专题1:立体几何中的三视图问题基础练习

合集下载

立体几何三视图经典练习及答案详解

立体几何三视图经典练习及答案详解
4.正三棱柱的底面边长为 3,侧棱长为 2,且三棱柱 的顶点都在同一个球面上,则该球的表面积为( )
A.4π B.8π C.12π D.16π 解析 由正弦定理得sin630°=2r(其中 r 为正三棱柱底面 三角形外接圆的半径),∴r=1,∴外接球的半径 R= 12+12 = 2,∴外接球的表面积 S=4πR2=8π.故选 B.
4
高考一轮总复习 ·数学[理](经典版)
解析 设圆柱底面圆半径为 r 尺,高为 h 尺,依题意, 圆柱体积为 V=πr2h=2000×1.62≈3×r2×13.33,所以 r2≈81,即 r≈9,所以圆柱底面圆周长为 2πr≈54,54 尺=5 丈 4 尺,则圆柱底面圆周长约为 5 丈 4 尺.故选 B.
10
高考一轮总复习 ·数学[理](经典版)
6.[2018·遵义模拟]一个几何体的三视图如图所示,其中 俯视图是菱形,则该几何体的侧面积为( )
A. 3+ 6 B. 3+ 5 C. 2+ 6 D. 2+ 5
11
高考一轮总复习 ·数学[理](经典版)
解析 由三视图还原为空间几何体,如图所示,则有 OA=OB=1,AB= 2.
23
高考一轮总复习 ·数学[理](经典版)
2.[2018·北京模拟]某三棱锥的三视图如图所示,则该三 棱锥的表面积是( )
A.2+ 5 C.2+2 5
24
B.4+ 5 D.5
高考一轮总复习 ·数学[理](经典版)
解析 由三视图分析知,该几何体是底面为等腰三角 形,其中一条侧棱与底面垂直的三棱锥(SA⊥平面 ABC),如 图,由三视图中的数据可计算得 S△ABC=21×2×2=2,S△SAC =12× 5×1= 25,S△SAB=21× 5×1= 25,S△SBC=21×2× 5 = 5,所以 S 表面积=2+2 5.故选 C.

