溴化锂吸收式制冷机的工作原理最详细的讲解

合集下载

溴化锂吸收式制冷机的工作原理讲解

溴化锂吸收式制冷机的工作原理讲解

溴化锂吸收式制冷机的工作原理是:冷水在蒸发器内被来自冷凝器减压节流后的低温冷剂水冷却,冷剂水自身吸收冷水热量后蒸发,成为冷剂蒸汽,进入吸收器内,被浓溶液吸收,浓溶液变成稀溶液。

吸收器里的稀溶液,由溶液泵送往热交换器、热回收器后温度升高,最后进入再生器,在再生器中稀溶液被加热,成为最终浓溶液。

浓溶液流经热交换器,温度被降低,进入吸收器,滴淋在冷却水管上,吸收来自蒸发器的冷剂蒸汽,成为稀溶液。

另一方面,在再生器内,外部高温水加热溴化锂溶液后产生的水蒸汽,进入冷凝器被冷却,经减压节流,变成低温冷剂水,进入蒸发器,滴淋在冷水管上,冷却进入蒸发器的冷水。

该系统由两组再生器、冷凝器、蒸发器、吸收器、热交换器、溶液泵及热回收器组成,并且依靠热源水、冷水的串联将这两组系统有机地结合在一起,通过对高温侧、低温侧溶液循环量和制冷量的最佳分配,实现温度、压力、浓度等参数在两个循环之间的优化配置,并且最大限度的利用热源水的热量,使热水温度可降到66℃.以上循环如此反复进行,最终达到制取低温冷水的目的。

溴化锂吸收式制冷机以水为制冷剂,溴化锂水溶液为吸收剂,制取0℃以上的低温水,多用于空调系统。

溴化锂的性质与食盐相似,属盐类。

它的沸点为1265℃,故在一般的高温下对溴化锂水溶液加热时,可以认为仅产生水蒸气,整个系统中没有精馏设备,因而系统更加简单。

溴化锂具有极强的吸水性,但溴化锂在水中的溶解度是随温度的降低而降低的,溶液的浓度不宜超过66%,否则运行中,当溶液温度降低时,将有溴化锂结晶析出的危险性,破坏循环的正常运行。

溴化锂水溶液的水蒸气分压,比同温度下纯水的饱和蒸汽压小得多,故在相同压力下,溴化锂水溶液具有吸收温度比它低得多的水蒸气的能力,这是溴化锂吸收式制冷机的机理之一。

工作原理与循环溶液的蒸气压力是对平衡状态而言的。

如果蒸气压力为0。

85kPa的溴化锂溶液与具有1kPa 压力(7℃)的水蒸气接触,蒸气和液体不处于平衡状态,此时溶液具有吸收水蒸气的能力,直到水蒸气的压力降低到稍高于0.85kPa(例如:0。

