七年级数学上册1.5.3 近似数

合集下载

七年数学上册1.5.3 近似数

七年数学上册1.5.3 近似数

圆周率π= 3.141 5926 5358 9793 2384 6264 3383 2795 0238 4197 1693 9937 5105 8209 7494 4592 3078 1640 6286 2089 9862 8034 8753 4211 7067 9321 4808 6513 2823 0664 7093 8446 0955 0582 2317 2535 9408 1284 8113 7450 2841 0270 1938 5211 0595 9644 6229 4895 4930 3819 6442 8810 9756 6503 3446 1284 7564 8233 7867 8316 5271 2019 0914 5648 5669 2346 0348 6104 5432 6618 2133 9360 7260 2491 4127 3724 5870 0660 6315 5881 7488 1520 9209 6282 9754 0917 1536 4367 8925 9036 0011 3305 3054 8820 4665 2138 4145 9519 4151 1509 4330 5727 0365 7595 9195 3092 1861 1738 1932 6117 9310 5118 5480 7445 2379 9627 4956 7351 8857 5272 4891 2279 3818 3011 9491 2983 3671 3624 4055 6643 0860 2139 4946 3952 2473 7190 7021 7986 0943 7027 7055 9217 1762 9317 6752 3846 7481 8467 6691 0513 3000 5681 2714 5263 5808 2778 5771 3427 5278 9609 1736 3717 8721 4684 4090 1224 5534 3014 6549 5853 3105 0792 2796 8925 8723 5420 1994 6112 1290 2196 0864 0344 1815 9813 6297 3477 1309 9605 1870 7211 3499 9999 8372 9280 4995 1059 7117 3281 6096 3185 9502 4159 4553 4690 8302 6425 2230 8253 3846 8503 5261 9311 8817 1010 0031 3783 8865 8753 3208 3814 2061 2177 6691 4730 3598 2534 9018 8755 4687 3115 9562 8538 8239 3783 5937 5195 7781 8577 8053 2171 2268 0661 3001 9278 7661 1195 9092 1642 9198 9180 9525 7301 0654 8586 3278 3615 3381 8279 6823 0301 9520 3530 1852 0649 9577 3622 9724 1189 7217 7528 3479 1315 1557 1557 4857 2424 5415 0695 9506 2953 5116 8612 2785 5889 0750 9818 1754 6374 6493 9339 2550 6040 0927 7016 7113 9009 8488 2401 2889 ……

初中数学人教版七年级上册《1.5.3近似数》课件

初中数学人教版七年级上册《1.5.3近似数》课件

(1) 0.0158(精确到0.001);对8四舍五入 (2) 304.35(精确到个位); 对3四舍五入 (3) 1.804(精确到0.1); 对0四舍五入 (4) 1.804(精确到0.01). 对4四舍五入
解:(1) 0.0158 ≈0.016; (2) 304.35≈304;
(3) 1.804 ≈1.8;
按四舍五入法对圆周率π取近似数,有
π≈3(精确到个位), π≈3.1(精确到0.1,或叫做精确到十分位), π≈3.14(精确到0.01,或叫精确到百分位), π≈3.140(精确到0.001,或叫做精确到千分位 ), π≈3.1416(精确到0.0001,或叫做精确到万分位), ……
例 按括号内的要求,用四舍五入法对下列各数取近似数:
下列由四舍五入法得到的近似数,各精确到哪一位?
(1) 360;
个位
(2) 20. 010; 千分位
(3)9. 03万; 百位
(4)3.2×104. 千位
对于带数字单位的数或用科学记数法表示的数,要先将近 似数还原,再分析近似数精确到的数位.
近似数 1.20 是由数 a 四舍五入得到的,那么数 a 的取值范畴是( D ) A.1.15<a<1.25 B.1.15≤a<1.25 C. 1.195<a<1.205 D. 1.195≤a<1.205
பைடு நூலகம்
去尾法:去尾法是去掉数字的小数部分,取其整数部分的取近似数 的方法.例如,把一根 20 cm 长的钢筋截成 6 cm 长的小段作零件, 由20÷6=3.3…可知能截得的零件数为3.
进一法:进一法是去掉余外部分的数字后,在保存部分的最后一个 数字上加 1 的取近似数的方法.例如,有112名学生外出旅行,运算 租用 45 座的客车的辆数时,由于112÷45 =2. 48…,此时应取近 似数 3,即租用 3 辆 45 座的客车才能确保 112 名学生旅行所需.