小学数学 三视图练习题

小学数学 三视图练习题

小学数学三视图练习题三视图是指物体在正投影面上的三个视图分别为正视图、左视图和顶视图。

它是学习立体几何的基础,并且在工程制图中也有广泛的应用。

下面是一些小学数学的三视图练习题,帮助大家巩固相关知识。

题目一:根据下图的正视图、左视图和顶视图,确定物体的形状。

(插入图片,显示正视图、左视图和顶视图)要求:根据正视图、左视图和顶视图确定物体的形状,然后用文字描述出这个物体的形状。

注意描述要准确,并包括物体的名称和各个面的特征。

解答:根据正视图,我们可以看到物体是一个长方体形状的容器,其中有两个相对的长方形面。

根据左视图,我们可以看到物体的侧面有两个边相等的正方形面。

根据顶视图,我们可以看到物体的上面是一个定位的长方形,而下面则无法确定。

综合以上三个视图,我们可以确定这个物体是一个长方体形状的容器,上面和下面都是长方形面,两侧是正方形面。

题目二:根据下图的正视图、左视图和顶视图,求这个物体的体积,并单位是立方米。

(插入图片,显示正视图、左视图和顶视图)要求:根据三个视图计算出物体的体积,并将结果用文字描述出来,并附上计算过程。

解答:根据正视图和左视图,我们可以得出这个物体的长、宽、高分别为5米、3.5米和2米。

根据三个值,我们可以利用体积的计算公式V=长×宽×高来计算该物体的体积。

计算过程如下:V = 5米 × 3.5米 × 2米 = 35立方米。

综上所述,这个物体的体积为35立方米。

题目三:根据下图的正视图、左视图和顶视图,求这个物体的表面积,并单位是平方米。

(插入图片,显示正视图、左视图和顶视图)要求:根据三个视图计算出物体的表面积,并将结果用文字描述出来,并附上计算过程。

解答:根据正视图和左视图,我们可以得出物体的长、宽、高同题目二中一样,即5米、3.5米和2米。

根据这三个值,我们可以利用表面积的计算公式表面积=2×(长×宽+长×高+宽×高)来计算该物体的表面积。

立体几何专题

立体几何专题

立体几何专题一.选择题(共6小题)1.L一个几何体的三视图如图所示(单位:m),其正视图、侧视图均有一个角为60°的菱形,俯视图为边长为1的正方形,则该几何体的体积为()A.m3B.m3C.m3D.m32.某几何体的三视图如图所示,且该几何体的体积为3,则正视图中的x=()A.1 B.2 C.3 D.43.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径,若该几何体的体积是,则三视图中圆的半径为()A.2 B.3 C.4 D.64.一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()A.+πB.+πC.+πD.1+π5.一个几何体的三视图如图所示,则该几何体的表面积为()A.24+πB.24﹣3πC.24﹣πD.24﹣2π6.已知四棱锥P﹣ABCD的三视图如图所示,则四棱锥P﹣ABCD的四个侧面中的最大面积是()A.6 B.8 C.2 D.3二.解答题(共10小题)7.如图,在三棱柱ABC﹣A 1B1C1中,AA1⊥底面ABC,AB=1,,∠ABC=60°.(1)证明AB⊥A1C;(2)求异面直线AB1和BC1所成角的余弦值;(3)求二面角A﹣A1C﹣B的平面角的余弦值.8.如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AC=AB=AA1,E是BC的中点,G是CC1的中点.(I)求异面直线AE与A1C所成的角;(II)求证EG⊥A1C;(III)求二面角C﹣AG﹣E的正切值.9.如图,在长方体ABCD﹣A1B1C1D1中,E、F分别是棱BC,CC1上的点,CF=AB=2CE,AB:AD:AA1=1:2:4,(1)求异面直线EF与A1D所成角的余弦值;(2)证明AF⊥平面A1ED;(3)求二面角A1﹣ED﹣F的正弦值.10.如图,在四棱柱ABCD﹣A1B1C1D1中,侧棱AA1⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD=,且点M和N分别为B1C和D1D的中点.(Ⅰ)求证:MN∥平面ABCD(Ⅱ)求二面角D1﹣AC﹣B1的正弦值;(Ⅲ)设E为棱A1B1上的点,若直线NE和平面ABCD所成角的正弦值为,求线段A1E的长.11.如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点G为AB的中点,AB=BE=2.(1)求证:EG∥平面ADF;(2)求二面角O﹣EF﹣C的正弦值;(3)设H为线段AF上的点,且AH=HF,求直线BH和平面CEF所成角的正弦值.12.已知在直三棱柱ABC﹣A1B1C1中,AB⊥BC,且AA1=2AB=2BC=2,E,M分别是CC1,AB1的中点.(Ⅰ)证明:EM∥平面ABC;(Ⅱ)求直线A1E与平面AEB1所成角的正弦值;(Ⅲ)求二面角B﹣EM﹣B1的余弦值.13.如图,在四棱锥A﹣EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点.(Ⅰ)求证:AO⊥BE;(Ⅱ)求二面角F﹣AE﹣B的余弦值;(Ⅲ)若直线CA与平面BEA所成的角的正弦值为,求实数a的值.14.如图四棱锥P﹣ABCD,三角形ABC为正三角形,边长为2,AD⊥DC,AD=1,PO垂直于平面ABCD于O,O为AC的中点,PO=1.(1)证明PA⊥BO;(2)证明DO∥平面PAB;(3)平面PAB与平面PCD所成二面角的余弦值.15.如图,在三棱锥S﹣ABC中,SA=AB=AC=BC=SC,0为BC的中点.(I)求证:SO⊥面ABC;(II)求异面直线SC与AB所成角的余弦值;(III)在线段AB上是否存在一点E,使二面角B﹣SC﹣E的平面角的余弦值为;若存在,求BE:BA的值;若不存在,试说明理由.16.已知在四棱锥P﹣ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E,F,G分别是PA,PB,BC的中点.(Ⅰ)求证:EF⊥平面PAD;(Ⅱ)求平面EFG与平面ABCD所成锐二面角的大小;(Ⅲ)线段PD上是否存在一个动点M,使得直线GM与平面EFG所成角为,若存在,求线段PM的长度,若不存在,说明理由.立体几何专题参考答案与试题解析一.选择题(共6小题)1.L一个几何体的三视图如图所示(单位:m),其正视图、侧视图均有一个角为60°的菱形,俯视图为边长为1的正方形,则该几何体的体积为()A.m3B.m3C.m3D.m3【解答】解:由三视图知几何体为两个大小相同的正四棱锥的组合体,∵正视图、侧视图均有一个角为60°的菱形,俯视图为边长为1m的正方形,∴正四棱锥的高是正视图、侧视图中边长为1m的正三角形的高(m),∴该几何体的体积V=2×=(m3),故选:C.2.某几何体的三视图如图所示,且该几何体的体积为3,则正视图中的x=()A.1 B.2 C.3 D.4【解答】解:根据三视图判断几何体为四棱锥,其直观图是:V==3⇒x=3.故选:C.3.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径,若该几何体的体积是,则三视图中圆的半径为()A.2 B.3 C.4 D.6【解答】解:由三视图可知:该几何体为球去掉,余下的几何体.设三视图中圆的半径为r,则=,解得r=2.故选:A.4.一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()A.+πB.+πC.+πD.1+π【解答】解:由已知中的三视图可得:该几何体上部是一个半球,下部是一个四棱锥,半球的直径为棱锥的底面对角线,由棱锥的底底面棱长为1,可得2R=.故R=,故半球的体积为:=π,棱锥的底面面积为:1,高为1,故棱锥的体积V=,故组合体的体积为:+π,故选:C.5.一个几何体的三视图如图所示,则该几何体的表面积为()A.24+πB.24﹣3πC.24﹣πD.24﹣2π【解答】解:几何体为棱长为2的正方体挖去半径为2的球,所以几何体的表面积为:=24﹣π;故选:C.6.已知四棱锥P﹣ABCD的三视图如图所示,则四棱锥P﹣ABCD的四个侧面中的最大面积是()A.6 B.8 C.2 D.3【解答】解:因为三视图复原的几何体是四棱锥,顶点在底面的射影是底面矩形的长边的中点,底面边长分别为4,2,后面是等腰三角形,腰为3,所以后面的三角形的高为:=,所以后面三角形的面积为:×4×=2.两个侧面面积为:×2×3=3,前面三角形的面积为:×4×=6,四棱锥P﹣ABCD的四个侧面中面积最大的是前面三角形的面积:6.故选:A.二.解答题(共10小题)7.如图,在三棱柱ABC﹣A 1B1C1中,AA1⊥底面ABC,AB=1,,∠ABC=60°.(1)证明AB⊥A1C;(2)求异面直线AB1和BC1所成角的余弦值;(3)求二面角A﹣A1C﹣B的平面角的余弦值.【解答】证明:(1)在三棱柱ABC﹣A1B1C1中,∵AA1⊥ABC,∴AA1⊥AB,在△ABC中,AB=1,,∠ABC=60°,由正弦定理得∠ACB=30°,∴∠BAC=90°,即AB⊥AC.且AA1,AC为平面ACC1A1内两条相交直线,∴AB⊥平面ACC1A1,又A1C⊂ACC1A,∴AB⊥A1C.解:(2)如图,以A为坐标原点,AB为x轴,AC为y轴,AA1为z轴,建立空间直角坐标系,则A(0,0,0),B(1,0,0),,,,∴,,∴,∴异面直线AB1和BC1所成角的余弦值为(3)可取为平面AA 1C的法向量,设平面A 1BC的法向量为,则,又∵,,∴,不妨取y=1,则,因此有∴二面角A﹣A1C﹣B的平面角的余弦值为.8.如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AC=AB=AA1,E是BC的中点,G是CC1的中点.(I)求异面直线AE与A1C所成的角;(II)求证EG⊥A1C;(III)求二面角C﹣AG﹣E的正切值.【解答】解:(I)取B1C1的中点E1,连A1E1,E1C,E1C1,则AE∥A1E1,所以∠E1A1C是异面直线AE与A1C所成的角.设AC=AB=AA 1=2a,则,,..在△A1E1C中,.所以异面直线AE与A1C所成的角为.