溴化锂制冷机组原理

溴化锂制冷机组原理

溴化锂制冷机组原理
溴化锂制冷机组是一种常见的空调制冷设备,通过利用溴化锂在吸湿和脱湿的循环过程中释放热量来实现空调效果。

溴化锂制冷机组的工作原理如下:
1. 吸附过程:溴化锂吸收水分,形成溴化锂水合物。

空气中的湿度高时,溴化锂水合物会吸附更多水分。

这个过程是在吸湿器中进行的。

2. 解吸过程:当空气中湿度降低时,溴化锂水合物会释放吸收的水分。

这个过程是在脱湿器中进行的。

溴化锂会通过加热或减压的方式,将吸附的水分释放出来。

3. 冷凝过程:脱湿后的空气会进入冷凝器,通过冷却的方式使空气温度下降,将热量释放到外界。

4. 蒸发过程:经过冷凝的空气进入蒸发器,通过吹风机吹送到室内,使室内空气温度降低。

5. 再生过程:在脱湿器中释放的湿气通过再生回路送回吸湿器,回收部分吸附剂,再次进行吸湿循环。

通过不断循环上述步骤,溴化锂制冷机组可以不断吸湿和脱湿,使空气温度降低,从而达到制冷的效果。

溴化锂制冷机原理

溴化锂制冷机原理

溴化锂制冷机原理
溴化锂制冷机是一种热泵系统,利用溴化锂吸附和脱附的物理过程,实现制冷效果。

其工作原理如下:
1. 吸附过程:
溴化锂制冷机中的溴化锂溶液被注入到吸附器中,通过加热器加热,使其达到吸附温度。

此时,溴化锂分子中的吸附剂将吸附式冷媒(如水蒸气)从蒸发器中吸附到自身表面。

2. 压缩过程:
吸附剂与冷媒的混合物被泵入压缩器中,压缩器对混合物进行压缩,使其气体质量增加,同时温度也随之升高。

3. 冷凝过程:
压缩后的混合物进入冷凝器中,通过冷却水循环系统的冷凝水对其进行冷却,使其温度下降。

4. 脱附过程:
冷却后的混合物进入脱附器中,通过降温器使其达到脱附温度。

这时,吸附剂会释放出吸附的冷媒,即从溴化锂溶液中脱附出来。

5. 膨胀过程:
脱附的冷媒进入膨胀阀,由于阀门的限制,其流速和压力都会降低。

这样,冷媒的温度也会随之降低。

6. 蒸发过程:
降温后的冷媒经过蒸发器,与需要制冷的物体进行热交换,吸收物体的热量,使其温度下降。

通过循环执行上述吸附、压缩、冷凝、脱附、膨胀和蒸发的过程,溴化锂制冷机实现了制冷效果。

整个过程中,吸附和脱附过程是关键步骤,通过吸附和脱附过程中气体的物理吸附和脱附,实现了制冷效果。

溴化锂吸收式制冷机的工作原理

溴化锂吸收式制冷机的工作原理

溴化锂吸收式制冷机的工作原理关键信息:1、制冷机类型:溴化锂吸收式制冷机2、工作原理核心部件:发生器、冷凝器、蒸发器、吸收器3、工作介质:溴化锂溶液、水4、能量来源:热能(如蒸汽、热水等)1、引言溴化锂吸收式制冷机是一种以热能为动力,利用溴化锂溶液和水之间的吸收与蒸发特性来实现制冷的设备。

