顶点R与点B重合,△PQR沿着正方形ABCD的边BC、CD、DA、AB…连续转动,当△PQR连续转动3次时,顶点P回到正方形ABCD内部,第一次出现P的“点回归”;当△PQR连续转动4次时△PQR回到原来的位置,出现第一次△PQR的“三角形回归”.操作:如图3,如果我们把边长为1的等边三角形PQR沿着边长为1的正五边形ABCDE的边连续转动,则连续转动的次数k= 时,第一次出现P的“点回归”;连续转动的次数k= 时,第一次出现△PQR的“三角形回归”. 猜想:我们把边长为1的等边三角形PQR 沿着边长为1的正n (n >3)边形的边连续转动, (1)连续转动的次数k= 时,第一次出现P 的“点回归”; (2)连续转动的次数k= 时,第一次出现△PQR 的“三角形回归”;(3)第一次同时出现P 的“点回归”与△PQR 的“三角形回归”时,写出连续转动的次数k 与正多边形的边数n 之间的关系.19.(2015春•凉山州期末)如图,长方形ABCD 在坐标平面内,点A 的坐标是A (2,1),且边AB 、CD 与x 轴平行,边AD 、BC 与x 轴平行,点B 、C 的坐标分别为B (a ,1),C (a ,c ),且a 、c 满足关系式c=++3.(1)求B 、C 、D 三点的坐标;(2)怎样平移,才能使A 点与原点重合?平移后点B 、C 、D 的对应分别为B 1C 1D 1,求四边形OB 1C 1D 1的面积;(3)平移后在x 轴上是否存在点P ,连接PD ,使S △COP =S 四边形OBCD ?若存在这样的点P ,求出点P 的坐标;若不存在,试说明理由.20. 如图,P 是等边三角形ABC 中的一点,PA =2,PB =32,PC =4,求BC 边得长是多少?【答案与解析】 一.选择题 1.【答案】B.【解析】A 、多次平移相当于一次平移,故正确;B 、必须是对称轴有偶数条且平行时,才可以看作是原图形经过一次平移得到的,故错误;C 、一个图形围绕一个定点旋转一定的角度,得到另一个图形,这种变换称为旋转变换,故正确;D 、对称轴有偶数条且平行时,可以看作是原图形经过一次平移得到的,故正确. 故选B . 2.【答案】A. 3.【答案】B.BP4.【答案】B.【解析】解:由题意知:∠A=90°-50°=40°,由旋转性质可知:∴BC=B C′,∴∠B=∠BB ’C=50°,∵∠BB ′C =∠A +∠ACB ’=40°+∠ACB ’, ∴∠ACB ’=10°,∴∠COA ’=∠AOB ’=∠OB ’C+∠ACB ’=∠B+∠ACB ’=60°. 故选B .5.【答案】C.【解析】Rt △PHF 中,有FH=10,则矩形ABCD 的边BC 长为PF+FH+HC=8+10+6=24,故选C . 6.【答案】B.【解析】阴影部分由一个等腰直角三角形和一个直角梯形组成,由第一个图形可知:阴影部分的两部分可构成正方形的四分之一, 正方形的面积=4×4=16,∴图中阴影部分的面积是16÷4=4. 故选B .7. 【答案】B.【解析】阴影部分的面积等于扇形DAB 的面积,首先利用勾股定理即可求得AB 的长,然后利用扇形的面积公式即可求得扇形的面积.8.【答案】D.【解析】①利用同角的余角相等,易得∠EAB=∠PAD ,再结合已知条件利用SAS 可证两三角形全等;③利用①中的全等,可得∠APD=∠AEB ,结合三角形的外角的性质,易得∠BEP=90°,即可证;②过B 作BF ⊥AE ,交AE 的延长线于F ,利用③中的∠BEP=90°,利用勾股定理可求BE ,结合△AEP 是等腰直角三角形,可证△BEF 是等腰直角三角形,再利用勾股定理可求EF 、BF ;⑤在Rt △ABF 中,利用勾股定理可求AB 2,即是正方形的面积;④S △APD +S △APB = S △AP E +S △EPB =12. 二.填空题 9.【答案】X ;180°.【解析】观察图形中Z 点对应点的位置是图A 绕旋转中心X 按逆时针旋转180°得到的.故答案为:X ;180°.10.【答案】30°.