人教版数学七年级上册1.5.3《近似数》教学设计1

人教版数学七年级上册1.5.3《近似数》教学设计1

人教版数学七年级上册1.5.3《近似数》教学设计1一. 教材分析《近似数》是人教版数学七年级上册1.5.3的内容,本节课主要介绍近似数的概念及其求法。

学生在学习本节课之前,已经掌握了有理数的概念和运算法则,因此,本节课是在已有知识基础上的拓展和应用。

通过本节课的学习,学生能够理解近似数的概念,掌握求近似数的方法,并能应用于实际问题中。

二. 学情分析七年级的学生已经具备了一定的数学基础,对有理数的概念和运算法则有一定的了解。

但是,对于近似数这一概念,学生可能比较陌生,因此需要通过实例和操作来帮助学生理解和掌握。

此外,学生可能对于求近似数的方法和应用有一定的困难,需要通过大量的练习和实际问题来培养学生的应用能力。

三. 教学目标1.了解近似数的概念,能正确地求一个数的近似值。

2.能够将近似数的概念和方法应用于实际问题中。

3.培养学生的数学思维能力和解决问题的能力。

四. 教学重难点1.近似数的概念及其求法。

2.近似数在实际问题中的应用。

五. 教学方法1.采用实例教学法,通过具体的例子来帮助学生理解和掌握近似数的概念和方法。

2.采用问题驱动法,通过提出实际问题来引导学生思考和应用近似数的概念和方法。

3.采用分组讨论法,让学生在小组内进行讨论和交流,培养学生的合作能力和解决问题的能力。

六. 教学准备1.准备相关的实例和练习题,用于引导学生进行思考和练习。

2.准备一些实际问题,用于让学生进行应用和拓展。

3.准备多媒体教学设备,用于展示和讲解实例和问题。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾有理数的概念和运算法则,为新课的学习做好铺垫。