11 工作原理概述溴化锂吸收式制冷机的工作原理基于吸收和蒸发的循环过程,通过溶液的浓度变化和状态转换来实现热量的转移和制冷效果。

111 主要部件及作用1111 发生器:通过外部热能输入,使稀溴化锂溶液中的水分蒸发,形成浓溶液和水蒸气。

1112 冷凝器:将发生器产生的水蒸气冷却凝结为液态水。

1113 蒸发器:液态水在蒸发器内蒸发吸热,产生制冷效果。

1114 吸收器:浓溴化锂溶液吸收蒸发器中产生的水蒸气,重新变为稀溶液。

12 溶液循环过程121 稀溶液的形成在吸收器中,浓溴化锂溶液吸收了来自蒸发器的水蒸气,浓度逐渐降低,形成稀溶液。

122 稀溶液的加热与浓缩稀溶液被泵送至发生器,在发生器中受到外部热能的加热,水分蒸发,溶液浓度升高,变为浓溶液。

123 浓溶液的循环浓溶液从发生器流出,经过节流阀降压后进入吸收器,再次吸收水蒸气。

13 水的循环过程131 水蒸气的产生发生器中的稀溶液受热,水分蒸发形成水蒸气。

132 水蒸气的冷凝水蒸气进入冷凝器,被冷却介质冷却凝结为液态水。

133 液态水的蒸发制冷液态水进入蒸发器,在低压环境下蒸发吸热,实现制冷。

14 能量传递与转换141 热能输入外部热能(如蒸汽、热水等)被输入到发生器,提供溶液蒸发所需的能量。

142 制冷量输出蒸发器内水的蒸发吸热,将热量从被冷却空间带走,实现制冷效果。

15 工作特点151 以热能为动力相比压缩式制冷机,溴化锂吸收式制冷机可以利用低品位热能,如工业余热、废热等。

152 环保节能不使用对臭氧层有破坏作用的制冷剂,对环境较为友好。

153 运行平稳由于没有机械运动部件,运行时噪音低、振动小,维护成本相对较低。

溴化锂吸收式制冷机组原理

溴化锂吸收式制冷机组原理

溴化锂吸收式制冷机组原理溴化锂吸收式制冷机组是一种利用化学反应来制冷的机组,其原理是利用溴化锂和水之间的化学反应来吸收热量,从而实现制冷的目的。

溴化锂吸收式制冷机组由吸收器、发生器、冷凝器、蒸发器和泵等组成。

其中,吸收器和发生器是实现制冷的关键部件。

吸收器是一个密闭的容器,内部装有溴化锂和水。

当外界的热量进入吸收器时,溴化锂和水之间的化学反应就会发生,从而吸收热量。

这个过程中,溴化锂会从固态转化为液态,而水则会从液态转化为气态。

发生器也是一个密闭的容器,内部同样装有溴化锂和水。

当发生器受到热源的加热时,溴化锂和水之间的化学反应就会逆转,从而释放出吸收器中吸收的热量。

这个过程中,溴化锂会从液态转化为气态,而水则会从气态转化为液态。

冷凝器和蒸发器则是用来控制制冷剂的流动和温度的。

冷凝器将发生器中的制冷剂冷却,使其从气态转化为液态,然后将其送入蒸发器。

蒸发器则将制冷剂加热,使其从液态转化为气态,从而吸收周围的热量,实现制冷的目的。

泵则是用来控制制冷剂的流动的。

当制冷剂在蒸发器中变成气态时,泵会将其吸入发生器中,从而维持制冷剂的循环。

溴化锂吸收式制冷机组的优点是能够利用低温热源来制冷,比如太阳能、余热等。

同时,它也是一种环保的制冷方式,因为它不需要使用氟利昂等对臭氧层有害的物质。

然而,溴化锂吸收式制冷机组也存在一些缺点。

首先,它的制冷效率比传统的机械式制冷机组要低。

其次,它的体积比较大,不适合用于小型制冷设备。

此外,溴化锂是一种有毒的物质,需要特殊的处理和储存。

总的来说,溴化锂吸收式制冷机组是一种利用化学反应来制冷的机组,具有一定的优点和缺点。

随着环保意识的提高和技术的不断进步,相信它将会在未来得到更广泛的应用。

溴化锂机组工作原理

溴化锂机组工作原理

溴化锂机组工作原理溴化锂机组是一种常用的空调系统,主要用于提供舒适的室内温度和湿度控制。

它采用了溴化锂吸附式制冷技术,通过吸附和解吸过程来实现制冷效果。

下面将详细介绍溴化锂机组的工作原理。

1. 溴化锂吸附式制冷循环溴化锂机组的制冷循环包括两个主要的过程:吸附和解吸。

在吸附过程中,溴化锂吸附剂吸收水分子,释放出制冷效果;而在解吸过程中,吸附剂释放吸附的水分子,再次变为可再生的状态。

2. 吸附过程吸附过程是溴化锂机组的制冷过程中的关键步骤。

当室内空气中的湿度较高时,湿空气会经过蒸发器,水分子会被溴化锂吸附剂吸附。

吸附剂中的溴化锂与水分子反应生成溴化锂水合物,释放出制冷效果。

此时,室内空气中的湿度会得到降低,从而实现了湿度控制。

3. 解吸过程解吸过程是溴化锂机组的再生过程。

当吸附剂饱和时,需要进行再生操作。

在再生过程中,吸附剂会被加热,水分子从吸附剂中解吸出来,再次变为可再生的状态。

解吸过程中产生的湿空气会经过冷凝器,水分子被冷凝并排出系统外,而溴化锂吸附剂则经过冷却后回到吸附器中,准备进行下一轮的吸附过程。

4. 辅助系统溴化锂机组还包括一些辅助系统,用于提供能量和控制机组的运行。

其中包括冷却水系统、加热系统、循环风机、控制系统等。

冷却水系统用于冷却吸附剂,保证其在再生过程中的温度控制;加热系统则用于加热吸附剂,促进解吸过程的进行;循环风机用于循环室内空气,使其与吸附剂进行接触;控制系统则用于监测和控制整个机组的运行状态。

