对数平均数的不等式链的几何解释及应用
对数平均不等式的证明及应用

对数平均不等式的证明及应用对数平均不等式是数学中常见的不等式之一,它通常用于证明和推导各种数学问题。
本文将对对数平均不等式进行详细的证明和应用进行讨论。
对数平均不等式又称为几何平均与算术平均的不等式,通常表现为ln(x1) +ln(x2) >= 2ln(√(x1*x2))。
下面我们将对此公式进行证明。
假设x1和x2是两个大于0的实数,并且x1≠x2。
我们定义a = ln(x1)和 b = ln(x2),则有x1=e^a,x2=e^b。
对于任意两个实数a和b,我们有以下公式:e^a + e^b >= 2√(e^a * e^b)将x1和x2代入上式得:x1 + x2 >= 2√(x1 * x2)对上式两边取对数得:利用对数的性质ln(a* b) = ln(a) + ln(b),将右侧拆开得:将a和b重新代入得:ln(x1 + x2) >= ln(2) + 1/2 * ln(x1) + 1/2 * ln(x2)由于ln(2)为常数,我们令-ln(2) = k,那么有:将ln(x1 + x2)右侧移至左侧得:二、对数平均不等式的应用对数平均不等式可以应用于各种数学问题中,下面我们将举例说明其应用场景。
1. 几何平均和算术平均关系的证明ln(x1) + ln(x2) >= 2ln(√(x1*x2))ln(x1 * x2) >= 2ln(√(x1*x2))ln(x1 * x2) >= ln((√(x1*x2))^2)x1 * x2 >= (√(x1*x2))^2由上述推导可知,x1 * x2 >= (√(x1*x2))^2。
这表明x1 * x2的值大于或等于其平方根的平方,即x1 * x2的值大于或等于x1*x2。
我们可以得出结论:几何平均大于等于算术平均。
2. 凸函数的性质证明对数平均不等式也可以用于证明凸函数的性质。
假设f(x)是一个凸函数,我们需要证明对于任意x1和x2,有以下不等式成立:根据凸函数的性质和对数平均不等式,我们可以推导出上述不等式成立。
对数均值不等式的证明方法

对数均值不等式的证明方法对数均值不等式(AM-GM不等式)是数学中常用的一种不等式,它是初等数学和高等数学中必学的知识点之一。
本文将介绍针对对数均值不等式的证明方法。
一、对数均值不等式的表述对数均值不等式又称为算术平均数和几何平均数不等式,它的数学表述为:对于任意非负实数$x_1, x_2, \ldots, x_n$,有:$$\sqrt[n]{x_1 \cdot x_2 \cdots x_n} \le \frac{x_1 + x_2 + \cdots + x_n}{n} $$其中,$n$为非负整数。
二、直接证明法对数均值不等式的证明方法有多种,其中一种是直接证明法。
这种方法通过将不等式两边进行变换和分析,从而得到等价的形式,最终得证。
首先,根据不等式的左侧,我们可以将$x_1, x_2, \ldots, x_n$的乘积写成指数的形式:$$x_1 \cdot x_2 \cdots x_n = e^{\ln(x_1 \cdot x_2 \cdots x_n)}$$然后,利用指数函数的性质,我们知道:$$e^{\ln(x_1 \cdot x_2 \cdots x_n)} = e^{\ln x_1 + \ln x_2 + \cdots + \lnx_n}$$接下来,我们可以应用算术平均数和指数函数的关系,即:$$\frac{\ln x_1 + \ln x_2 + \cdots + \ln x_n}{n} \ge \ln\left(\frac{x_1 +x_2 + \cdots + x_n}{n}\right)$$再次利用指数函数的性质,我们有:$$e^{\frac{\ln x_1 + \ln x_2 + \cdots + \ln x_n}{n}} \gee^{\ln\left(\frac{x_1 + x_2 + \cdots + x_n}{n}\right)}$$化简后得:$$\sqrt[n]{x_1 \cdot x_2 \cdots x_n} \le \frac{x_1 + x_2 + \cdots + x_n}{n}因此,我们通过直接证明法证明了对数均值不等式。
5.对数平均不等式-教师

