新人教版八年级上《从分数到分式》优秀教学设计2
人教版八年级上册15.1.1 从分数到分式 教案

从分数到分式【教学目标】:1、了解分式的概念,理解并掌握分式的有意义、无意义、值为零的条件。
2、类比用数字表示实际问题的数量关系到用字母表示实际问题的数量关系,加强学生用类比转化的思想方法研究解决问题。
3、体会从特殊到一般的数学思想方法,培养学生的推理能力,构建代数模型。
【教学重难点】重点:了解分式的概念,理解分式有意义的条件及值为零的条件.难点:能熟练的求出分式有意义的条件及值为零的条件.【教学过程】一、导入新课、明确目标已知篮球场的面积为450 2m ;长为28m,则宽为____m ;若长方形的面积为S ,长为z,则宽为___ cm ;已知比赛三天共打16场比赛,因赛制不同每队打了m 场比赛,则共有____队;; 教练开车从家到三中,行驶路程为akm ,平均时间为b h ,则他的平均速度为___h km /;若遇大雾天气,在路程不变的情况下,行驶时间增加了m 小时,则他的平均速度为___h km /.二、自主学习、精讲点拨 思考:28450,z S ,m 16,b a ,mb a + 问题1:你能判断出哪些是分数哪些不是分数吗?问题2:这些式子与分数相比有什么相同点?问题3:这些式子与分数相比有什么不同点?分式定义:一般地,如果A,B 表示两个整式,并且B 中含有字母, 那么式子B A 叫做分式. 分式BA 中,A 叫做分子,B 叫做分母. 练习:判断下列式子是否为分式?πa x n m n m x x x x ab x x 2,1,,1212,352,534,31223-++-++-+, 重点:1.判断分式时关键要看分母中是否含有字母.2.判断分式时是从形式上看,即不能约分.3.π表示的是一个具体的数,它不是字母.拼一拼:你能任选两个式子,分别拖到分子 、分母的位置,并使它是分式吗? x ,x -2,π,4,0,2+x ,42-x在分数中,0不能做除数,那在分式中呢?分式的分母能不能为0?请大家阅读书128页思考中的问题及第二自然段。
人教版数学八年级上册15.1.1《从分数到分式》教学设计2

人教版数学八年级上册15.1.1《从分数到分式》教学设计2一. 教材分析《从分数到分式》是人民教育出版社八年级上册数学教材第15章第1节的内容。
本节课主要介绍了分数与分式的关系,分式的概念以及分式的基本性质。
通过本节课的学习,学生能够理解分数与分式的联系,掌握分式的概念和基本性质,为后续的分式运算打下基础。
二. 学情分析学生在七年级时已经学习了分数的概念和运算,对分数有一定的认识和理解。
但是,对于分数与分式的关系,以及分式的本质还需要进一步引导和启发。
此外,学生对于抽象的数学概念的理解能力还在发展中,需要通过具体实例和操作活动来帮助他们建立概念。
三. 教学目标1.知识与技能:学生能够理解分数与分式的关系,掌握分式的概念和基本性质。
2.过程与方法:学生通过观察、操作、思考等活动,培养逻辑思维能力和抽象思维能力。
3.情感态度与价值观:学生能够体验到数学与实际生活的联系,增强对数学的兴趣和自信心。
四. 教学重难点1.重点:分数与分式的关系,分式的概念和基本性质。
2.难点:分式的本质理解,分式与分数的转化。
五. 教学方法1.情境教学法:通过生活实例引入分数与分式的概念,让学生感受到数学与实际生活的联系。
2.启发式教学法:通过提问、讨论等方式,引导学生主动思考和探索,培养学生的逻辑思维能力。
3.操作活动法:通过实际操作和实践活动,让学生感知和体验分式的概念和性质。
六. 教学准备1.教学PPT:制作教学PPT,包括分数与分式的图片、实例、问题等。
2.教学素材:准备一些分数和分式的实际例子,如物品分配、价格比较等。
3.练习题:准备一些练习题,用于巩固学生的学习成果。
七. 教学过程1.导入(5分钟)利用PPT展示一些实际生活中的例子,如物品分配、价格比较等,引导学生思考和讨论这些例子与分数的关系。
通过讨论,引入分数与分式的概念。
2.呈现(15分钟)通过PPT呈现分数与分式的定义和性质,引导学生观察和思考分数与分式的联系。
人教版八年级上册15.1.1从分数到分式课程设计 (2)