5. 优势和应用溴化锂机组相比传统的制冷系统具有一些明显的优势。

首先,它可以实现湿度控制,提供更加舒适的室内环境。

其次,溴化锂吸附剂具有较高的吸附容量和再生能力,使机组的制冷效果更加高效。

此外,溴化锂机组还具有较低的能耗和较小的空间需求,适用于各种建筑和场所的空调需求。

溴化锂机组工作原理简单而高效,通过吸附和解吸过程来实现制冷效果,并能够实现湿度控制。

其优势和应用广泛,被广泛应用于商业建筑、办公楼、医院、酒店等场所。

双效溴化锂吸收式制冷机的工作原理

双效溴化锂吸收式制冷机的工作原理

双效溴化锂吸收式制冷机的工作原理一、吸收式制冷原理:吸收式制冷原理,都是利用液态制冷剂在低压、低温下汽化,使制冷剂蒸汽吸收载冷剂的热负荷产生制冷效应的。

吸收式制冷机循环工作的工质为二元工质,如溴化锂水溶液。

溶液中水是制冷剂,水在真空状态下蒸发产生低温蒸汽,从而吸收溴化锂溶液中的热量,使溴化锂溶液温度降低,产生制冷效应。

溴化锂水溶液是吸收剂,在常温和低温下具有强烈吸收水蒸汽的特性,而在高温下又能将吸收的水分释放出来。

吸收式制冷装置和工作过程就是使制冷溶液吸收与释放周而复始的循环过程,达到制冷的目的。

二、双效溴化锂吸收式制冷机的工作原理1、串联双效溴化锂吸收式制冷机工作原理示意图图一三筒串联双效溴化锂吸收式制冷机工作原理示意图2、串联双效溴化锂制冷机的工作原理由图一可知:吸收器中的溴化锂稀溶液由发生器泵升压后经高温换热器升温并输送至高压发生器;溶液在高压发生器中被供热蒸汽加热使溶液中的部分制冷剂(水)被汽化产生高温冷剂蒸汽而使溶液浓缩;浓缩后的高温溶液经高温换热器降温后进入低压发生器,溶液在低压发生器中被来自高压发生器的冷剂蒸汽加热使溶液中的制冷剂继续汽化产生低温冷剂蒸汽使溶液进一步浓缩,浓缩后溶液经低温热交换器降温并送回吸收器;由高压发生器产生的冷剂蒸汽经低压发生器降温后进入冷凝器,由低压发生器产生的冷剂蒸汽直接进入冷凝器,这两股冷剂蒸汽在真空冷凝器中冷凝成低温制冷剂;低温制冷剂节流降压后送入真空蒸发器中低压蒸发,蒸发后的蒸汽被吸收器中溶液吸收,一方面使溶液浓度降低成为稀溶液,另一方面使溶液放热而降温达到制冷的目的。

其工作过程循环图,如图二所示。

1-2:等浓升压力加热过程(吸收泵、高低温换热器中完成)2-3:加热增浓过程(高低压发生器中完成)3-4等浓节流降压过程(节流阀)4-1:浓降放热过程(蒸发器、吸收器中完成)图二循环工作过程简化示意图3、并联双效溴化锂制冷机的工作原理图并联双效溴化锂制冷机和串联双效溴化锂制冷机的工作原理相同,其主要差别在于溴化锂溶液所经路径的区别,前者为并联,后者为串联,并联的双效溴化锂制冷机的工作原理,如图三所示,其工作原理在此不再重述。