2.呈现(15分钟)通过实例引入近似数的概念,让学生直观地感受近似数的存在。

然后,讲解近似数的求法,引导学生理解并掌握。

3.操练(10分钟)让学生进行近似数的计算练习,巩固所学知识。

可以设置一些不同难度级别的练习题,让学生根据自己的实际情况选择练习。

4.巩固(10分钟)通过一些实际问题,让学生应用近似数的概念和方法进行解答。

人教版七年级数学上册1.5.3《近似数》教学设计

人教版七年级数学上册1.5.3《近似数》教学设计

人教版七年级数学上册1.5.3《近似数》教学设计一. 教材分析《近似数》是人教版七年级数学上册 1.5.3的内容,主要介绍了近似数的概念、求法及其应用。

本节内容是学生学习数学的基础知识,对于培养学生的逻辑思维能力和解决问题的能力具有重要意义。

通过学习本节内容,学生能够理解近似数的概念,掌握求近似数的方法,并能够运用近似数解决实际问题。

二. 学情分析七年级的学生已经具备了一定的数学基础,对于概念的接受能力较强。

但是,对于近似数的概念和求法可能还存在一定的困惑。

因此,在教学过程中,需要通过具体实例和操作活动,帮助学生理解和掌握近似数的概念和求法。

三. 教学目标1.了解近似数的概念,能够正确地求一个数的近似数。

2.能够运用近似数解决实际问题,提高解决问题的能力。

3.培养学生的逻辑思维能力和团队协作能力。

四. 教学重难点1.近似数的概念和求法。

2.运用近似数解决实际问题。

五. 教学方法1.情境教学法:通过具体实例和操作活动,引导学生理解和掌握近似数的概念和求法。

2.问题驱动法:通过提出问题,引导学生思考和探索,培养学生的解决问题的能力。

3.小组合作学习法:通过小组讨论和合作,培养学生的团队协作能力和沟通能力。

六. 教学准备1.教学课件:制作课件,包括近似数的定义、求法及应用的实例。

2.教学素材:准备一些实际问题,用于巩固和拓展学生的知识。

3.计时器:用于控制教学过程中的时间。

七. 教学过程1.导入(5分钟)利用课件展示一些与近似数相关的实例,如天气预报中的温度、身高体重等,引导学生思考和探索近似数的概念和求法。

2.呈现(10分钟)利用课件呈现近似数的定义和求法,结合具体实例进行讲解,让学生理解和掌握近似数的概念和求法。

3.操练(10分钟)学生分组进行操作活动,利用所学知识求一些数的近似数,并交流分享各自的解题过程和方法。

4.巩固(10分钟)利用课件呈现一些实际问题,学生独立解决,巩固所学知识,提高解决问题的能力。

人教版七年级数学上册1.5.3 近似数 课件

人教版七年级数学上册1.5.3 近似数 课件

探究新知
近似数与准确数
精确数:与实际完全相符的数字. 如我们班女生有25人. 近似数概念:与实际数字接近,但还是有一定区别的数字. 如我现在的身高大约162cm.
练一练
找出下列各数中哪些是近似数,哪些是准确数?
(1).我国人口约为14亿; (2).小明的身高为1.59米; (3).我国有56个民族;
解:(1). 15.4 ≈15; (2). 13.23 ≈13.2 ; (3). 0.3056 ≈ 0.306; (4). 1029500 ≈ 1.030╳106 .
课堂小结
这节课我们学习了哪些内容: 1.准确数与近似数; 2.精确度; 3.按要求取近似数
课外作业
习题1.5 第47第6题
先把数还原,再看0所 在的数位.
例题讲解
例6按括号内的要求,用四舍五入法对下列各数取近似数: (1). 0.0158(精确到0.001); (2). 304.35(精确到个位); (3). 1.804(精确到0.1); (4). 1.804(精确到0.01).
解:(1). 0.0158 ≈0.016; (2). 304.35 ≈304 ; (3). 1.804 ≈1.8 ; (4). 1.804 ≈1.80 .
A.3.1(精确到0.1)
B.3.14(精确到0.01)
C.3.141(精确到0.001) D.3.0(精确个位)
6.800000精确到万位的近似数是(D) A.80 B.80×105 C.8×105 D.8.0×105
课堂练习
7.用四舍五入对2585030取近似值时,要求找到精确万位,
下列结果正确的是( A ).
练一练
下列由四舍五入得到的近似数,各精确到哪一位?

人教版七年级数学上册:1.5.3《近似数》说课稿

人教版七年级数学上册:1.5.3《近似数》说课稿

人教版七年级数学上册:1.5.3《近似数》说课稿一. 教材分析《近似数》是人教版七年级数学上册第一章第五节的一部分,主要介绍了近似数的概念、求法以及应用。

这一节的内容是在学生掌握了实数、小数和分数的基础上进行的,为后续学习百分数、概率等知识打下了基础。

二. 学情分析七年级的学生已经具备了一定的数学基础,对于实数、小数和分数的概念有了初步的了解。

但学生在求近似数方面可能还存在一些困难,例如不理解四舍五入的原理,对于近似数的应用也还不够清晰。

因此,在教学过程中,需要注重引导学生理解四舍五入的原理,并通过实际例子让学生感受近似数在生活中的应用。

三. 说教学目标1.知识与技能:让学生理解近似数的概念,掌握求近似数的方法,能运用近似数解决实际问题。

2.过程与方法:通过观察、实践、探究等活动,培养学生的动手操作能力和解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生勇于探究、积极思考的科学精神。