对数平均不等式1.定义:设,0,,a b a b >≠则2ln ln a b a bab a b+->>-其中ln ln a b a b --被称为对数平均数2.几何解释:反比例函数()()10f x x x=>的图象,如图所示,AP BC TU KV||||||,MN CD x ||||轴, (),0,A a 1,,P a a ⎛⎫ ⎪⎝⎭()1,0,,B b Q b b ⎛⎫ ⎪⎝⎭,1,,T ab ab ⎛⎫ ⎪⎝⎭作()f x 在点2,2a b K a b +⎛⎫⎪+⎝⎭处的切线分别与,AP BQ 交于,E F ,根据左图可知,因为ABNM ABQP ABFE S S S >=矩形曲边梯形梯形,所以()12ln ln ,badx b a b a x a b=->-+ò① 又1ln ln abAUTP aS dx ab a x==-ò曲边梯形, ()11ln ln 22ABQP b a S =-=曲边梯形,()11111222AUTPABCD b a S ab a S aab ab骣-÷ç=+-=?÷ç÷ç桫梯形梯形, 根据右图可知,AUTP AUTP S S <曲边梯形梯形 ,所以ln ln b ab a ab--<, ②另外,ABQX ABYP ABQP ABQP S S S S <<<矩形矩形曲边梯形梯形,可得:()()()11111ln ln ,2b a b a b a b a b a b a骣÷ç-<-<+-<-÷ç÷ç桫 ③ 综上,结合重要不等式可知:()()()()211111ln ln 2b a b a b a b a b a b a b a b a b a ab骣--÷ç-<<-<<+-<-÷ç÷ç桫+,即 ()20112ln ln a b b ab ab a b a b aa b+->>>>>>>-+. ④等价变形: )0.()(2ln ln >≥+-≥-b a ba b a b a)0.(ln ln >≥-≤-b a ab b a b a 3.典例剖析对数平均数的不等式链,提供了多种巧妙放缩的途径,可以用来证明含自然对数的不等式问题.对数平均数的不等式链包含多个不等式,我们可以根据证题需要合理选取其中一个达到不等式证明的目的. (一)()0ln ln b ab a a b a->>>-的应用例1 (2014年陕西)设函数)1ln()(x x f +=,()()g x xf x '=其中()f x '是)(x f 的导函数.(1)(2)(略) (3)设+∈N n ,比较()()()12g g g n +++ 与()n f n -的大小,并加以证明.解析 (3)因为()1xgx x=+, 所以()()()1211112231231n gg g n n n n ⎛⎫+++=+++=-+++ ⎪++⎝⎭, 而()()ln 1n f n n n -=-+,因此,比较()()()12g g g n +++ 与()n f n -的大小,即只需比较113121++++n 与()ln 1n +的大小即可. 根据0b a >>时,ln ln b ab b a ->-,即()1ln ln ,b a b a b -<-令,1,a n b n ==+则()1ln 1ln ,1n n n <+-+ 所以1ln 2ln1ln 22<-=,1ln 3ln 23<-,1,ln(1)ln 1n n n <+-+ , 将以上各不等式左右两边相加得:()111ln 1231n n +++<++ , 故()()()()12gg g n n f n +++>- .评注 本题是高考试题的压轴题,难度较大,为了降低试题的难度采取多步设问,层层递进,上问结论,用于下问,其第二问是为第三问做铺垫的“梯子”,尽管如此,步骤依然繁琐,求解过程复杂,但我们这里应用对数平均数不等式链来证明,思路简捷,别具新意,易于学生理解、掌握. 当0b a >>时,ln ln b a a b a ->-,即()1ln ln ,b a b a a-<-令,1,a n b n ==+则()1ln 1ln ,n n n +-<可得:()111ln 1123n n+<++++L . (二)()2202ln ln a b b a b a b a+->>>-的应用 例2设数列{}n a 的通项()111n a n n =++,其前n 项的和为n S ,证明:()ln 1nS n <+.