溴化锂机组工作原理

溴化锂机组工作原理

溴化锂机组工作原理溴化锂机组是一种常用于空调系统的吸收式制冷设备。

它利用溴化锂和水之间的化学反应来实现冷却效果。

下面将详细介绍溴化锂机组的工作原理。

1. 基本原理溴化锂机组的工作原理基于吸收式制冷循环。

该循环由两个主要部分组成:吸收器和发生器。

溴化锂和水在吸收器中发生吸收反应,生成溴化锂溶液。

然后,溴化锂溶液通过发生器中的加热过程,将溴化锂从水中分离出来。

此时,溴化锂溶液中的溴化锂浓度增加,形成浓溴化锂溶液。

接下来,浓溴化锂溶液经过蒸发器,通过与空气或其他冷却介质的热交换,实现冷却效果。

最后,溴化锂溶液回到吸收器,循环再次开始。

2. 工作步骤溴化锂机组的工作可以分为以下几个步骤:- 吸收:在吸收器中,溴化锂溶液与水接触,发生吸收反应。

水分子被溴化锂吸收,形成溴化锂溶液。

- 分离:溴化锂溶液进入发生器,通过加热过程,将溴化锂从水中分离出来。

加热源可以是燃气、电加热器或其他热源。

- 冷却:分离后的溴化锂溶液进入蒸发器,通过与空气或其他冷却介质的热交换,实现冷却效果。

冷却介质可以是冷水或其他制冷剂。

- 再循环:冷却后的溴化锂溶液回到吸收器,循环再次开始。

这样就形成了一个闭合的吸收式制冷循环。

3. 关键组件溴化锂机组的关键组件包括吸收器、发生器、蒸发器和冷凝器。

- 吸收器:吸收器是溴化锂机组中的一个重要组件,用于实现溴化锂和水之间的吸收反应。

它通常由一个吸收器管束和冷却水系统组成。

- 发生器:发生器是溴化锂机组中的另一个重要组件,用于将溴化锂从水中分离出来。

它通常由一个发生器管束和加热系统组成。

- 蒸发器:蒸发器是溴化锂机组中的冷却部分,用于实现冷却效果。

它通常由一个蒸发器管束和冷却介质系统组成。

- 冷凝器:冷凝器是溴化锂机组中的另一个重要组件,用于将溴化锂溶液中的溴化锂重新溶解到水中。

它通常由一个冷凝器管束和冷却水系统组成。

4. 工作原理示意图以下是溴化锂机组工作原理的示意图:```_________| |Absorber --> | || || || |--> Generator| || ||_________|||||VEvaporator||||VAbsorber```5. 工作原理应用溴化锂机组广泛应用于商业建筑、工业厂房和住宅等空调系统中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

溴化锂吸收式制冷机的工作原理是:/showProduct.asp?f_id=737冷水在蒸发器内被来自冷凝器减压节流后的低温冷剂水冷却,冷剂水自身吸收冷水热量后蒸发,成为冷剂蒸汽,进入吸收器内,被浓溶液吸收,浓溶液变成稀溶液。

吸收器里的稀溶液,由溶液泵送往热交换器、热回收器后温度升高,最后进入再生器,在再生器中稀溶液被加热,成为最终浓溶液。

浓溶液流经热交换器,温度被降低,进入吸收器,滴淋在冷却水管上,吸收来自蒸发器的冷剂蒸汽,成为稀溶液。

另一方面,在再生器内,外部高温水加热溴化锂溶液后产生的水蒸汽,进入冷凝器被冷却,经减压节流,变成低温冷剂水,进入蒸发器,滴淋在冷水管上,冷却进入蒸发器的冷水。

该系统由两组再生器、冷凝器、蒸发器、吸收器、热交换器、溶液泵及热回收器组成,并且依靠热源水、冷水的串联将这两组系统有机地结合在一起,通过对高温侧、低温侧溶液循环量和制冷量的最佳分配,实现温度、压力、浓度等参数在两个循环之间的优化配置,并且最大限度的利用热源水的热量,使热水温度可降到66℃。