人教版八年级上册15.1.1从分数到分式课程设计一、课程背景在初中数学中,分数是重要的概念之一,并且分数的化简和运算是初中数学中的重要内容。
而分数和分式之间的关系,也是学生需要掌握的知识点之一。
因此,本节课以“从分数到分式”为主题,旨在引导学生通过分数去理解分式,提高学生对分数和分式的认识和应用水平。
二、教学内容1. 从分数到分式•分数的记法•分数的概念•分式的记法•分式的概念2. 分数与分式之间的转换•分数转化为分式•真分数的转化•假分数的转化•分式转化为分数3. 分式的乘除法•分式的乘法•分式的除法三、教学目标1. 知识目标•掌握分式的记法和概念。
•掌握分数和分式之间的转化方法。
•掌握分式的乘除法。
2. 能力目标•能够应用分式进行相关题型的解题。
•能够将分数转化为分式,分式转化为分数。
3. 情感目标•培养学生学习数学的兴趣和独立思考的能力。
•培养学生认真对待数学学习的态度和乐观向上的品质。
四、教学重难点1. 教学重点•理解分数和分式之间的关系。
•掌握分数和分式之间的转化方法。
•掌握分式的乘除法。
2. 教学难点•假分数的转化及相关题型的解决。
1. 启发式教学策略通过启发式的教学策略,引领学生运用分数的知识去理解分式的概念和运算方法。
让学生在实践中发现问题和解决问题,从而提高学生的创新思维能力和分析问题的能力。
2. 讨论式教学策略通过讨论式的教学策略,鼓励学生提出自己的思路和方法,分享自己的观点和心得,增进学生之间的交流和思想碰撞,培养学生的合作精神和组织能力。
六、教学方法1. 引导法通过引导法的教学方法,帮助学生理解分数和分式之间的内在关系,使学生掌握分数和分式之间的转换方法,提高学生的数学运算能力。
2. 解题法通过解题法的教学方法,让学生在实践中应用分式进行有关题型的解答,加深学生对分数和分式的认识和应用,提高学生的解题能力。
1. 导入环节通过回顾前几节课的内容,引入本节课的主题,即从分数到分式的转换。
人教版数学八年级数学上册15.1.1从分数到分式优秀教学案例

最后,我会布置一些相关的作业,让学生们能够通过练习来巩固所学的知识。同时,我还会要求学生们在作业中进行小结,反思自己的学习过程,总结学习的经验和教训。
在作业小结环节,我会及时批改学生的作业,给予他们反馈和指导。通过作业小结,让学生们能够进一步提高自己的学习效果,为下一节课的学习做好准备。
四、教学内容与过程
(一)导入新课
本节课的导入,我选择了学生们熟悉的生活实例——分配物品。我会向学生们展示一个场景:有一个袋子里面有10个苹果,需要分给3个人,每个人分得几个苹果?学生们可以通过实际操作来解决这个问题。通过这个实例,学生们能够直观地理解到分数的概念,同时也能够引发他们对分式的思考。
在导入环节,我会引导学生积极参与,鼓励他们提出自己的解决方案。这样不仅能够激发学生的学习兴趣,还能够培养他们的思考能力和问题解决能力。
5.通过课后练习,巩固学生对分式的理解和掌握。
在教学过程中,我注重启发学生思考,引导学生从实际问题中发现和总结分式的规律。同时,我还注重培养学生的团队合作意识,鼓励他们积极参与讨论,提高他们的表达能力和交流能力。
二、教学目标
(一)知识与技能
1.让学生理解分式的概念,掌握分式的基本性质和运算法则;
2.能够运用分式解决实际问题,提高学生的数学应用能力;
人教版数学八年级数学上册15.1.1从分数到分式优秀教学案例
一、案例背景
本案例背景基于人教版数学八年级数学上册15.1.1从分数到分式的教学内容。在教学过程中,我发现学生们对分数的概念已经较为熟悉,但对其背后的意义和分式的应用却理解不深。因此,我设计了一系列的教学活动,旨在帮助学生从分数到分式的理解和掌握,提高他们的数学思维能力和实际应用能力。
3.培养学生独立思考、合作交流的能力,提高他们的数学素养。
数学人教版八年级上册15.1.1从分数到分式.1.1从分数到分式(教案) (2)

扩展提升:
1判断下列各式是否为分式并说明理由。
, , ,
2
(1)若分式 有意义,则m_______.
★(2)若分式 有意义,则x________.
3
(1)若分式 的值为0,则x_______
★(2)若分式 的值为0,则x________.