【解析】解法一、在Rt △ABC 中,∠A <∠B∵CM 是斜边AB 上的中线, ∴CM=AM , ∴∠A=∠ACM ,将△ACM 沿直线CM 折叠,点A 落在点D 处 设∠A=∠ACM=x 度, ∴∠A+∠ACM=∠CMB , ∴∠CMB=2x ,如果CD 恰好与AB 垂直 在Rt △CMG 中, ∠MCG+∠CMB=90°即3x=90°x=30°则得到∠MCD=∠BCD=∠ACM=30°根据CM=MD,得到∠D=∠MCD=30°=∠A∠A等于30°.解法二、∵CM平分∠ACD,∴∠ACM=∠MCD∵∠A+∠B=∠B+∠BCD=90°∴∠A=∠BCD∴∠BCD=∠DCM=∠MCA=30°∴∠A=30°11.【答案】2.12.【答案】A,45.【解析】∵正方形ABCD经过顺时针旋转后得到正方形AEFG,∴旋转中心为点A,旋转角为∠CAD,∵AC是正方形ABCD的对角线,∴∠CAD=45°,∴旋转角为45°.故答案为:A,45.13.【答案】50°.【解析】从上午8:30到上午10:10,共1个小时40分钟;时针旋转了536圆周,故旋转角的度数是50度.故答案为:50°.14.【答案】3;90.【解析】如图所示的图形可以看作按照逆时针(或顺时针)旋转3次,且每次旋转了90°而成的.故答案是:3;90.15.【答案】6.【解析】如图,连接CG,根据直角三角形斜边上的中线等于斜边的一半求出CG=4,再根据三角形的任意两边之和大于第三边判断出D、C、G三点共线时DG有最大值,再代入数据进行计算即可得解.16.【答案】(1)a=2,(2)3n+1.【解析】根据正半轴上的整数与圆周上的数字建立的这种对应关系可以发现:圆周上了数字0、1、2与正半轴上的整数每3个一组012;345;678…分别对应.三.解答题17.【解析】解:(1)可以通过旋转使△ABF变到△ADE的位置,即把△ABF以A点为旋转中心,逆时针旋转90°可得到△ADE;(2)线段BF和DE的数量关系是相等.理由如下:∵四边形ABCD为正方形,∴AB=AD,∠BAF=∠EAD,∵F是AD的中点,AE=12 AB,∴AE=AF,∴△ABF以A点为旋转中心,逆时针旋转90°时,AB旋转到AD,AF旋转到AE,即F点与E点重合,B点与D点重合,∴BF与DE为对应线段,∴BF=DE.18.【解析】解:操作:3,5.猜想:(1)第一次点回归,连续转动的次数都是3次,故填3;(2)第一次出现△PQR的“三角形回归”,连续转动的次数就是多边形的边数,故填n;(3)当n不是3的倍数时,k=3n,当n是3的倍数时,k=n.19.【解析】解:(1)由题意得,a﹣6≥0且6﹣a≥0,所以,a≥6且a≤6,所以,a=6,c=3,所以,点B(6,1),C(6,3),∵长方形ABCD的边AB、CD与x轴平行,边AD、BC与x轴平行,∴点D(2,3);(2)∵平移后A点与原点重合,∴平移规律为向左2个单位,向下1个单位,∴B1(4,0),C1(4,2),D1(0,2);(3)平移后点C到x轴的距离为2,∵S△COP=S四边形OBCD,∴×OP×2=4×2,解得OP=8,若点P在点O的左边,则点P的坐标为(﹣8,0),若点P在点O的右边,则点P的坐标为(8,0).综上所述,存在点P(﹣8,0)或(8,0).20.【解析】解:如图,将△ABP绕点B逆时针旋转60°得△BCQ,连接PQ.再过B作CQ的延长线的垂线BD,垂足为D,∴BQ=PB=23,∠PQB =60°,∴△PBQ是等边三角形,∴PQ=PB=23,∠QPC=60°.在△PCQ中,∵CQ=PA=2,,PQ=23,PC=4,∴CQ2+ PQ2=PC2,∴∠PQC=90°,∴∠CQB=∠PQB+∠PQC=150°,∴∠BQD=30°.在Rt△BQD中,BD=12BQ=3,QD=3,则CD=5.在Rt△BCD中,BC=32527+=.。
(完整版)平移与旋转练习题精选(有答案)

22 、如下图, E 是正方形 ABCD 中 CD 边上任一点,以点 A 为中心,把△ ADE 顺时针旋转 90°,在给出图
形中画出旋转后的图形,并完成下列填空. ( 1)因为点 A 是对称中心,所以它的对应点是 (
);
( 2 )正方形 ABCD 中, AD=AB ,∠ DAB=90° ,所以旋转后点 D 与点 (
)重合.