以上循环如此反复进行,最终达到制取低温冷水的目的。

溴化锂吸收式制冷机以水为制冷剂,溴化锂水溶液为吸收剂,制取0℃以上的低温水,多用于空调系统。

溴化锂的性质与食盐相似,属盐类。

它的沸点为1265℃,故在一般的高温下对溴化锂水溶液加热时,可以认为仅产生水蒸气,整个系统中没有精馏设备,因而系统更加简单。

溴化锂具有极强的吸水性,但溴化锂在水中的溶解度是随温度的降低而降低的,溶液的浓度不宜超过66%,否则运行中,当溶液温度降低时,将有溴化锂结晶析出的危险性,破坏循环的正常运行。

溴化锂水溶液的水蒸气分压,比同温度下纯水的饱和蒸汽压小得多,故在相同压力下,溴化锂水溶液具有吸收温度比它低得多的水蒸气的能力,这是溴化锂吸收式制冷机的机理之一。

工作原理与循环溶液的蒸气压力是对平衡状态而言的。

如果蒸气压力为0.85kPa的溴化锂溶液与具有1kPa 压力(7℃)的水蒸气接触,蒸气和液体不处于平衡状态,此时溶液具有吸收水蒸气的能力,直到水蒸气的压力降低到稍高于0.85kPa(例如:0.87kPa)为止。

图1 吸收制冷的原理0.87kPa和0.85kPa之间的压差用于克服连接管道中的流动阻力以及由于过程偏离平衡状态而产生的压差,如图1所示。

水在5℃下蒸发时,就可能从较高温度的被冷却介质中吸收气化潜热,使被冷却介质冷却。

为了使水在低压下不断气化,并使所产生的蒸气不断地被吸收,从而保证吸收过程的不断进行,供吸收用的溶液的浓度必须大于吸收终了的溶液的浓度。

为此,除了必须不断地供给蒸发器纯水外,还必须不断地供给新的浓溶液,如图1所示。

显然,这样做是不经济的。

图2 单效溴化锂吸收式制冷机系统图3 双筒溴化锂吸收式制冷机的系统1-冷凝器;2-发生器;3-蒸发器;4-吸收器;5-热交换器;6-U型管;7-防晶管;8-抽气装置;9-蒸发器泵;10-吸收器泵;11-发生器泵;12-三通阀实际上采用对稀溶液加热的方法,使之沸腾,从而获得蒸馏水供不断蒸发使用,如图2所示。

系统由发生器、冷凝器、蒸发器、节流阀、泵和溶液热交换器等组成。

稀溶液在加热以前用泵将压力升高,使沸腾所产生的蒸气能够在常温下冷凝。

例如,冷却水温度为35℃时,考虑到热交换器中所允许的传热温差,冷凝有可能在40℃左右发生,因此发生器内的压力必须是7.37kPa或更高一些(考虑到管道阻力等因素)。

发生器和冷凝器(高压侧)与蒸发器和吸收器(低压侧)之间的压差通过安装在相应管道上的膨胀阀或其它节流机构来保持。

在溴化锂吸收式制冷机中,这一压差相当小,一般只有6.5~8kPa,因而采用U型管、节流短管或节流小孔即可。

离开发生器的浓溶液的温度较高,而离开吸收器的稀溶液的温度却相当低。

浓溶液在未被冷却到与吸收器压力相对应的温度前不可能吸收水蒸气,而稀溶液又必须加热到和发生器压力相对应的饱和温度才开始沸腾,因此通过一台溶液热交换器,使浓溶液和稀溶液在各自进入吸收器和发生器之前彼此进行热量交换,使稀溶液温度升高,浓溶液温度下降。