(II)由(I)可知,A1E1⊥B1C1,又因为三棱柱ABC﹣A1B1C1是直三棱柱,所以A1E1⊥面BCC1B1,得A1E1⊥EG;又由△E1CC1与△GEC相似,得又由A1E1∩CE1=E1,所以EG⊥面A1E1C,EG⊥A1C.(III)连接AG,设P是AC的中点,过点P作PQ⊥AG于Q,连EP,EQ,则EP⊥AC.又由平面ABC⊥平面ACC1A1,所以EP⊥平面ACC1A1.∠PQE是二面角C﹣AG﹣E的平面角,由,得所以二面角C﹣AG﹣E的平面角正切值是.9.如图,在长方体ABCD﹣A1B1C1D1中,E、F分别是棱BC,CC1上的点,CF=AB=2CE,AB:AD:AA1=1:2:4,(1)求异面直线EF与A1D所成角的余弦值;(2)证明AF⊥平面A1ED;(3)求二面角A1﹣ED﹣F的正弦值.【解答】解:(1)如图所示,建立空间直角坐标系,点A为坐标原点,设AB=1,依题意得D(0,2,0),F(1,2,1),A1(0,0,4),E(1,,0).(1)易得=(0,,1),=(0,2,﹣4).于是cos<,>==.所以异面直线EF与A1D所成角的余弦值为.(2)证明:连接ED,易知=(1,2,1),=(﹣1,,4),=(﹣1,,0),于是=0,=0.因此,AF⊥EA1,AF⊥ED.又EA1∩ED=E,所以AF⊥平面A1ED.(3)设平面EFD的一个法向量为u=(x,y,z),则即不妨令x=1,可得u=(1,2,﹣1).由(2)可知,为平面A1ED的一个法向量.于是cos<u,>==,从而sin<u,>=.二面角A1﹣ED﹣F的正弦值是10.如图,在四棱柱ABCD﹣A1B1C1D1中,侧棱AA1⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD=,且点M和N分别为B1C和D1D的中点.(Ⅰ)求证:MN∥平面ABCD(Ⅱ)求二面角D1﹣AC﹣B1的正弦值;(Ⅲ)设E为棱A1B1上的点,若直线NE和平面ABCD所成角的正弦值为,求线段A1E的长.【解答】(Ⅰ)证明:如图,以A为坐标原点,以AC、AB、AA1所在直线分别为x、y、z轴建系,则A(0,0,0),B(0,1,0),C(2,0,0),D(1,﹣2,0),A1(0,0,2),B1(0,1,2),C1(2,0,2),D1(1,﹣2,2),又∵M、N分别为B1C、D1D的中点,∴M(1,,1),N(1,﹣2,1).由题可知:=(0,0,1)是平面ABCD的一个法向量,=(0,﹣,0),∵•=0,MN⊄平面ABCD,∴MN∥平面ABCD;(Ⅱ)解:由(I)可知:=(1,﹣2,2),=(2,0,0),=(0,1,2),设=(x,y,z)是平面ACD1的法向量,由,得,取z=1,得=(0,1,1),设=(x,y,z)是平面ACB1的法向量,由,得,取z=1,得=(0,﹣2,1),∵cos<,>==﹣,∴sin<,>==,∴二面角D1﹣AC﹣B1的正弦值为;(Ⅲ)解:由题意可设=λ,其中λ∈[0,1],∴E=(0,λ,2),=(﹣1,λ+2,1),又∵=(0,0,1)是平面ABCD的一个法向量,∴cos<,>===,整理,得λ2+4λ﹣3=0,解得λ=﹣2或﹣2﹣(舍),∴线段A1E的长为﹣2.11.如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点G为AB的中点,AB=BE=2.(1)求证:EG∥平面ADF;(2)求二面角O﹣EF﹣C的正弦值;(3)设H为线段AF上的点,且AH=HF,求直线BH和平面CEF所成角的正弦值.【解答】(1)证明:取AD的中点I,连接FI,∵矩形OBEF,∴EF∥OB,EF=OB,∵G,I是中点,∴GI∥BD,GI=BD.∵O是正方形ABCD的中心,∴OB=BD.∴EF∥GI,EF=GI,∴四边形EFIG是平行四边形,∴EG∥FI,∵EG⊄平面ADF,FI⊂平面ADF,∴EG∥平面ADF;(2)解:建立如图所示的坐标系O﹣xyz,则B(0,﹣,0),C(,0,0),E(0,﹣,2),F(0,0,2),设平面CEF的法向量为=(x,y,z),则,取=(,0,1)∵OC⊥平面OEF,∴平面OEF的法向量为=(1,0,0),∵|cos<,>|=∴二面角O﹣EF﹣C的正弦值为=;(3)解:AH=HF,∴==(,0,).设H(a,b,c),则=(a+,b,c)=(,0,).∴a=﹣,b=0,c=,∴=(﹣,,),∴直线BH和平面CEF所成角的正弦值=|cos<,>|==.12.已知在直三棱柱ABC﹣A1B1C1中,AB⊥BC,且AA1=2AB=2BC=2,E,M分别是CC1,AB1的中点.(Ⅰ)证明:EM∥平面ABC;(Ⅱ)求直线A1E与平面AEB1所成角的正弦值;(Ⅲ)求二面角B﹣EM﹣B1的余弦值.【解答】证明:(Ⅰ)在直三棱柱ABC﹣A1B1C1中,BB1⊥AB,BB1⊥BC,又∵AB⊥BC,∴AB⊥平面BCC1B1.…(1分)如图,以点B为原点,,,分别为x轴、y轴、z轴正方向,建立空间直角坐标系,则B(0,0,0),C(1,0,0),B1(0,2,0),A(0,0,1),C1(1,2,0),A1(0,2,1).…(3分)∵E,M分别是CC1,AB1的中点,∴E(1,1,0),M(0,1,),∴=(﹣1,0,).平面ABC的法向量为=(0,2,0),∵•=0,∴⊥.又∵EM⊄平面ABC,∴EM∥平面ABC.…(6分)(Ⅱ)=(0,2,﹣1),=(﹣1,1,0),=(﹣1,1,1).设=(x1,y1,z1)为面AEB1的法向量,则•=•=0,即取y1=1,则x1=1,z1=2,从而=(1,1,2),设直线A1E与平面AEB1所成角为θ,则sinθ=|cos<,>|===,即直线A1E与平面AEB1所成角的正弦值为.…(10分)(Ⅲ)=(1,1,0),=(0,1,).设=(x2,y2,z2)为面BEM的法向量,则•=•=0,即取z2=2,则x2=1,y2=﹣1,从而=(1,﹣1,2),∴cos<,>==,由图形可知所求二面角的平面角为钝角,∴二面角B﹣EM﹣B1的余弦值为﹣.…(13分)13.如图,在四棱锥A﹣EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点.(Ⅰ)求证:AO⊥BE;(Ⅱ)求二面角F﹣AE﹣B的余弦值;(Ⅲ)若直线CA与平面BEA所成的角的正弦值为,求实数a的值.【解答】证明:(Ⅰ)∵△AEF为等边三角形,O为EF的中点,∴AO⊥EF,又∵平面AEF⊥平面EFCB,平面AEF∩平面EFCB=EF,AO⊂平面AEF,∴AO⊥平面EFCB,又BE⊂平面EFCB,∴AO⊥BE.(Ⅱ)取CB的中点D,连接OD,则OD⊥EF,以O为原点,分别以OE、OA、OD为坐标轴建立空间直角坐标系,则O(0,0,0),E(a,0,0),F(﹣a,0,0),,,,∴,=(a,﹣a,0),设平面AEB的一个法向量,则,∴,令y=1,得=(,1,﹣1).平面AEF的一个法向量为,∴=﹣1,||=,||=1,∴,由二面角F﹣AE﹣B为钝二面角,∴二面角F﹣AE﹣B的余弦值为﹣.(Ⅲ),∴=4,||=,||=,∴cos<,>=,∴6a2﹣12a+16=10,解得a=1.14.如图四棱锥P﹣ABCD,三角形ABC为正三角形,边长为2,AD⊥DC,AD=1,PO垂直于平面ABCD于O,O为AC的中点,PO=1.(1)证明PA⊥BO;(2)证明DO∥平面PAB;(3)平面PAB与平面PCD所成二面角的余弦值.【解答】解:(1)证明:如图以A为原点建立空间直角坐标系A﹣xyz,则,A(0,0,0),B(,﹣1,0),C(,1,0),D(0,1,0),O(,,0),P(,,1)…(2分)=(,,1),=(1,,0),,∴PA⊥BO.…(5分)(2)证明:=(,,1),=(,﹣1,0),设平面APB法向量为=(x0,y0,z0)可得,令x°=1,则=(1,,)…(7分).=(,,0),,DO∥平面PAB…(9分)(3)=(,,1),=(,0,0)设平面DPC法向量为,可得,令y°=1,则=(0,1,)…(11分).平面PAB与平面PCD所成二面角的余弦值为 (13)15.如图,在三棱锥S﹣ABC中,SA=AB=AC=BC=SC,0为BC的中点.(I)求证:SO⊥面ABC;(II)求异面直线SC与AB所成角的余弦值;(III)在线段AB上是否存在一点E,使二面角B﹣SC﹣E的平面角的余弦值为;若存在,求BE:BA的值;若不存在,试说明理由.【解答】解:(Ⅰ)连接SO,显然∴SO⊥BC,设SB=a,则SO=,AO=,SA=a∴SO2+OA2=SA2,∴SO⊥OA,又∴BC∩OA=0,∴SO⊥平面ABC.(Ⅱ)以O为原点,以OC所在射线为x轴正半轴,以OA所在射线为y轴正半轴以OS所在射线为z轴正半轴建立空间直角坐标系.则有O(0,0,0),,,,,∴∴,∴,∴异面直线SC与AB所成角的余弦值为,(Ⅲ)假设存在E满足条件,设(0≤λ≤1),则,.设面SCE的法向量为=(x,y,z),由,得,.因为OA⊥面ABC,所以可取向量=(0,1,0)为面SBC的法向量.所以,,解得,.所以,当BE:BA=1:2时,二面角B﹣SC﹣E的余弦值为.16.已知在四棱锥P﹣ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E,F,G分别是PA,PB,BC的中点.(Ⅰ)求证:EF⊥平面PAD;(Ⅱ)求平面EFG与平面ABCD所成锐二面角的大小;(Ⅲ)线段PD上是否存在一个动点M,使得直线GM与平面EFG所成角为,若存在,求线段PM的长度,若不存在,说明理由.【解答】(Ⅰ)证明:∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,AB ⊥AD∴AB⊥平面PAD,(2分)又∵EF∥AB∴EF⊥平面PAD,(3分)(Ⅱ)取AD中点O,连结PO∵平面PAD⊥平面ABCD,PO⊥AD∴PO⊥平面ABCD,(4分)如图以O点为原点分别以OG、OD、OP所在直线为x轴y轴z轴建立空间直角坐标系:∴O(0,0,0)A(0,﹣2,0)B(4,﹣2,0)C(4,2,0),D(0,2,0),G(4,0,0),,E(0,﹣1,),设平面EFG的法向量为,,∴,(6分)又平面ABCD的法向量为,(7分)设平面EFG与平面ABCD所成锐二面角为θ∴,∴平面EFG与平面ABCD所成锐二面角为.(9分)(Ⅲ)设,,∴,(10分),∴=,(12分)即2λ2﹣3λ+2=0,无解,∴不存在这样的M.(13分)。