课堂小结:本节课你有什么收获?
2分式 有(无)意义的条件
分式 :
3分式 的值为零的条件
四教学过程
教师:在前面的学习中我们学习了什么是整式,以及整式的加减乘除的运算,今天开始我们学习一种新的代数式——分式。现在请大家先完成学案上的定向学习部分,复习一下以前我们学习过的内容)。
一定向学习
1.判断下列各式哪些是整式,哪些不是整式?(填写序号)它们和整式的区别是什么?
长方形的面积为S,宽为 时长为a。
2、把体积为100cm3的水倒入底面积为17 cm2的圆柱形容器中,水面高度为______cm,把体积为V的水倒入底面积为S的圆柱形容器中,水面高度为_____.
3 “定向学习”第一题中的式子 , , 与 , :
学生:回答问题。
①它们与分数的相同点:(都是 即(A÷B)的形式.)
学生:归纳:分式 :
例1下列分式中的字母满足什么条件时分式有意义?
解:
(1)要使分式 有意义,则分母________,即:_________.
(2)要使分式 有意义,则分母________,即:_________.
(3)要使分式 有意义,则分母________,即:_________.
(4)要使分式 有意义,则分母________,即:_________.
教师:根据分式有意义的条件确定字母的取值范围,只要抓住分式的分母不等于零这一条件,写出不等式,通过解不等式来解决问题(分母只有一个字母,则得 某个数值,若有多个字母,则得这些字母之间不能有的某种关系)。
数学人教版八年级上册15.1.1从分数到分式教案

然而,我也发现了一些不足之处。在实践活动过程中,部分学生对于如何将实际问题转化为分式模型感到困惑。这说明我在教学中需要更多关注学生的问题解决能力,培养他们从实际问题中提炼数学模型的能力。
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《从分数到分式》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过分母为零的情况?”(如:在平均分配物品时,若物品总数为零,该如何表示每个人得到的数量?)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索分式的奥秘。
本节课将结合实际例题,让学生在实际操作中掌握分式的概念和性质,为后续学习分式的运算打下基础。
二、核心素养目标
1.培养学生的逻辑推理能力:通过从分数到分式的过渡,引导学生理解分式概念的内涵和外延,培养学生的抽象逻辑思维,提高其逻辑推理能力。
2.增强学生的数学运算能力:让学生掌握分式的性质,并运用这些性质简化分式,解决实际问题,提高学生的数学运算能力。
数学人教版八年级上册15.1.1从分数到分式教案
一、教学内容
本节课选自数学人教版八年级上册第15章《分式》中的第1节“从分数到分式”。教学内容主要包括以下两部分:
1.分式的概念:通过回顾分数的定义,引导学生理解分式的概念,即分母不为零的表达式称为分式。列举一些具体实例,让学生观察并总结分式的特点。
2.分式的性质:探讨分式的分子、分母与分式值之间的关系,引入分式的基本性质,如分子分母同乘(除)一个非零数,分式的值不变。结合实际例题,让学生运用这些性质简化分式,并解决相关问题。同时,强调分母不为零的重要性。
人教版八年级数学上册15.1.1《从分数到分式》教学设计

人教版八年级数学上册15.1.1《从分数到分式》教学设计一. 教材分析人教版八年级数学上册15.1.1《从分数到分式》是分式单元的第一节内容,主要介绍了分数与分式的关系,分式的概念以及分式的基本性质。
本节内容是学生学习更高级数学的基础,对于学生理解数学的抽象概念具有重要意义。
二. 学情分析八年级的学生已经掌握了分数的基本知识,对于分数的加减乘除运算也已经熟练掌握。
但是,学生对于分数背后的数学原理可能理解不够深入,对于数学的抽象概念还处于逐步理解的过程中。
三. 教学目标1.了解分数与分式的关系,理解分式的概念。
2.掌握分式的基本性质,能够进行简单的分式运算。
3.培养学生的抽象思维能力,提高学生解决问题的能力。
四. 教学重难点1.分式概念的理解。
2.分式基本性质的掌握。
3.分式运算的熟练运用。
五. 教学方法采用问题驱动法,通过引导学生思考分数与分式的关系,激发学生的学习兴趣,培养学生独立思考的能力。
同时,运用案例分析法,通过具体的例子让学生理解分式的概念和性质。
六. 教学准备1.准备相关的分数和分式的案例。
2.准备分式运算的练习题。