四. 说教学重难点1.重点:近似数的概念、求法及应用。

2.难点:理解四舍五入的原理,以及如何运用近似数解决实际问题。

五.说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等。

2.教学手段:利用多媒体课件、实物模型、数学软件等辅助教学。

六. 说教学过程1.导入新课:通过一个生活中的实际问题,引发学生对近似数的思考,从而导入新课。

2.知识讲解:讲解近似数的概念,并通过例题演示求近似数的方法。

3.实践操作:让学生动手操作,尝试自己求近似数,并解释四舍五入的原理。

4.应用拓展:通过实际例子,让学生感受近似数在生活中的应用。

5.总结反思:让学生总结本节课所学内容,反思自己在求近似数方面的不足。

七. 说板书设计板书设计要清晰、简洁,能够突出本节课的重点内容。

可以设计如下板书:•概念:与实际非常接近的数•求法:四舍五入•应用:解决实际问题八. 说教学评价教学评价可以从学生的学习态度、课堂参与度、作业完成情况、考试成绩等方面进行。

人教版七年级上册数学:第一章《有理数》1.5.3《近似数》

人教版七年级上册数学:第一章《有理数》1.5.3《近似数》
第一章 有理数
1.5 有理数的乘方
1.5.3 近似数
学习目标
1.进一步认识准确数和近似数,并会根据要求用“四舍五入” 的方法省略一个数的尾数求近似数,会用“万”或“亿”作单 位求一个大数的近似数. 2.给一个近似数,会说出它精确到哪一位. 3.在认识、理解近似数的过程中感受大数目近似数的使用价 值,增强学生的应用意识,提高应用能力. 【学习重点】 近似数和精确度的意义. 【学习难点】 能在具体问题中正确进行四舍五入.
情境引入
北京地铁1号线是我国最早的地铁路线,全长31.04公理. “31.04”一定是准确的数据吗?它又是怎么来的?
一、准确数与近似数 辨一辨
下列语句中,那些数据是精确的,哪些数据是近似的? 1.我和妈妈去买水果,买了 8 个苹果,大约 3 千克. 2.小民与小李买了 2 瓶水,4 根黄瓜,6 袋香巴拉牛 肉干,约 20 元,然后骑车去大约 3.5 km外去郊游,大 约玩了 4.5 小时回家. 3.我国共有 56 个民族.

1.判断准确数与近似数. 2.按照要求取近似数.
四舍五入到某一位,就说这个数近似数精确到那一位. 3.由近似数判断精确度
(1) 600万 ; (2) 7.03万;
(3) 5.8亿
(4) 3.30×105.
解:(1)600万,精确到万位; (2)7.03万,精确到百位; (3)5.8亿,精确到千万位; (4)3.30×105,精确到千位.
先把数还原,再 看0所在的数位
做一做
下列结论正确的是 ( C ) A.近似数4.230和4.23的精确度是一样的 B.近似数89.0是精确到个位 C.近似数0.00510与0.0510的精确度不一样 D.近似数6万与近似数60 000的精确度相同

人教版数学七年级上册1.5.3《近似数》教学设计

人教版数学七年级上册1.5.3《近似数》教学设计

人教版数学七年级上册1.5.3《近似数》教学设计一. 教材分析《近似数》是人教版数学七年级上册第1.5.3节的内容,主要介绍了近似数的概念、求法及其应用。

本节内容是学生学习数学的基础知识,对于培养学生的逻辑思维能力和解决问题的能力具有重要意义。

二. 学情分析七年级的学生已经掌握了实数、有理数等基础知识,具备了一定的逻辑思维能力。

但他们对近似数的概念和求法可能还比较陌生,需要通过实例和练习来理解和掌握。

三. 教学目标1.理解近似数的概念,掌握求近似数的方法。

2.能够运用近似数解决实际问题,提高解决问题的能力。

3.培养学生的逻辑思维能力和团队合作能力。

四. 教学重难点1.近似数的概念和求法。

2.运用近似数解决实际问题。

五. 教学方法1.实例教学:通过具体的实例来引导学生理解和掌握近似数的概念和求法。

2.小组讨论:学生进行小组讨论,培养学生的团队合作能力和逻辑思维能力。

3.练习巩固:通过布置练习题,让学生在实践中运用所学知识,巩固所学内容。

六. 教学准备1.教学PPT:制作相关的教学PPT,展示实例和练习题。

2.练习题:准备一些相关的练习题,用于巩固所学内容。

七. 教学过程1.导入(5分钟)通过一个实际问题引入近似数的概念,如“一张地图上的两个城市之间的距离是300公里,请问这个距离是精确值还是近似值?”让学生思考和讨论,引出近似数的概念。