三视图练习题及答案

三视图练习题及答案

三视图练习题及答案三视图是工程设计、制图等领域中常用的表达方式之一,它能够以三个不同的视角展示一个物体的外观和内部结构,帮助人们更好地理解和分析物体的形状和构造。

为了提高对三视图的理解和应用能力,下面将给出一些三视图练习题及答案,希望对读者有所帮助。

1. 请根据给出的三视图,画出物体的立体图。

答案:根据三视图,我们可以确定物体的形状和尺寸,然后利用透视法将其转化为立体图。

在绘制过程中,需要注意比例和透视关系,以保证立体图的准确性。

2. 给出一个物体的立体图,请根据立体图绘制出相应的三视图。

答案:在绘制三视图时,我们需要观察立体图中的各个面,然后根据其相对位置和大小来绘制对应的正视图、俯视图和侧视图。

在绘制过程中,需要注意比例和尺寸的准确性,以确保三视图能够准确地表达立体图的形状和结构。

3. 请根据给出的三视图,判断物体的形状是什么?答案:通过观察三视图中的线条和面,我们可以判断物体的形状。

例如,如果正视图中的线条是直的,侧视图中的线条是弯曲的,那么物体可能是一个圆柱体。

通过观察三视图中的特征,我们可以逐步推断出物体的形状。

4. 给出一个物体的形状,请根据形状绘制出相应的三视图。

答案:在绘制三视图时,我们需要观察物体的形状和结构,然后根据其特征来绘制对应的正视图、俯视图和侧视图。

在绘制过程中,需要注意线条的粗细和长度,以确保三视图能够准确地表达物体的形状和结构。

通过以上的练习题和答案,我们可以提高对三视图的理解和应用能力。

练习三视图不仅可以帮助我们更好地理解和分析物体的形状和结构,还可以提高我们的制图能力和空间想象力。

在实际工程设计和制图中,三视图是非常重要的表达方式,掌握好三视图的绘制和解读技巧对于工程师和设计师来说是非常必要的。

总之,通过不断地练习和应用,我们可以提高对三视图的掌握程度,为工程设计和制图提供更准确、更有效的表达方式。

希望以上的练习题和答案能够对读者有所帮助,进一步提高对三视图的理解和应用能力。

2022年高考数学空间几何体的直观图与三视图知识点专项练习含答案

2022年高考数学空间几何体的直观图与三视图知识点专项练习含答案

专题28 空间几何体的直观图与三视图一、单选题(本大题共12小题,共60分)1.已知一个几何体的正视图和侧视图如图(1)所示,其俯视图用斜二测画法所画出的水平放置的直观图是一个直角边长为1的等腰直角三角形(如图(2)所示),则此几何体的体积为()A. 1B. √2C. 2D. 2√22.正方形O′A′B′C′的边长为1cm,它是水平放置的一个平面图形的直观图(如图),则原图形的周长是()A. 6cmB. 8cmC. (2+3√2)cmD. (2+2√3)cm3.一个几何体的三视图如图所示,则该几何体的表面积为()A. 3π2+1+√32B. 3π+12+√32C. 3π+1+√32D. 3π+1+√324.某几何体的三视图如图所示,则该几何体的表面积为()A. 3π+4+√3B. 3π+5+√3C. 52π+6+√3 D. 52π+4+√35.已知某几何体的一条棱长为l,该棱在正视图中的投影长为√2020,在侧视图与俯视图中的投影长为a与b,且a+b=2√1011,则l的最小值为()A. √20212B. √40422C. √2021D. 20216.已知一几何体的三视图如图所示,则该几何体的表面积为()A. √24π+72B. √24π+4 C. 1+√24π+72D. 1+√24π+47.某圆柱的正视图是如图所示的边长为2的正方形,圆柱表面上的点A,B,C,D,F在正视图中分别对应点A,B,C,E,F.其中E,F分别为AB,BC的中点,则异面直线AC与DF所成角的余弦值为()A. 13B. √23C. √33D. √638.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A. 22π3B. 28π3C. 34π3D. 40π39.如图,网络纸上小正方形的边长为1,粗实线画出的某几何体的三视图,则该几何体的体积是()A. 18πB. 21πC. 27πD. 36π10.如图所是某一容器三视图,现容中匀速注水,容器中的度h随时间变可能图象是()A. B. C. D.11.如图是一个四棱锥的三视图,则该几何体的体积为()A. 403B. 323C. 163D. 28312.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为A. 64−8√2π3B. 64−4√2π3C. 64−8π3D. 64−4π3二、单空题(本大题共4小题,共20分)13.某组合体的正视图和侧视图如图(1)所示,它的俯视图的直观图是图(2)中粗线所表示的平面图形,其中四边形O′A′B′C′为平行四边形,D′为C′B′的中点,则图(2)中平行四边形O′A′B′C′的面积为___________.14.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和附视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为_____________(写出符合求的一组答案即可).15.在棱长为1的正方体ABCD−A1B1C1D1中,点M,N分别是棱B1C1,C1D1的中点,过A,M,N三点作正方体的截面,将截面多边形向平面ADD1A1作投影,则投影图形的面积为.16.把平面图形α上的所有点在另一个平面上的射影所构成的图形β称为图形α在这个平面上的射影,如图所示,在三棱锥A−BCD中,BC⊥DC,AD⊥DC,BC⊥AB,BC= CD=4,AC=4√3,则△ADB在平面ABC上的射影的面积是________.三、解答题(本大题共2小题,共20分)13.设某几何体的三视图如图(尺寸的长度单位为cm),(1)用斜二测画法画出该几何体的直观图(不写画法);(2)求该几何体最长的棱长.14.设一正方形纸片ABCD边长为4厘米,切去阴影部分所示的四个全等的等腰三角形,剩余为一正方形纸片和四个全等的等腰三角形,沿虚线折起,恰好能做成一个正四棱锥,O为正四棱锥底面中心.,(粘接损耗不计),图中AH PQ(1)若正四棱锥的棱长都相等,请求出它的棱长并画出它的直观图示意图;(2)设等腰三角形APQ的底角为x,试把正四棱锥的侧面积表示为x的函数,并求S范围.专题28 空间几何体的直观图与三视图一、单选题(本大题共12小题,共60分)17.已知一个几何体的正视图和侧视图如图(1)所示,其俯视图用斜二测画法所画出的水平放置的直观图是一个直角边长为1的等腰直角三角形(如图(2)所示),则此几何体的体积为()A. 1B. √2C. 2D. 2√2【答案】B【解析】解:根据直观图可得该几何体的俯视图是一个直角边长分别是2和√2的直角三角形,根据三视图可知该几何体是一个三棱锥,且三棱锥的高为3,所以体积V=13×(12×2×√2)×3=√2.故选B.18.正方形O′A′B′C′的边长为1cm,它是水平放置的一个平面图形的直观图(如图),则原图形的周长是()A. 6cmB. 8cmC. (2+3√2)cmD. (2+2√3)cm【答案】B【解析】解:如图,OA=1cm,在Rt△OAB中,OB=2√2 cm,∴AB=√OA2+OB2=3cm.∴四边形OABC的周长为8cm.故选B.19.一个几何体的三视图如图所示,则该几何体的表面积为()A. 3π2+1+√32B. 3π+12+√32C. 3π+1+√32D. 3π+1+√32【答案】C【解析】解:由三视图可知几何体上部为三棱锥,下部为半球,三棱锥的底面和2个侧面均为等腰直角三角形,直角边为1,另一个侧面为边长为√2的等边三角形,半球的直径2r=√2,故r=√22.∴S表面积=12×1×1×2+√34×(√2)2+12×4π×(√22)2+π×(√22)2−12×1×1=12+√32+3π2.故选:C.20.某几何体的三视图如图所示,则该几何体的表面积为()A. 3π+4+√3B. 3π+5+√3C. 52π+6+√3 D. 52π+4+√3【答案】A【解析】解:由已知中的三视图可得:该几何体是一个半圆柱和三棱锥的组合体半圆柱的半径为1高2,所以该组合体的面积故选A.21.