由于水蒸气的比容非常大,为避免流动时产生过大的压降,需要很粗的管道,为避免这一点,往往将冷凝器和发生器做在一个容器内,将吸收器和蒸发器做在另一个容器内,如图3所示。

也可以将这四个主要设备置于一个壳体内,高压侧和低压侧之间用隔板隔开,如图4所示。

图4 单筒溴化锂吸收式制冷机的系统1-冷凝器;2-发生器;3-蒸发器;4-吸收器;5-热交换器;6、7、8-泵;9-U型管综上所述,溴化锂吸收式制冷机的工作过程可分为两个部分:(1)发生器中产生的冷剂蒸气在冷凝器中冷凝成冷剂水,经U形管进入蒸发器,在低压下蒸发,产生制冷效应。

这些过程与蒸气压缩式制冷循环在冷凝器、节流阀和蒸发器中所产生的过程完全相同;(2)发生器中流出的浓溶液降压后进入吸收器,吸收由蒸发器产生的冷剂蒸气,形成稀溶液,用泵将稀溶液输送至发生器,重新加热,形成浓溶液。

这些过程的作用相当于蒸气压缩式制冷循环中压缩机所起的作用。

工作过程在图上的表示溴化锂吸收式制冷机的理想工作过程可以用图表示,见图5。

理想过程是指工质在流动过程中没有任何阻力损失,各设备与周围空气不发生热量交换,发生终了和吸收终了的溶液均达到平衡状态。

图5 溴化锂吸收式制冷机工作过程在图上的表示(1)发生过程点2表示吸收器的饱和稀溶液状态,其浓度为,压力为,温度为,经过发生器泵,压力升高到,然后送往溶液热交换器,在等压条件下温度由升高至,浓度不变,再进入发生器,被发生器传热管内的工作蒸气加热,温度由升高到压力下的饱和温度,并开始在等压下沸腾,溶液中的水分不断蒸发,浓度逐渐增大,温度也逐渐升高,发生过程终了时溶液的浓度达到,温度达到,用点4表示。

2-7表示稀溶液在溶液热交换器中的升温过程,7-5-4表示稀溶液在发生器中的加热和发生过程,所产生的水蒸气状态用开始发生时的状态(点4' )和发生终了时的状态(点3' )的平均状态点3' 表示,由于产生的是纯水蒸气,故状态位于的纵坐标轴上。

(2)冷凝过程由发生器产生的水蒸气(点3')进入冷凝器后,在压力不变的情况下被冷凝器管内流动的冷却水冷却,首先变为饱和蒸气,继而被冷凝成饱和液体(点3),3'-3表示冷剂蒸气在冷凝器中冷却及冷凝的过程。

(3)节流过程压力为的饱和冷剂水(点3)经过节流装置(如U形管),压力降为(=)后进入蒸发器。

节流前后因冷剂水的焓值和浓度均不发生变化,故节流后的状态点(图中未标出)与点3重合。

但由于压力的降低,部分冷剂水气化成冷剂蒸气(点 1'),尚未气化的大部分冷剂水温度降低到与蒸发压力相对应的饱和温度(点1),并积存在蒸发器水盘中,因此节流前的点3表示冷凝压力下的饱和水状态,而节流后的点3表示压力为的饱和蒸气(点)和饱和液体(点1)相混合的湿蒸气状态。

(4)蒸发过程积存在蒸发器水盘中的冷剂水(点1)通过蒸发器泵均匀地喷淋在蒸发器管簇的外表面,吸收管内冷媒水的热量而蒸发,使冷剂水的等压、等温条件下由点1变为1',1-1'表示冷剂水在蒸发器中的气化过程。

(5)吸收过程浓度为、温度为、压力为的溶液,在自身的压力与压差作用下由发生器流至溶液热交换器,将部分热量传给稀溶液,温度降到(点8),4-8表示浓溶液在溶液热交换器中的放热过程。