2.呈现(10分钟)介绍近似数的定义和求法,通过PPT展示实例和图示,让学生理解和掌握近似数的概念和求法。

3.操练(10分钟)布置练习题,让学生在课堂上进行练习,运用所学知识求近似数。

教师进行个别指导和讲解,帮助学生掌握求近似数的方法。

4.巩固(10分钟)让学生分组讨论,运用近似数解决实际问题。

教师进行巡回指导,给予学生反馈和指导。

5.拓展(10分钟)让学生思考和讨论近似数在实际生活中的应用,如购物、测量等。

分享自己的经验和体会,进一步加深对近似数概念的理解。

6.小结(5分钟)对本节课的内容进行小结,强调近似数的概念和求法,提醒学生注意近似数在实际问题中的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

编号:000222217954555385825983331
学校:玄国虎市冥中之镇肖家塞小学*
教师:古因丰*
班级:大力士参班*
1.5.3 近似数
【知识与技能】
1.了解近似数的概念.
2.会按精确度要求取近似数.
3.给一个近似数,会说出它精确到哪一位.
【过程与方法】
通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力.
【情感态度】
通过师生合作,联系实际,激发学生学好数学的热情.
【教学重点】
近似数和精确度的意义.
【教学难点】
由给出的近似数求其精确度,按给出的精确度求近似数.
一、情境导入,初步认识
我们常会遇到这样的问题:
(1)七年级(2)班有42名同学;
(2)每个三角形都有3个内角.
这里的42、3都是与实际完全符合的准确数.我们还会遇到这样的问题:
(3)我国的领土面积约为960万平方千米;
(4)王强的体重约是49千克.
960万、49是准确数吗?这里的960万、49都不是准确数,而是由四舍五入得来的,与实际数很接近的数.
我国的领土面积约为960万平方千米,表示我国的领土面积大于或等于959.5万平方千米而小于960.5万平方千米.
王强的体重约为49千克,表示他的体重大于或等于48.5千克而小于49.5
千克.
我们把像960万、49这些与实际数很接近的数称为近似数.
近似数产生的主要原因在于:①在计算时,有时只能得到近似数,如10÷3得近似商3.33;②在度量时,由于受测量工具和测量技术的局限性影响,一般只能得到近似数.如现有最小刻度分别是厘米、毫米的尺子各一把,用它们分别测量同一个人的身高就会得到不完全相同的结果;③在计算和测量中有时并不需要很准确的数,只需要一个近似数即可.如地球的表面积约为5.1亿平方千米,某市约有50万人等,这里的5.1亿、50万都是近似数.
在实际问题中,我们经常要用近似数,使用近似数就有一个近似程度的问题,也就是精确度的问题.
我们都知道,π=3.14159…….
我们对这个数取近似数:
如果结果只取整数,那么按四舍五入的法则应为3,就叫做精确到个位;
如果结果取1位小数,则应为3.1,就叫做精确到十分位(或叫精确到0.1);
如果结果取2位小数,则应为3.14,就叫做精确到百分位(或叫精确到0.01);
一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.
二、典例精析,掌握新知
例1指出下列问题中出现的数,哪些是准确数?哪些是近似数?
(1)某中学七年级有897人;
(2)小华的身高为1.6m;
(3)一本书共有178页;
(4)临园口每天的车流量大约有30000辆;
(5)地球的平均半径约为6370km;
(6)某小区在入冬以后有38户人家向物业部门报修暖气.
【分析】在实际生活中,我们会遇到很多数字,在有些实际问题中我们不可能得到准确数字,如(5)中地球的半径,这时我们研究问题时一般都取近似数字.