已知某几何体的一条棱长为l,该棱在正视图中的投影长为√2020,在侧视图与俯视图中的投影长为a与b,且a+b=2√1011,则l的最小值为()A. √20212B. √40422C. √2021D. 2021【答案】C【解析】解:如图所示:设长方体中AB=m,BD为正投影,BE为侧投影,AC为俯视图的投影.故:BD=√2020,BE=a,AC=b,设AE=x,CE=y,BC=z,则:x2+y2+z2=l2,x2+y2=b2,y2+z2=a2,x2+z2=2020,所以2(x2+y2+z2)=a2+b2+2020,故:2l2=a2+b2+2020,因为a2+b2≥(a+b)22=2022,所以2l2≥2022+2020,则l≥√2021.故l的最小值为√2021.故选C.22.已知一几何体的三视图如图所示,则该几何体的表面积为()A. √24π+72B. √24π+4 C. 1+√24π+72D. 1+√24π+4【答案】D【解析】解:几何体左边为四分之一圆锥,圆锥的半径为1,高为1,右边为三棱锥,三棱锥底面是直角边长为1和2的直角三角形,高为1,所以几何体的表面积为:+12×(2+1)×1+12×√2×√(√5)2−(√22)2,故选D.23.某圆柱的正视图是如图所示的边长为2的正方形,圆柱表面上的点A,B,C,D,F在正视图中分别对应点A,B,C,E,F.其中E,F分别为AB,BC的中点,则异面直线AC与DF所成角的余弦值为()A. 13B. √23C. √33D. √63【答案】D【解析】解:如图所示,连结DE,EF,易知EF//AC,所以异面直线AC与DF所成角为∠DFE,由正视图可知,DE⊥平面ABC,所以DE⊥EF.由于AB=BC=2,所以EF=√2,又DE=1,所以DF=√3,在RtΔEFM中,cos∠DFE=√2√3=√63,故选D.24.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A. 22π3B. 28π3C. 34π3D. 40π3【答案】C【解析】解:根据几何体得三视图转换为几何体为:该几何体是由一个底面半径为2,高为3的半圆柱和一个半径为2的半球组成,故:V=12⋅π×22×3+12×43×π×23=34π3.故选C.25.如图,网络纸上小正方形的边长为1,粗实线画出的某几何体的三视图,则该几何体的体积是()A. 18πB. 21πC. 27πD. 36π【答案】A【解析】解:该几何体是一个四分之一的圆和圆锥的组合体,如图:有题意知该圆的直径为6cm,圆锥的高为3cm,则该几何体的体积为13×π×32×3+1 4×43π×33=18π,故选A.26.如图所是某一容器三视图,现容中匀速注水,容器中的度h随时间变可能图象是()A. B. C. D.【答案】B【解析】解:三视图表示的容器倒的圆锥,下细,上面,刚开始度增加的相快些.曲越竖直”,后,高度增加来越慢,图越平稳.故B.27.如图是一个四棱锥的三视图,则该几何体的体积为()A. 403B. 323C. 163D. 283【答案】A【解析】解:由三视图得到其直观图(下图所示),则体积为:13×[12(1+4)×4]×4=403,故选A .28.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为A. 64−8√2π3B. 64−4√2π3C. 64−8π3D. 64−4π3【答案】A【解析】解:这是一个有一条侧棱垂直于底面的四棱锥内部挖去了一个八分之一的球,四棱锥的底面边长和高都等于4,八分之一球的半径为2√2,,故选A .二、单空题(本大题共4小题,共20分)29. 某组合体的正视图和侧视图如图(1)所示,它的俯视图的直观图是图(2)中粗线所表示的平面图形,其中四边形O ′A ′B ′C ′为平行四边形,D ′为C ′B ′的中点,则图(2)中平行四边形O ′A ′B ′C ′的面积为___________.【答案】3√2【解析】解:由正视图和侧视图可得俯视图如下:∴|O′A′|=4,|O′C′|=32,∠A′O′C′=45°,∴S ΔA′O′C′=12|O′A′|·|O′C′|·sin∠A′O′C′ =12×4×32×√22=3√22, ∴S ▱O′A′B′C′=2S △A′O′C′=3√2, 故答案为3√2.30.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和附视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为_____________(写出符合求的一组答案即可).【答案】②⑤或③④【解析】解:由高度可知,侧视图只能为②或③,侧视图为②,如图(1)平面PAC⊥平面ABC,PA=PC=√2,BA=BC=√5,AC=2,俯视图为⑤;侧视图为③,如图(2),PA⊥平面ABC,PA=1,AC=AB=√5,BC=2,俯视图为④.故答案为②⑤或③④.31.在棱长为1的正方体ABCD−A1B1C1D1中,点M,N分别是棱B1C1,C1D1的中点,过A,M,N三点作正方体的截面,将截面多边形向平面ADD1A1作投影,则投影图形的面积为.【答案】712【解析】解:直线MN分别与直线A1D1,A1B1交于E,F两点,连接AE,AF,分别与棱DD1,BB1交于G,H两点,连接GN,MH,得到截面五边形AGNMH,向平面ADD1A1作投影,得到五边形AH1M1D1G,由点M,N分别是棱B1C1,C1D1的中点,可得D1E=D1N=12,由△D1EG∽△DAG,可得DG=2D1G=23,同理BH=2B1H=23,则AH1=2A1H1=23,A1M1=D1M1=12,则S AH1M1D1G =1−S A1H1M1−S ADG=1−12×12×13−12×1×23=712,故答案为:712.32.把平面图形α上的所有点在另一个平面上的射影所构成的图形β称为图形α在这个平面上的射影,如图所示,在三棱锥A−BCD中,BC⊥DC,AD⊥DC,BC⊥AB,BC= CD=4,AC=4√3,则△ADB在平面ABC上的射影的面积是________.【答案】8√2【解析】解:因为BC⊥DC,AD⊥DC,BC⊥AB,BC=CD=4,AC=4√3,把三棱锥A−BCD放入如图所示的棱长为4的正方体中,过点D作CE的垂线DF,垂足为F,连接AF,BF,因为BC⊥平面CE,DF⊂平面CE,故BC⊥DF又BC∩CE=C,BC,CE⊂平面ABC则DF⊥平面ABC,故△ADB在平面ABC上的射影为△AFB,因为AB=√42+42=4√2,×4×4√2=8√2,所以△AFB的面积为12即△ADB在平面ABC上的射影的面积为8√2.故答案为8√2.三、解答题(本大题共2小题,共20分)13.设某几何体的三视图如图(尺寸的长度单位为cm),(1)用斜二测画法画出该几何体的直观图(不写画法);(2)求该几何体最长的棱长.【答案】(1)答案见解析;(2)4cm.【解析】(1)(2)如下图,SE⊥面ABC,线段AC中点为D2,3,1,4,2,=1======,BD AC SE cm AE cm CE cm AC cm AD DC cm DE cm⊥,=,3BD cm在等腰ABC中,AB AC=在Rt SEA△中,SA=在Rt SEC△中,SC△中,BE==在Rt BDE∴⊥SE⊥面ABC,SE BE在Rt SEB△中,SB=<==<<,在三梭锥S-ABC中,SC AB AC SA SB AC所以最长的棱为AC ,长为4cm14.设一正方形纸片ABCD 边长为4厘米,切去阴影部分所示的四个全等的等腰三角形,剩余为一正方形纸片和四个全等的等腰三角形,沿虚线折起,恰好能做成一个正四棱锥(粘接损耗不计),图中AH PQ ⊥,O 为正四棱锥底面中心.,(1)若正四棱锥的棱长都相等,请求出它的棱长并画出它的直观图示意图;(2)设等腰三角形APQ 的底角为x ,试把正四棱锥的侧面积表示为x 的函数,并求S 范围.【答案】(1),画图见解析;(2)161tan 2tan S x x=++,()0,4.【解析】(1)由题意,设正四棱锥的棱长为a,则AH =,2a AC a +===(2)设PH b =,则tan AH b x =,由2tan 2a x a ⋅+=a =,从而22116tan 442tan 2(tan 1)APQ x S S PQ AH a x x ==⋅⋅⋅==+△,其中(tan 1),x ∈+∞,∴16(0,4)1tan 2tan S x x=∈++。