状态点8的浓溶液进入吸收器,与吸收器中的部分稀溶液(点2)混合,形成浓度为、温度为的中间溶液(点9' ),然后由吸收器泵均匀喷淋在吸收器管簇的外表面。

中间溶液进入吸收器后,由于压力的突然降低,故首先闪发出一部分水蒸气,浓度增大,用点9表示。

由于吸收器管簇内流动的冷却水不断地带走吸收过程中放出的吸收热,因此中间溶液便具有不断地吸收来自蒸发器的水蒸气的能力,使溶液的浓度降至,温度由降至(点2)。

8-9'和2-9'表示混合过程,9-2表示吸收器中的吸收过程。

假定送往发生器的稀溶液的流量为,浓度为,产生的冷剂水蒸气,剩下的流量为、浓度为的浓溶液出发生器。

根据发生器中的质量平衡关系得到下式令,则(1)a称为循环倍率。

它表示在发生器中每产生1kg水蒸气所需要的溴化锂稀溶液的循环量。

()称为放气范围。

上面所分析的过程是对理想情况而言的。

实际上,由于流动阻力的存在,水蒸气经过挡水板时压力下降,因此在发生器中,发生压力应大于冷凝压力,在加热温度不变的情况下将引起溶液浓度的降低。

另外,由于溶液液柱的影响,底部的溶液在较高压力下发生,同时又由于溶液与加热管表面的接触面积和接触时间的有限性,使发生终了浓溶液的浓度低于理想情况下的浓度,(-) 称为发生不足;在吸收器中,吸收器压力应小于蒸发压力,在冷却水温度不变的情况下,它将引起稀溶液浓度的增大。

由于吸收剂与被吸收的蒸气相互接触的时间很短,接触面积有限,加上系统内空气等不凝性气体存在,均降低溶液的吸收效果,吸收终了的稀溶液浓度比理想情况下的高,(-) 称为吸收不足。

发生不足和吸收不足均会引起工作过程中参数的变化,使放气范围减少,从而影响循环的经济性。

溴化锂吸收式制冷机的热力及传热计算溴化锂吸收式制冷机的计算应包括热力计算、传热计算、结构设计计算及强度校核计算等,此处仅对热力计算和传热计算的方法与步骤加以说明。

热力计算溴化锂吸收式制冷机的热力计算是根据用户对制冷量和冷媒水温的要求,以及用户所能提供的加热热源和冷却介质的条件,合理地选择某些设计参数(传热温差、放气范围等),然后对循环加以计算,为传热计算等提供计算和设计依据。

(1)已知参数①制冷量它是根据生产工艺或空调要求,同时考虑到冷损、制造条件以及运转的经济性等因素而提出。

②冷媒水出口温度它是根据生产工艺或空调要求提出的。

由于与蒸发温度有关。

若下降,机组的制冷及热力系数均下降,因此在满足生产工艺或空调要求的基础上,应尽可能地提高蒸发温度。

对于溴化锂吸收式制冷机,因为用水作制冷剂,故一般大于5℃。

③冷却水进口温度根据当地的自然条件决定。

应当指出,尽管降低能使冷凝压力下降,吸收效果增强,但考虑到溴化锂结晶这一特殊问题,并不是愈低愈好,而是有一定的合理范围。

机组在冬季运行时尤应防止冷却水温度过低这一问题。

④加热热源温度考虑到废热的利用、结晶和腐蚀等问题,采用0.1~0.25Mpa的饱和蒸气或75℃以上的热水作为热源较为合理。

如能提供更高的蒸气压力,则热效率可获得进一步的提高。

(2)设计参数的选定①吸收器出口冷却水温度1和冷凝器的口冷却水温度2由于吸收式制冷机采用热能作为补偿手段,所以冷却水带走的热量远大于蒸气压缩式制冷机。

为了节省冷却水的消耗量,往往使冷却水串联地流过吸收器和冷凝器。

考虑到吸收器内的吸收效果和冷凝器允许有较高的冷凝压力这些因素,通常让冷却水先经过吸收器,再进入冷凝器。

相关文档
最新文档