23 、如图所示, E、 F 分别是△ ABC 的边 AB 、 AC 的两定点,在 BC 上求一点 M ,使△ MEF 的周长最短。
26、如图:若∠ AOD= ∠ BOC=60 °,A 、O、C 三点在同一条线上,△
求:( 1)旋转中心, ( 2)旋转角度数,
( 3)图中经过旋转后能重合的三角形共有几对?若
( 3)∵∠ FDE=45° ,∠ ADC=9°0 ,∴∠ ADF+ ∠ EDC=9°0 -45°=45°,∵∠ GDF= ∠ GDA+ ∠ADF,∠ GDA= ∠EDC, ∴∠ GDF= ∠EDC+ ∠ADF=45° .
26 、( 1) .O 点 (2).60 度 (3).3 对,成立,因为角 AOD为 60 度,角 DOC为 120 度,向加 180 度,所以成立 (4).90 因为角 BOC=角 AOD=45度,所以应旋转 90 度 (5).120 度
二、填空题
11、 O 12 、C
∠ EOB 顺时针
AO=DO 90°
∠ AOD= ∠BOE .
13 、由图可知, OB 、OD 是对应边,∠ BOD 是旋转角,所以,旋转角∠ BOD= ∠AOD- ∠AOB=127° -90 °=37 度
14 、解:∵ AD∥ BC,∠ EFB=65°,∴ DEF=65° ,又∵∠ DEF= ∠ D′ EF,∴∠ D′ EF=65°,∴∠ AED′ =50°
第三章 图形的平移与旋转辅导题

第三章 图形的平移与旋转辅导题一、选择题1、下列图形中,不能由图形M 经过一次平移或旋转得到的是 .2. 如图,△OAB 绕点O 逆时针旋转90°到△OCD 的位置,已知∠AOB=45°,则∠AOD 的度数为 (A )55° (B )45° (C )40° (D )35°3、 同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的.如图是看到的万花筒的一个图案,如图3中所有小三角形均是全等的等边三角形,其中的菱形AEFG 可以看成是把菱形ABCD 以A 为中心 (A )顺时针旋转60°得到 (B )逆时针旋转60°得到 (C )顺时针旋转120°得到 (D )逆时针旋转120°得到4. 如图,甲图案变成乙图案,既能用平移,又能用旋转的是 ( ).5、如下图,P 是正△ABC 内的一点,若将△PBC 绕点B 旋转到△P ’BA ,则∠PBP ’的度数是( ) A .45° B .60°C .90° D .120°6、视力表对我们来说并不陌生.如图是视力表的一部分,其中开口向上的两个“E ”之间的变换是( ) A.对称D .位似7、如图,Rt△ABC 中,∠ACB=90°,∠A=50°,将其折叠,使点A 落在边CB 上A′处,折痕为CD ,则AD B '∠=标准对数视力0.1 4.0 0.12 4.1 0.154.2第6题图A 'BDAC A B C DMA 、40B .30° C.20° D.10°8、已知如图1所示的四张牌,若将其中一张牌旋转180°后得到图2.则旋转的牌是( )二、填空题1. 如图7,已知面积为1的正方形ABCD 的对角线相交于点O ,过点O 任作一条直线分别交AD BC ,于E F ,,则阴影部分的面积是 .2. 如图8所示,在平面内将Rt △ABC 绕直角顶点C 逆时针旋转90°得到Rt △EFC.若AB=5,BC=1,则线段BE 的长为 .3. 如图9,P 是正方形ABCD 内一点,将△ABP 绕点B 顺时针方向旋转一定的角度后能与△CB /P 重合.若PB=3,则P /P = .4、如图,△ABC 是等腰直角三角形,BC 是斜边,P 为△ABC 内一点,将△ABP 绕点A 逆时针旋转后与△ACP /重合,如果AP=3,那么线段P P /的长是 5、如图,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC .则∠AEB= (2)如图,ΔOAB 固定不动,保持ΔOCD 的形状和大小不变,将ΔOCD 绕着点O 旋转(ΔOAB 和ΔOCD 不能重叠),则∠AEB=图7 FB图1图2A B C DCBO D图ABODCE图三、已知Rt△ABC中,∠C=90°,BC=4,AC=4,现将△ABC沿CB方向平移到△A’B’C’的位置。