(完整word版)三视图练习 (2)

(完整word版)三视图练习 (2)

三视图练习1.一个几何体的三视图如右图所示,它的正视图和侧视图均为半圆,俯视图为圆,则这个空间几何体的体积是( ) A .32π B .34π C .π4 D .π32.有一个几何体的三视图及其尺寸如下图(单位:cm),则该几何体的表面积为( )A .12πcm 2B .15πcm 2C .24πcm 2D .36πcm 23.某几何体的三视图如图所示,根据图中标出的数据.可得这个几何体的表面积为( )A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.124.如图,网格纸上小正方形边长为1,粗线是一个棱锥的三视图,则此棱锥的体积为( ). (A )38 (B )34(C )34 (D)325.一个简单几何体的三视图如图所示,其正视图和俯视图均为正三角形,侧视图为腰长是2的等腰直角三角形则该几何体的体积为( )A .B .1C .D .36.某几何体的三视图如图所示(单位:cm ),则该几何体的侧面PAB 的面积是( ) A .7B .2C .1D .37.说出下列三视图(依次为主视图、左视图、俯视图)表示的几何体是( )A .六棱柱B .六棱锥C .六棱台D .六边形8.一个空间几何体的三视图如图所示,则该几何体的体积为( )A .56πcm 3 B .3πcm 3 B .C .32πcm 3 D .37πcm 3 9.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( ) (A)9π (B )10π (C)11π (D)12π10.用若干单位正方体搭一个几何体,使它的正视图和俯视图如图所示,则它的体积的最大值和最小值分别为( )A. 9,14B.7,13C. 8,14D. 9,13 11.已知某几何体的三视图如上图所示,其中正视图,侧视图均是由三角形与半圆构成,视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为( ) (A)2132π+(B)4136π+ (C)132+(D) 166+12.一个几何体的三视图如图所示,则该几何体的体积为( )(A)92 (B)72(C)3 (D)4 13.右图是一个几何体的三视图,根据图中数据,可得该几何体的体积是( )(A) 9π (B)1333π- (C )103π (D)133π 14.一个几何体的三视图如图所示,则该几何体的体积是( ) (A )64 (B )72 (C )80(D )11215.一个几何体的三视图如图所示,则该几何体的体积是( )A .64B .72C .80D .11216.已知一个几何体的三视图如下图所示(单位:cm),其中正视图是直角梯形,侧视图和俯视图都是矩形,则这个几何体的体积是________cm 3.17.如图为一个几何体的三视图,其中俯视为正三角形,A 1B 1=2,AA 1=4,则该几何体的表面积为_______。

三视图(含答案)

三视图(含答案)