3.准备PPT,用于辅助教学。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾分数的知识,激发学生的学习兴趣。
例如:“你们知道分数是什么吗?分数有什么特点?”2.呈现(10分钟)通过PPT展示分数与分式的关系,引导学生思考并总结出分式的概念。
例如:“分数可以表示一个数与另一个数的比,那么分式可以表示什么呢?”3.操练(10分钟)让学生通过PPT上的例子,练习分式的基本性质。
例如:“请同学们观察这个例子,分式的分子和分母同时乘以一个数,分式的值会发生什么变化?”4.巩固(10分钟)让学生进行分式运算的练习,巩固所学知识。
例如:“请同学们完成这个分式的运算,并解释你的思路。
”5.拓展(10分钟)引导学生思考分式在实际生活中的应用,拓展学生的知识视野。
例如:“你们能想到分式在实际生活中有哪些应用吗?”6.小结(5分钟)对本节课的主要内容进行总结,让学生明确学习重点。
最新人教版初中八年级数学上册《从分数到分式》精品教案 (2)

15.1分式15.1.1从分数到分式1.了解分式的概念,能判断一个代数式是否为分式,会求分式的值.(重点)2.理解当分母不为零时分式才有意义;在分式有意义的条件下,会求分式的分母中所含字母的取值范围;会确定分式的值为零的条件.(难点)一、情境导入多媒体展示,学生欣赏一组图片(长江三峡).长江三峡自古以来就是四川通往中原的重要水路,也是秀美壮丽、享誉中外的世界旅游胜地.早在1500多年前的魏晋时期,地理学家郦道元就在他的著作《水经注》中留下一段生动的描述:“有时朝发白帝城,暮至江陵,期间千二里,虽乘龙御风,不以疾也.”多媒体出示以下问题:(1)如果客船早6时从白帝城启航,顺水而下,傍晚6时到达江陵,航程600千米,客船航行的平均速度约为多少千米/小时?(2)如果客船8小时航行了s千米,该船航行的平均速度是多少?(3)如果客船在静水中的航行速度为v千米/小时,江水流动的平均速度为20千米/小时.那么客船顺水而下,航行600千米需多少时间?如果客船逆水航行s千米,需要多少时间?你能解答情境导入中的问题吗?与同学交流.二、合作探究探究点一:分式的概念【类型一】 判断代数式是否为分式 在式子1a 、2xy π、3a 2b 3c 4、56+x 、x 7+y 8、9x +10y中,分式的个数有( ) A .2个 B .3个 C .4个 D .5个解析:1a 、56+x 、9x +10y 这3个式子的分母中含有字母,因此是分式.其他式子分母中均不含有字母,是整式,而不是分式.故选B.方法总结:分母中含有字母的式子就是分式,注意π不是字母,是常数.【类型二】 探究分式的规律 观察下面一列分式:x 3y ,-x 5y 2,x 7y 3,-x 9y4,…(其中x ≠0). (1)根据上述分式的规律写出第6个分式;(2)根据你发现的规律,试写出第n (n 为正整数)个分式,并简单说明理由.解析:(1)根据已知分式的分子与分母的次数与系数关系得出答案;(2)利用(1)中数据的变化规律得出答案.解:(1)观察各分式的规律可得:第6个分式为-x 13y6;(2)由已知可得:第n (n 为正整数)个分式为(-1)n +1×x 2n +1y n ,理由:∵分母的底数为y ,次数是连续的正整数,分子底数是x ,次数是连续的奇数,且偶数个为负,∴第n (n 为正整数)个分式为(-1)n +1×x 2n +1y n . 方法总结:此题主要考查了分式的定义以及数字变化规律,得出分子与分母的变化规律是解题关键.【类型三】 根据实际问题列分式每千克m 元的糖果x 千克与每千克n 元的糖果y 千克混合成杂拌糖,这样混合后的杂拌糖果每千克的价格为( )A.nx +my x +y 元 B.mx +ny x +y 元 C.m +n x +y 元 D.12(x m +y n)元 解析:由题意可得杂拌糖每千克的价格为mx +ny x +y 元.故选B. 方法总结:解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系,列出代数式.探究点二:分式有意义或无意义的条件 【类型一】 分式有意义的条件 分式x -1(x -1)(x -2)有意义,则x 应满足的条件是( ) A .x ≠1 B .x ≠2C .x ≠1且x ≠2D .以上结果都不对解析:∵分式有意义,∴(x -1)(x -2)≠0,∴x -1≠0且x -2≠0,∴x ≠1且x ≠2.故选C. 方法总结:分式有意义的条件是分母不等于零.