平移与旋转的练习题

平移与旋转的练习题平移与旋转的练习题平移和旋转是几何学中常见的基本操作,它们在解决各种问题时起着重要作用。
本文将给出一些关于平移和旋转的练习题,以帮助读者更好地理解和掌握这两个概念。
一、平移练习题1. 将一个正方形沿着横轴向右平移3个单位,再向上平移4个单位,最后沿着纵轴向下平移2个单位。
求平移后正方形的坐标。
2. 已知点A(2, 3)和B(-1, 5),将线段AB沿着横轴向右平移5个单位,再向上平移2个单位。
求平移后线段AB的两个端点坐标。
3. 将一个三角形ABC沿着纵轴向下平移3个单位,再向右平移4个单位。
已知点A(1, 2),B(3, 4),C(5, 6),求平移后三角形ABC的三个顶点坐标。
二、旋转练习题1. 将一个正方形绕原点逆时针旋转90°,再沿着横轴向右平移2个单位。
已知正方形的一个顶点坐标为(1, 1),求旋转后正方形的四个顶点坐标。
2. 将一个矩形绕点(2, 3)逆时针旋转180°,再沿着纵轴向下平移4个单位。
已知矩形的四个顶点坐标分别为A(1, 2),B(3, 2),C(3, 4),D(1, 4),求旋转后矩形的四个顶点坐标。
3. 将一个三角形绕点(0, 0)逆时针旋转60°,再沿着横轴向右平移3个单位。
已知三角形的三个顶点坐标为A(1, 1),B(2, 3),C(3, 2),求旋转后三角形的三个顶点坐标。
通过以上练习题,我们可以巩固平移和旋转的基本概念,并理解它们在几何学中的应用。
平移是指将图形在平面上沿着指定的方向移动一定的距离,而旋转是指将图形围绕某一点旋转一定角度。
这两个操作在计算机图形学、机器人控制、航空航天等领域都有广泛的应用。
在解决实际问题时,我们需要根据具体情况确定平移和旋转的坐标变换公式,以便准确地描述和计算图形的位置和形状变化。
通过练习题的训练,我们可以提高对平移和旋转的理解和运用能力,为解决更复杂的几何问题打下基础。
需要注意的是,在进行平移和旋转操作时,我们要注意坐标系的选择和变换的顺序,以确保结果的准确性。
专题9:平移、旋转和轴对称-2022—2023年三年级数学下册暑假专项提升

专题9:平移、旋转和轴对称2022—2023年三年级数学暑假专项提升(西师大版)本专题主要针对平移、旋转和轴对称的内容进行逐层巩固拔高拓展,包括:1、平移和旋转的意义2、平移和旋转的判断3、轴对称的认识和特点4、平移、旋转和轴对称的应用一、选择题1.下面属于平移现象的是()。
A.秒针的转动B.行驶中的汽车轮子C.起重机吊起货物2.下列图形哪一个不是轴对称图形?()A.B.C.D.3.下面现象不属于旋转的是().A.B.C.4.下列物体只做旋转的是()。
A.钟表的指针B.坠落的铁球C.吊车把货物吊到高空5.下面不是旋转现象的是()A.抽陀螺B.玩风车C.吹风扇D.写字6.小汽车在平直的马路上行驶时,车身的运动属于()。
A.平移B.旋转C.对称7.把一张圆形的纸对折,再对折,再对折,所形成的角是()度。
A.30B.45C.908.下列图形一定是轴对称图形的()A.锐角三角形B.平行四边形C.圆形D.梯形9.图形绕点O顺时针旋转180°得到的图形是()。
A.B.C.D.10.一个正方形最多可以画()条对称轴.A.1B.4C.2二、填空题11.下面现象中,_____是平移,_____是旋转.12.一个正方形最多可以画________条对称轴.13.看图填空(1)上图中点A和点________到对称轴的距离都是2格.(2)点B和点B′到对称轴的距离都是________格.(3)点________和点________到对称轴的距离都是5格14.欣赏下面美丽的图形,你知道它们分别是由哪个图形通过旋转或平移形成的?这个图形是由________。