立体几何三视图1. 如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是()A. 17πB. 18πC. 20πD. 28π2. 如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A. 20πB. 24πC. 28πD. 32π3. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( )A. 90πB. 63πC. 42πD. 36π4. 一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为()A. 13+23πB. 13+ 23π C. 13+ 26π D. 1+ 26π5.某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A. 32B. 23C. 22D. 26.某几何体的三视图如图所示,则该几何体的体积是()A. πB. 2πC. 4πD. 8π7.某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A.8 cm3B. 12 cm3C. 32cm33D. 40cm338.已知一个三棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的体积为()A. 13B. 16C. 83D. 439.如图为某几何体的三视图,根据三视图可以判断这个几何体为()A. 圆锥B. 三棱锥C. 三棱柱D. 三棱台10.堑堵,我国古代数学名词,其三视图如图所示.《九章算术》中有如下问题:“今有堑堵,下广二丈,袤一十八丈六尺,高二丈五尺,问积几何?”意思是说:“今有堑堵,底面宽为2丈,长为18丈6尺,高为2丈5尺,问它的体积是多少?”(注:一丈=十尺).答案是()A. 25500立方尺B. 34300立方尺C. 46500立方尺D. 48100立方尺11.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是()cm3A. πB. 2πC. 3πD. 4π12.某棱柱的三视图如图示,则该棱柱的体积为()A. 3B. 4C. 6D. 1213. 某几何体的三视图如图所示,则它的体积是( )A. 8−2π3B. 64−16π3C. 8−π3D. 64−12π3答案和解析1.【答案】A【解析】【分析】本题考查三视图求解几何体的体积与表面积,考查计算能力以及空间想象能力.判断三视图复原的几何体的形状,利用体积求出几何体的半径,然后求解几何体的表面积.【解答】解:由题意可知三视图复原的几何体是一个球去掉其中后的几何体,如图:可得:=,R=2.它的表面积是:×4π•22+=17π.故选A.2.【答案】C【解析】解:由三视图知,空间几何体是一个组合体,上面是一个圆锥,圆锥的底面直径是4,圆锥的高是2,∴在轴截面中圆锥的母线长是=4,∴圆锥的侧面积是π×2×4=8π,下面是一个圆柱,圆柱的底面直径是4,圆柱的高是4,∴圆柱表现出来的表面积是π×22+2π×2×4=20π∴空间组合体的表面积是28π,故选:C.空间几何体是一个组合体,上面是一个圆锥,圆锥的底面直径是4,圆锥的高是2,在轴截面中圆锥的母线长使用勾股定理做出的,写出表面积,下面是一个圆柱,圆柱的底面直径是4,圆柱的高是4,做出圆柱的表面积,注意不包括重合的平面.本题考查由三视图求表面积,本题的图形结构比较简单,易错点可能是两个几何体重叠的部分忘记去掉,求表面积就有这样的弊端.3.【答案】B【解析】【分析】由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,即可求出几何体的体积.本题考查了体积计算公式,考查了推理能力与计算能力,属于中档题.【解答】由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,V=π•32×10-•π•32×6=63π,故选:B.4.【答案】C【解析】【分析】本题考查的知识点是由三视图求体积,根据已知的三视图,判断几何体的形状是解答的关键.由已知中的三视图可得:该几何体上部是一个半球,下部是一个四棱锥,进而可得答案.【解答】解:由已知中的三视图可得:该几何体上部是一个半球,下部是一个四棱锥,半球的直径为棱锥的底面对角线,由棱锥的底底面棱长为1,可得.故,故半球的体积为:,棱锥的底面面积为:1,高为1,故棱锥的体积,故组合体的体积为:.故选C.5.【答案】B【解析】解:由三视图可得直观图,再四棱锥P-ABCD中,最长的棱为PA,即PA===2,故选:B.根据三视图可得物体的直观图,结合图形可得最长的棱为PA,根据勾股定理求出即可.本题考查了三视图的问题,关键画出物体的直观图,属于基础题.6.【答案】A【解析】解:由三视图可知,该几何体为一圆柱通过轴截面的一半圆柱,底面半径直径为2,高为2.体积V==π.故选:A.由三视图可知,该几何体为底面半径直径为2,高为2的圆柱的一半,求出体积即可.本题的考点是由三视图求几何体的体积,需要由三视图判断空间几何体的结构特征,并根据三视图求出每个几何体中几何元素的长度,代入对应的体积公式分别求解,考查了空间想象能力.7.【答案】C【解析】解:由已知中的三视图可得,该几何体是一个正方体与一个正四棱锥的组合体,且正方体的棱长为2,正四棱锥的高为2;所以该组合体的体积为V=V 正方体+V 正四棱锥=23+×22×2=cm 3.故选:C .根据已知中的三视图可分析出该几何体是一个正方体与一个正四棱锥的组合体,结合图中数据,即可求出体积.本题考查了由三视图求体积的应用问题,是基础题目.8.【答案】D【解析】 解:由三视图和题意知,三棱锥的底面是等腰直角三角形,底边和底边上的高分别为、,三棱锥的高是2,∴几何体的体积V==,故选:D .由三视图和题意知,三棱锥的底面边长和三棱锥的高,由锥体的体积公式求出几何体的体积.本题考查由三视图求几何体的体积,由三视图正确复原几何体是解题的关键,考查空间想象能力.9.【答案】C【解析】解:该几何体的正视图为矩形,俯视图亦为矩形,侧视图是一个三角形,则可得出该几何体为三棱柱(横放着的)如图.故选C .如图:该几何体的正视图与俯视图均为矩形,侧视图为三角形,易得出该几何体的形状.本题考查简单几何体的三视图,考查视图能力,是基础题.10.【答案】C【解析】解:由已知,堑堵形状为棱柱,底面是直角三角形,其体积为立方尺.故选C.由三视图得到几何体为横放的三棱柱,底面为直角三角形,利用棱柱的体积公式可求.本题主要考查空间几何体的体积.关键是正确还原几何体.11.【答案】B【解析】解:由三视图可知:此几何体为圆锥的一半,圆锥的底面半径为2,高为3,圆锥的体积为V圆锥=.此几何体的体积为.故选:B.由三视图可知:此几何体为圆锥的一半,即可得出.本题考查了由三视图恢复原几何体的体积计算,属于基础题.12.【答案】C【解析】解:由已知中的三视图可得:该几何体上部是一个以俯视图为底面四棱柱,棱柱的底面面积S=×(2+4)×2=6,棱柱的高为1,故棱柱的体积V=6.故选:C.由已知中的三视图可得:该几何体上部是一个以俯视图为底面四棱柱,进而可得答案.本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.13.【答案】B【解析】解:由题意,几何体的直观图是正方体挖去一个圆锥,体积为=64-,故选B.由题意,几何体的直观图是正方体挖去一个圆锥,即可求出体积.本题考查的知识点是由三视图求体积,其中由已知中的三视图判断出几何体的形状,及棱长,高等几何量是解答的关键.。