【类型二】 分式无意义的条件使分式x3x -1无意义的x 的值是( ) A .x =0 B .x ≠0 C .x =13 D .x ≠13解析:由分式有意义的条件得3x -1≠0,解得x ≠13.则分式无意义的条件是x =13,故选C. 方法总结:分式无意义的条件是分母等于0.探究点三:分式的值为零、为正或为负的条件 若使分式x 2-1x +1的值为零,则x 的值为( ) A .-1 B .1或-1C .1D .以上都不对解析:由题意得x 2-1=0且x +1≠0,解得x =1,故选C.方法总结:分式的值为零的条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.三、板书设计从分数到分式1.分式的概念:一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子A B 叫做分式.2.分式A B 有无意义的条件:当B ≠0时,分式有意义;当B =0时,分式无意义.3.分式A B值为0的条件:当A =0,B ≠0时,分式的值为0.本节采取的教学方法是引导学生独立思考、小组合作,完成对分式概念及意义的自主探索;通过“课后练习应用拓展”这一环节发展了学生思维,巩固了课堂知识,增强了学生实践应用能力.提出问题让学生解决,问题由易到难,层层深入,既复习了旧知识又在类比过程中获得了解决新知识的途径.在这一环节提问应注意循序性,先易后难、由简到繁、层层递进,台阶式的提问使问题解决水到渠成.非常感谢!您浏览到此文档。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从分数到分式
教学目标 一、知识与技能目标
1.使学生了解分式的概念,明确分母不得为零是分式概念的组成部分.
2.使学生能够求出分式有意义的条件.
二、过程与方法目标 能用分式表示现实情境中的数量关系,体会分式是表示现实世界中一类量的数学模型,进一步发展符号感,通过类比分数研究分式的教学,引导学生运用类比转化的思想方法研究解决问题.
三、情感与价值目标
在土地沙化问题中,体会保护人类生存环境的重要性。
培养学生严谨的思维能力. 教学重点和难点
准确理解分式的意义,明确分母不得为零既是本节的重点,又是本节的难点. 教学方法:分组讨论. 教学过程
1、 情境引入:面对日益严重的土地沙化问题,某县决定分期分批固沙造林,一期工程计划在一定期限内固沙造林2400公顷,实际每月固沙造林的面积比原计划多30公顷,结果提前4个月完成原计划任务,原计划每月固沙造林多少公顷?
(1)这一问题中有哪些等量关系?
(2)如果设原计划每月固沙造林x 公顷,那么原计划完成一期工程需要____________个月,实际完成一期工程用了____________个月;根据题意,可得方程 ;
2、解读探究:
x 2400,302400+x ,430
24002400=+-x x 认真观察上面的式子,方程有什么特点?
做一做1.正n 边形的每个内角为 度
2一箱苹果售价a 元,箱子与苹果的总质量为mkg ,箱子的质量为nkg ,则每千克苹果售价是多少元? 上面问题中出现的代数式x 2400,302400+x ,n
n 180)2(⨯-;它们有什么共同特征? (1)由学生分组讨论分式的定义,对于“两个整式相除叫做分式”等错误,由学生举反例一一加以纠正,得到结论:
的分母.
(2)由学生举几个分式的例子.
(3)学生小结分式的概念中应注意的问题.
①分母中含有字母.
②如同分数一样,分式的分母不能为零.
(4)问:何时分式的值为零?(以(2)中学生举出的分式为例进行讨论)
例1(1)当a=1,2时,求分式a
a 21+的值; (1) 当a 取何值时,分式a
a 21+有意义? 解:(1)当a=1时,;1121121=⨯+=+a a 当a=2时4
3221221=⨯+=+a a (2)当分母的值等于零时,分式没有意义,除此以外,分式都有意义。
由分母2a=0,得a=0,所以,当a 取零以外的任何实数时,分式a
a 21+有意义。
例2当x 取何值时,下列分式有意义?
思考:若把题目要求改为:“当x 取何值时下列分式无意义?”该怎样做? 例3 当x 取何值时,下列分式的值为零?
解:由分子x+3=0得x =-3.
而当x =-3时,分母2x-7=-6-7≠0.
∴当x =-3时,原分式值为零.
小结:若使分式的值为零,需满足两个条件:①分子值等于零;②分母值不等于零.
课堂小结
本节课你学到了哪些知识和方法?
1.分式与分数的区别.
2.分式何时有意义?
3.分式何时值为零?。