一、填空题1.升国旗时,国旗上升是_______现象;钟面上时针沿顺时针方向走动是_______现象。
(填“平移”或“旋转”)2.⑴蜡烛向_________平移了________格.⑴小鱼向________平移了________格.3.升旗时红旗的上升是_______现象;汽车行驶时车轮的转动是_______ 现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形的平移与旋转提高题一.选择题(共17小题)1.如图,将∠BAC沿DE向∠BAC内折叠,使AD与A′D重合,A′E与AE重合,若∠A=30°,则∠1+∠2=()A.50°B.60°C.45°D.以上都不对2.如图,△ABC中,∠A=36°,AB=AC,BD平分∠ABC,DE∥BC,则图中等腰三角形的个数()A.1个B.3个 C.4个 D.5个3.如图,已知等边△ABC的面积为4,P、Q、R分别为边AB、BC、AC上的动点,则PR+QR的最小值是()A.3 B.2 C. D.44.在正五边形ABCDE所在的平面内能找到点P,使得△PCD与△BCD的面积相等,并且△ABP为等腰三角形,这样的不同的点P的个数为()A.2 B.3 C.4 D.55.在△ABC中,∠B=30°,点D在BC边上,点E在AC边上,AD=BD,DE=CE,若△ADE为等腰三角形,则∠C的度数为()A.20°B.20°或30°C.30°或40°D.20°或40°6.如图,▱ABCD中,点E、F分别在AD、AB上,依次连接EB、EC、FC、FD,图中阴影部分的面积分别为S1、S2、S3、S4,已知S1=2、S2=12、S3=3,则S4的值是()A.4 B.5 C.6 D.77.若平行四边形的一边长为7,则它的两条对角线长可以是()A.12和2 B.3和4 C.14和16 D.4和88.如图,在▱ABCD中,延长AB到点E,使BE=AB,连接DE交BC于点F,则下列结论不一定成立的是()A.∠E=∠CDF B.EF=DF C.AD=2BF D.BE=2CF 9.如图,已知四边形ABCD为等腰梯形,AD∥BC,AB=CD,AD=,E为CD 中点,连接AE,且AE=2,∠DAE=30°,作AE⊥AF交BC于F,则BF=()A.1 B.3﹣C.﹣1 D.4﹣210.如图,平行四边形ABCD中,AE⊥BC,AF⊥DC,AB:AD=2:3,∠BAD=2∠ABC,则CF:FD的结果为()A.1:2 B.1:3 C.2:3 D.3:411.如图,O是▱ABCD的对角线交点,E为AB中点,DE交AC于点F,若S▱ABCD=16.则S△DOE的值为()A.1 B.C.2 D.12.如图,平行四边形ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则ABCD的面积是()A.30 B.36 C.54 D.7213.某学校共有3125名学生,一次活动中全体学生被排成一个n排的等腰梯形阵,且这n排学生数按每排都比前一排多一人的规律排列,则当n取到最大值时,排在这等腰梯形阵最外面的一周的学生总人数是()A.296 B.221 C.225 D.64114.如图,平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F.下列结论中:①△ABC≌△EAD;②△ABE是等边三角形;③AD=AF;④S△ABE =S△CDE;⑤S△ABE =S△CEF.其中正确的是()A.①②③B.①②④C.①②⑤D.①③④15.已知:如图,梯形ABCD是等腰梯形,AB∥CD,AD=BC,AC⊥BC,BE⊥AB 交AC的延长线于E,EF⊥AD交AD的延长线于F,下列结论:①BD∥EF;②∠AEF=2∠BAC;③AD=DF;④AC=CE+EF.