几何体的三视图练习题

几何体的三视图练习题

几何体的三视图练习题
1、若某空间几何体的三视图如图所示,则该几何体的体积是 ( ) (A )2
(B )1
(C )
23
(D )
3、若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 (A )
3523cm 3 (B )3203cm 3 (C )2243
cm 3 (D )1603cm 3
5、若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积...等于 ( ) A
.2 C
..6
6、图2中的三个直角三角形是一个体积为20cm 2
的几何体的三视图,则h= cm
8、如图,网格纸的小正方形的边长是1,在其上用粗线画出 了某多面体的三视图,
则这个多面体最长的一条棱的长为______.
第5题
10、一空间几何体的三视图如图所示,则该几何体 的体积为( ).
A.2π+
B. 4π+
C. 23π+
D. 43
π+ 13、若某几何体的三视图(单位:cm )如图所示, 则此几何体的体积是 3
cm .
15、已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( )
A.
34000cm 3 B.3
8000cm 3
C.32000cm D.34000cm 16、一个几何体的三视图如上图所示,其中正视图与侧视图都是边长为2的正三角形,则这个几何体
的侧面积为( ) A.
3
3
π B .2π C .3π D .4π
21、一个几何体的三视图及其尺寸(单位:cm)如图所示,则该几何体的侧面积为_ ______cm 2.
侧(左)视图
正(主)视
俯视图
正视图 侧视图
俯视图
俯视图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题1:立体几何中的三视图问题基础练习一、单选题1.在《九章算术》中,将四个面都为直角三角形的四面体称之为鳖膳(biēnaò).如图,网格纸上小正方形的边长1,粗实线画出的是某鳖臑的三视图,则该鳖臑最长的棱为()A.5 B.32C.34D.412.一个几何体的三视图如图所示,则这个几何体的体积是()A.72B.48C.27D.363.我国南北朝时期数学家祖暅提出了著名的祖暅原理:“幂势既同,则积不容异”,其中“幂”是截面积,“势”是几何体的高,意思是两等高几何体,若在每一等高处的截面积都相等,则两几何体的体积相等,已知某不规则几何体与如图所示的几何体满足“幂势同”,则该不规则儿何体的体积为()A .8π-B .8π+C .283π-D .283π+ 4.某几何体的三视图如图所示,则该几何体的体积为( )A .283πB .253πC .28πD .25π 5.一空间几何体的三视图如图,则该几何体的体积可能为( )A .12π+ B .22π+ C .1π+D .2π+ 6.一个空间几何体的三视图如图所示,则其体积等于( )A 6B .13 C .12D .32 7.某多面体的三视图如图所示,则该多面体的体积为( )A.23B.43C.53D.738.已知几何体的三视图如图所示,则该几何体的体积为()A.3B.53C.23D.439.已知某几何体的三视图如图所示,则这个几何体的体积为()A.2 B.2 3C.1 D.410.已知某几何体的三视图如图所示,则该几何体的表面积为()A .2212π+B .2412π+C .2612π+D .2012π+二、填空题 11.某四棱锥的三视图如图所示,则该四棱锥的体积为__________.12.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是________3cm .13.如图,一个几何体的正视图是底为2高为3的等腰三角形,俯视图是直径为2的半圆,该几何体的体积为_________.14.一个四棱锥的三视图如图所示,其中主(正)视图和左(侧)视图都是边长为2的正三角形,那么该四棱锥的底面面积为______.15.某三棱锥的三视图是三个边长相等的正方形及对角线,若该三棱锥的体积是13,则它的表面积是______.16.某几何体的三视图如图所示,则该几何体的体积是______.参考答案1.C【分析】根据三视图,还原直观图,即可求得最长的棱长.【详解】根据三视图,还原直观图为三棱锥A-BCD , 如图所示由题意得AB =3,BC =4,CD =3,在直角三角形BCD 中,22345BD =+=, 所以最长棱为22223534AD AB BD =+=+=, 故选:C【点睛】本题考查三视图还原直观图,考查计算求值的能力、空间想象能力,属基础题.2.D【分析】由三视图知几何体是一个三棱柱,三棱柱的底面是一个直角三角形,直角边长分别是4,6cm ,三棱柱的侧棱与底面垂直,且侧棱长是3,利用体积公式得到结果【详解】由题可得直观图为三棱柱,故体积为:V Sh ==1463362⨯⨯⨯=,故选D.【点睛】本题考查由三视图还原几何体并且求几何体的体积,本题解题的关键是看出所给的几何体的形状和长度,熟练应用体积公式,本题是一个基础题.3.A【分析】根据三视图可知该几何体是一个正方体挖掉半个圆柱,然后根据体积计算公式可得结果.【详解】根据三视图可知:该几何体是一个正方体挖掉半个圆柱如图:所以该几何体的体积为:32121282ππ-⨯⨯⨯=- 故选:A【点睛】 本题考查根据三视图求几何体的体积,考查空间想象能力以及计算能力,属基础题. 4.A【分析】由三视图可知几何体:圆台,进而依据圆台的体积公式求体积即可.【详解】该几何体为上、下底面直径分别为2、4,高为4的圆台, ∴体积为()221284212133V ππ=⨯⨯++⨯=, 故选A .【点睛】本题考查了根据三视图求几何体的体积,圆台的体积公式应用,属于简单题.5.B【分析】由三视图理解该几何体:一个长、宽、高分别为2、1、1的长方体和两个底面半径为1,高为1的四分之一圆柱组成,即可求体积;【详解】由三视图可知:该几何体可看作由一个长、宽、高分别为2、1、1的长方体和两个底面半径为1,高为1的四分之一圆柱组成,∴12111222 Vππ=⨯⨯+⨯⨯=+.故选:B【点睛】本题考查了利用三视图求几何体体积,注意几何体的组合分别求体积后加总,属于简单题;6.C【分析】由三视图可知该几何体为三棱锥,再根据棱锥的体积公式求解即可.【详解】解:由三视图可知,该几何体为三棱锥,如图,且高为3,∴该三棱锥的体积111133322V=⨯⨯=,故选:C.【点睛】本题主要考查由三视图还原几何体并求几何体的体积,属于基础题.7.B【分析】直接利用三视图转换为直观图,由此即可求出几何体的体积.【详解】根据几何体的三视图转换为直观图为:该几何体是底面边长为2的正方形和高为1的四棱锥.如图所示:所以:1422133V =⨯⨯⨯=. 故选:B .【点睛】 本题主要考查了三视图和直观图形之间的转换,锥体体积公式的应用,主要考查学生的运算能力和空间想象能力,属于基础题.8.D【分析】根据几何体的三视图,可知该几何体是由一个底面边长为2,高为2的正三棱柱截去一个三棱锥后得到的,作出草图,根据几何体的体积公式即可求出结果.【详解】根据几何体的三视图,可知该几何体是由一个底面边长为2,高为2的正三棱柱截去一个三棱锥后得到的,如下图所示:故剩余几何体的体积223134322224343V =⨯-⨯⨯=. 故选:D.【点睛】 本题考查空间几何体的三视图、空间几何体的体积,属于基础题.9.A【分析】将三视图还原可得一个以俯视图为底面的直三棱柱,代入棱柱体积公式,可得答案.【详解】解:将三视图还原可得一个以俯视图为底面的直三棱柱, 所以112222V Sh ==⨯⨯⨯=. 故选:A.【点睛】本题考查由三视图求体积,根据已知分析出几何体的形状,是解答的关键.10.A【分析】由三视图可知,该几何体为圆柱进行切割了一个半圆柱所得的组合体,再分别计算各个表面的面积之后即可.【详解】由三视图可知,该几何体为圆柱进行切割了一个半圆柱所得的组合体,所以所求表面积为2223425222212ππππ⨯⨯+⨯+⨯⨯+⨯⨯=+.故选:A【点睛】本题考查由三视图还原立体图形并求表面积,属于基础题.11.83【分析】根据三视图还原直观图,再根据图中数据计算体积.【详解】解:由三视图可得该四棱锥的直观图为∴其体积1822233V =⨯⨯⨯=, 故答案为:83. 【点睛】 本题主要考查由三视图还原直观图,属于基础题.12.18【分析】由三视图可知,该几何体为两个长方体拼接而成,由此可求出答案.【详解】解:由三视图可知,该几何体为两个长方体拼接而成,且长宽高分别为3,1,3cm , ∴该几何体的体积是213318V =⨯⨯⨯=(3cm ),故答案为:18.【点睛】本题主要考查由三视图还原几何体,考查几何体的体积的求法,属于基础题.13.2π 【分析】由三视图可知该几何体是半圆锥,利用圆锥的体积公式以及三视图中的数据可求得结果.【详解】由三视图可知,该几何体是半个圆锥,且底面是半径为1的半圆,高为3,其体积为21113232V ππ=⋅⋅⋅=. 故答案为:2π. 【点睛】 本题考查的知识要点:三视图和几何体之间的转换,几何体的体积公式的应用,主要考察学生的运算能力和转换能力,属于基础题型.14.4【分析】根据三视图的投影规律是:主视图与俯视图长对正;主视图与左视图高平齐;俯视图与左视图宽相等可得底面为边长为2的正方形,进而可得解.【详解】根据三视图的投影规律是:主视图与俯视图长对正;主视图与左视图高平齐;俯视图与左视图宽相等可得底面为边长为2的正方形,则该四棱锥的底面面积为22=4⨯,故答案为:4.【点睛】本题考查由三视图求面积,求解的关键是根据所给的三视图判断出几何体的几何特征,属于基础题.15.【分析】根据三视图得出该几何体是正方体的内接正三棱锥,画出图形求出三棱锥的棱长,利用面积公式求出几何体的表面积.【详解】解:如图所示,该几何体是正方体的内接正三棱锥;设正方体的棱长为a , 则几何体的体积是323111143233V a a a a =-⨯⨯⋅==, 1a ,∴三棱锥的棱长为2,因此该三棱锥的表面积为234(2)23S =⨯⨯=. 故答案为:23.【点睛】本题考查了正方体的内接正三棱锥表面积的计算问题,关键是根据三视图得出几何体的结构特征.16.13【分析】判断几何体的形状,利用三视图的数据求解几何体的体积即可.【详解】由题意可知几何体是正方体的一部分,是四棱锥P ABCD -,所以几何体的体积为:1111133⨯⨯⨯=.故答案为:13.【点睛】本题考查三视图求解几何体的体积,判断几何体的形状是解题的关键,是基础题.。

相关文档
最新文档