解:(1)(3)(6)中给出的数字是准确数;(2)(4)(5)中给出的数字是近似数.
例2按括号内的要求,用四舍五入法对下列各数取近似数:(教材第46页例6)
(1)0.0158(精确到0.001);
(2)304.35(精确到个位);
(3)1.804(精确到0.1);
(4)1.804(精确到0.01).
解:(1)0.0158≈0.016;
(2)304.35≈304;
(3)1.804≈1.8;
(4)1.804≈1.80.
【教学说明】教师提醒学生精确到0.1就是精确到十分位,精确到0.01就是精确到百分位,精确到0.001就是精确到千分位,精确到0.0001就是精确到万分位.
试一试教材第46页练习.
例3下列由四舍五入法得到的近似数,各精确到哪一位?
(1)132.4;(2)0.0572;(3)2.40万
解:(1)132.4精确到十分位(精确到0.1);
(2)0.0572精确到万分位(精确到0.0001);
(3)2.40万精确到百位.
【教学说明】教师提醒学生由于2.40万的单位是万,所以不能说它精确到百分位.
例4一辆卡车最多能装4吨沙子,现有沙子79吨.
(1)至少需要多少辆这样的卡车才能运完沙子?
(2)这些沙子能装满多少辆这样的卡车?
【分析】题目中所要求的是运沙子的卡车辆数,必须取整数.
解:(1)因为79÷4=19.75,所以至少需要20辆这样的卡车才能运完这些沙子.
(2)因为79÷4=19.75,所以这些沙子能装满19辆这样的卡车.
【教学说明】取近似数常用的是“四舍五入”法,但在实际问题中就不一定能用“四舍五入”法,而要用“去尾法”或“进一法”来取近似数.本例中(1)是采用的“进一法”,(2)是采用的“去尾法”.“进一法”和“去尾法”在小学时曾学过,所以设计本例的目的在于让学生回顾所学知识,并让学生知道取近似数并不是只有“四舍五入”这一种方法.
三、运用新知,深化理解
1.请你列举出生活中准确值和近似值的实例.
2.下列各题中的数,哪些是精确数?哪些是近似数?
(1)某中学共有98个教学班;
(2)我国约有13亿人口.
3.用四舍五入法,按括号里的要求对下列各数取近似值:
(1)0.65148(精确到千分位);
(2)1.5673(精确到0.01);
(3)0.03097(精确到0.0001).
4.下列由四舍五入得到的近似数,各精确到哪一位?
(1)54.8;(2)0.00204;(3)3.6万.
【教学说明】上面4题都是有关近似数的题,比较简单,可由学生口答.
【答案】1.略.
2.(1)精确值;(2)近似值.
3.(1)0.65148≈0.651;(2)1.5673≈1.57;(3)0.03097≈0.0310.
4.(1)精确到十分位;(2)精确到十万分位;(3)精确到千位.
四、师生互动,课堂小结
引导学生回忆相关概念,并由学生表述,互相指点.
1.布置作业::从教材习题1.5中选取.
2.完成练习册中本课时的练习.
3.选做题.
(1)下列由四舍五入得到的近似数各精确到哪一位?
①32;②17.93;③0.084;④7.250;
⑤1.35×104;⑥0.45万;⑦2.004;⑧3.1416.
(2)23.0是由四舍五入得来的近似数,则下列各数中哪些数不可能是真值?
①23.04②23.06③22.99④22.85
【答案】3.(1)①精确到个位;
②精确到百分位;
③精确到千分位;
④精确到千分位;
⑤精确到百位;
⑥精确到百位;
⑦精确到千分位;
⑧精确到万分位.
(2)②和④.
本课时教学应多角度选择生活事例作为情境,激发学生参与学习的热情,以学生身边最熟悉的数据引导学生认识概念,再在习题的解答和纠错中准确接受新知识.同时,可鼓励学生积极查阅资料,收集分析数据,形成数感.。

相关文档
最新文档