解析 根据0b a >>时,222ln ln a b b ab a+->-,即()222ln ln b a b a a b-->+,令1,,b n a n =+=则()()222ln 1ln 1n n n n +->++22221n n =++22222n a n n >>++,易证()ln 1n S n <+.(三)()02ln ln a b b ab a b a+->>>-的应用 例3.设数列{}n a 的通项111123n a n=++++ ,证明:()ln 21n a n <+.解析 根据0b a >>时,2ln ln a b b a b a+->-,即()2ln ln b a b a a b-->+,令21,21,b n a n =+=-则()()1ln 21ln 21n n n+-->,易证()ln 21na n <+.(四)()2011ln ln b a b a b a a b->>>-+的应用 例 4.(2010年湖北)已知函数()()0bf x ax c a x=++>的图象在点()()1,1f 处的切线方程为1y x =-.(1)用a 表示出,b c ;(2)(略)(3)证明:()()()1111ln 11.2321n n n n n ++++>++?+L 解析 (1)1,12b a c a =-=-;(3)当0b a >>时,211ln ln b a b a a b->-+,即()111ln ln 2b a b a a b骣÷ç-<+-÷ç÷ç桫, 令,1,a n b n ==+则()111ln 1ln ,21n n n n 骣÷ç+-<+÷ç÷ç桫+ 所以111ln 2ln1,212骣÷ç-<+÷ç÷ç桫111ln 3ln 2,223骣÷ç-<+÷ç÷ç桫L ,()111ln 1ln ,21n n n n 骣÷ç+-<+÷ç÷ç桫+将以上各不等式左右两边分别相加得: ()()111111ln 1,223421n n n 骣÷ç+<++++++÷ç÷ç桫+L即()()111111ln11,234212n nn +<++++++-+L故()()1111ln 1.2321n n n n ++++>+++L(五)()0ln ln b aab b a b a->>>-的应用例5. (2014福建预赛)已知1()ln(1)311f x a x x x =+++-+. (1)(略) (2)求证:()222223411ln 21411421431414n n n +++++>+⨯-⨯-⨯-⨯- 对一切正整数n 均成立.解析 (2)根据0b a >>时,ln ln b aab b a->-,即ln ln ,b ab a ab --<令21,21,b n a n =+=-则()()22ln 21ln 21,41n n n +--<-变形可得:()()2222111142ln 21ln 21,4414141n n n n n n n -+轾+--<=<臌---则 ()212ln 3ln1,4411-<?()213ln 5ln 3,,4421-<?L ()()211ln 21ln 21,441n n n n +轾+--<臌-将以上各不等式左右两边相加得: 222223411ln(21)411421431414n n n +++++>+⨯-⨯-⨯-⨯- 对一切正整数n 均成立. 评注 本题提供标准答案是借助于第一问的a的最小值2a =-时,12l n (1)3101x x x -+++->+,即()1312ln 11x x x +->++,结合待证不等式的特征, 令()2*21x k N k =∈-,得122312ln(1)22121121k k k +⨯->+--+-, 整理得:288212ln 4121k k k k ++>--,即()()211ln 21ln 21414k k k k +>+--⎡⎤⎣⎦-,借此作为放缩的途径达到证明的目的.你能注意到两种方法的区别吗?对数平均数的不等式链的运用是近几年数学竞赛、名校模拟数学试题、高考数学真题的理论背景,正如罗增儒教授指出:通过有限的典型考题的学习去领悟那种解无限道题的数学机智.这里的领悟解题的数学机智从某种意义上说就是对问题本质的理解,而对问题本质的发现还在于我们对问题信息的审视和挖掘,水有源,题有根,茫茫题海,寻觅其根源,领悟其通性通法方是提升数学素养的途径. 强化训练1.(2012年天津)已知函数()()()ln 0f x x x a a =-+>的最小值为0.