其中正确的结论有()A.1个B.2个 C.3个 D.4个16.如图,▱ABCD中,∠AEB=36°,BE平分∠ABC,则∠C等于()A.36°B.72°C.108° D.144°17.如图,在▱ABCD中,分别以AB、AD为边向外作等边△ABE、△ADF,延长CB交AE于点G,点G在点A、E之间,连接CE、CF,EF,则以下四个结论一定正确的是()①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等边三角形;④CG⊥AE.A.只有①②B.只有①②③C.只有③④D.①②③④二.选择题(共16小题)18.如图,E、F是▱ABCD的边AD上的两点,△EOF的面积为4,△BOC的面积为9,四边形ABOE的面积为7,则图中阴影部分的面积为.19.如图,在平行四边形ABCD中,AD=2AB,AH⊥CD于H,M为AD的中点,MN∥AB,连接NH,如果∠D=68°,则∠CHN=.20.如图,E 、F 分别是平行四边形ABCD 的边AB 、CD 上的点,AF 与DE 相交于点P ,BF 与CE 相交于点Q ,若S △APD =15cm 2,S △BQC =25cm 2,则阴影部分的面积为 cm 2.21.如图,M 是▭ABCD 的AB 的中点,CM 交BD 于E ,则图中阴影部分的面积与▱ABCD 的面积之比为 .22.如图,等腰梯形ABCD 中,AB ∥DC ,∠A=60°,AD=DC=10,点E ,F 分别在AD ,BC 上,且AE=4,BF=x ,设四边形DEFC 的面积为y ,则y 关于x 的函数关系式是 (不必写自变量的取值范围).23.如图,▱ABCD 中,AC ⊥AB ,AB=3cm ,BC=5cm ,点E 为AB 上一点,且AE=AB .点P 从B 点出发,以1cm/s 的速度沿BC→CD→DA 运动至A 点停止.则当运动时间为 秒时,△BEP 为等腰三角形.24.如图,在等腰梯形ABCD中,AD∥BC,AB=AD,BC=()AD,以AD 为边作等边三角形ADE,则∠BEC=.25.如图,在▱ABCD中,E、F分别是AD、BC的中点,AC分别交BE、DF于G、H,以下结论:①BE=DF;②AG=GH=HC;③EG=BG;④S△ABE=3S△AGE.其中,正确的有.26.等腰梯形的周长为60 cm,底角为60°,当梯形腰x=cm时,梯形面积最大,等于cm2.27.已知:如图点O是平行四边形ABCD的对角线的交点,AC=38,BD=24,AD=14,那么△OBC的周长=.28.如图,在▱ABCD中,对角线AC=21cm,BE⊥AC,垂足为E,且BE=5cm,AD=7cm,则AD和BC之间的距离为cm.29.如图,平行四边形中,∠ABC=75°.AF⊥BC于F,AF交BD于E,若DE=2AB,则∠AED=°.30.在平行四边形ABCD中,点A1,A2,A3,A4和C1,C2,C3,C4分别是AB和CD的五等分点,点B1,B2和D1,D2分别是BC和DA的三等分点,已知四边形A4B2C4D2的面积为1cm2,则平行四边形ABCD的面积为cm2.31.在▱ABCD中,若∠A:∠B=2:1,AD=20cm,AB=16cm,则AD与BC两边间的距离是cm,▱ABCD的面积是cm2.32.在▱ABCD中,AC与BD相交于点O,∠AOB=45°,BD=2,将△ABC沿直线AC翻折后,点B落在点B′处,那么DB′的长为.33.如图,对面积为1的平行四边形ABCD逐次进行以下操作:第一次操作,分别延长AB,BC,CD,DA至点A1,B1,C1,D1,使得A1B=2AB,B1C=2BC,C1D=2CD,D1A=2AD,顺次连接A1,B1,C1,D1,得到平行四边形A1B1C1D1,记其面积为S1;第二次操作,分别延长A1B1,B1C1,C1D1、D1A1至点A2,B2,C2,D2,使得A2B1=2A1B1,B2C1=2B1C1,C2D1=2C1D1,D2A1=2A1D1,顺次连接A2,B2,C2,D2记其面积为S2;…;按此规律继续下去,可得到平行四边形A5B5C5D5,则其面积S5=.三.解答题(共7小题)34.如图,在▱ABCD中,M、N分别是AD,BC的中点,∠AND=90°,连接CM 交DN于点O.(1)求证:△ABN≌△CDM;(2)过点C作CE⊥MN于点E,交DN于点P,若PE=1,∠1=∠2,求AN的长.35.理论探究:已知平行四边形ABCD的面积为100,M是AB所在直线上一=;(2)如图2,当点M 点.(1)如图1:当点M与B重合时,S△DCM=;(3)如图3,当点M在AB(或BA)的与B与A均不重合时,S△DCM=;延长线上时,S△DCM拓展推广:如图4,平行四边形ABCD的面积为a,E、F分别为DC、BC延长线上两点,连接DF、AF、AE、BE,求出图中阴影部分的面积,并说明理由.实践应用:如图5是我市某广场的一平行四边形绿地ABCD,PQ、MN分别平行于DC、AD,它们相交于点O,其中S四边形AMOP =300m2,S四边形MBQO=400m2,S四边形NCQO=700m2,现进行绿地改造,在绿地内部作一个三角形区域MQD(连接DM、QD、QM,图中阴影部分)种植不同的花草,求出三角形区域的面积.36.如图,在▱ABCD中,BD为对角线,EF垂直平分BD分别交AD、BC的于点E、F,交BD于点O.(1)试说明:BF=DE;(2)试说明:△ABE≌△CDF;(3)如果在▱ABCD中,AB=5,AD=10,有两动点P、Q分别从B、D两点同时出发,沿△BAE和△DFC各边运动一周,即点P自B→A→E→B停止,点Q自D→F→C→D停止,点P运动的路程是m,点Q运动的路程是n,当四边形BPDQ 是平行四边形时,求m与n满足的数量关系.(画出示意图)37.如图,已知▱ABCD,AE平分∠BAD,交DC于E,DF⊥BC于F,交AE于G,且DF=AD.(1)试说明DE=BC;(2)试问AB与DG+FC之间有何数量关系?写出你的结论,并说明理由.38.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P从A点开始沿AD边向D以3cm/s的速度运动,动点Q从点C开始沿CB 边向点以1cm/s的速度运动,点P、Q分别从A、C同时出发,设运动时间为t (s).(1)当其中一点到达端点时,另一点也随之停止运动.①当t为何值时,以CD、PQ为两边,以梯形的底(AD或BC)的一部分(或全部)为第三边能构成一个三角形?②当t为何值时,四边形PQCD为等腰梯形?(2)若点P从点A开始沿射线AD运动,当点Q到达点B时,点P也随之停止运动.当t为何值时,以P、Q、C、D为顶点的四边形是平行四边形?39.如图,点E,F是▱ABCD的对角线AC上的两点,且CE=AF.(1)写出图中每一对全等的三角形(不再添加辅助线)(2)请你猜想:线段BE与线段DF有怎样的关系?并对你的猜想加以证明.40.如图所示,在平行四边形ABCD中,∠ABC的角平分线分别交AC,AD于E,F点,EG⊥BC,若BA=6,AC=8,AD=10.(1)求FD的长;(2)求△BEC的面积.百度文库- 让每个人平等地提升自我11 2017年11月20日135****3978的初中数学组卷参考答案一.选择题(共17小题)1.B ;2.D;3.B;4.D;5.D;6.D;7.C;8.D;9.D;10.B;11.C;12.D;13.B;14.C;15.D;16.C;17.B;二.选择题(共16小题)18.10;19.56°;20.40;21.1:3;22.;23.,2,,;24.75°或165°;25.①、②、③、④;26.15;;27.45;28.15;29.65;30.;31.8;160;32.;33.135;三.解答题(共7小题)34.;35.50;50;50;36.;37.;38.;39.;40.;。