(1)(2)(略)(3)证明:()()12ln 212*.21ni n n N i =-+<∈-∑解析 (3)易求1a =,待证不等式等价于()2222ln 2135721n n ++++<+- . 根据0b a >>时,ln ln b ab b a ->-,即()1ln ln ,b a b a b -<-令21,21,a n b n =-=+则()()()22ln 21ln 21,21121n n n n =<+--+-+2ln 3ln1,3<-2ln 5ln 3,5<-2ln 7ln 5,,7<-L()()()2ln 21ln 21,211n n n <+--+-将以上各不等式左右两边分别相加得:()22222ln 213572121n n n +++++<+-+ , ()122ln 21222121ni n i n =-+<-<-+∑.得证. 2.(2013年新课标Ⅰ)已知函数()()()1ln 11x x f x x xλ+=+-+.(1)若0x ≥时,()0,f x ≤求λ的最小值;(2)设数列{}n a 的通项111123n a n =++++ ,证明:21ln 24n na a n-+>. 解析 (1)易得()()()221200,(1)x x f f x x λλ--'==+.令()0,f x '=则120,,x x λλ-==若0λ<,则当0x >时,()()0,f x f x '>是增函数,()()00,f x f >=不符合题意;若102λ≤<,则当120x λλ-≤<时,()()0,f x f x '>是增函数,()()00,f x f >=不符合题意;若12λ≥,则当0x >时,()()0,f x f x '<是减函数,()()00,f x f ≤=符合题意;综上,λ的最小值是12.(2) 当0b a >>时,211ln ln b a b a a b->-+,即()111ln ln 2b a b a a b 骣÷ç-<+-÷ç÷ç桫, 令,1,a n b n ==+则()111ln 1ln ,21n n n n 骣÷ç+-<+÷ç÷ç桫+ 所以()111ln1ln ,21n n nn 骣÷ç+-<+÷ç÷ç桫+ ()()111ln 2ln 1,212n n n n 骣÷ç+-+<+÷ç÷ç桫++ ()()111ln 3ln 2,223n n n n 骣÷ç+-+<+÷ç÷ç桫++L()111ln 2ln 21,2212n n n n 骣÷ç--<+÷ç÷ç桫-将以上各不等式左右两边分别相加得: 1122221ln 2ln ,2123212n n n n n n n n骣÷ç-<++++++÷ç÷ç桫+++-L 即111111ln 2,2123214n n n n n n骣÷ç<++++++÷ç÷ç桫+++-L 故1111ln 21224n n n n++++>++ . 评注 本题提供标准答案是借助于第一问的λ的最小值12λ=时,()()()2l n 1022x x x x x++<≥+加以赋值,并进行变形,令1x k=,有()121111l n 12121k k kk k k +⎛⎫⎛⎫+<=+ ⎪ ⎪++⎝⎭⎝⎭,亦即()111ln 1ln 21k k k k ⎛⎫+-<+ ⎪+⎝⎭达到放缩的目的.两者相比较,自然是运用对数平均值的不等式链的方法简捷.。
对数均值不等式及变式在高考压轴题的应用

对数均值不等式及变式在高考压轴题的应用对数均值不等式及变式在高考压轴题的应用引言:数学作为高考的一门重要科目,其中不等式是数学中的一个重要概念。
在高考中,有一类不等式常常被提及,那就是对数均值不等式及其变式。
本文将对对数均值不等式及变式的应用进行探讨,并从深度和广度两个方面阐述其在高考压轴题中的实际应用。
一、对数均值不等式的定义与简单应用1.1 对数均值不等式的定义对数均值不等式是数学中的一类不等式,它是由均值不等式推导而来。
对于两个正数a和b,可以定义它们的几何平均数M和算术平均数A 为:\[ M = \sqrt{ab} \]\[ A = \frac{a+b}{2} \]而对于这两个平均数的自然对数,我们可以定义为:\[ m = \ln{M} \]\[ a = \ln{a} \]则对数均值不等式可以表示为:\[ \frac{a+b}{2} \geq \sqrt{ab} \]即:\[ \frac{a+b}{2} \geq \ln{\sqrt{ab}} \]\[ \ln{(a+b)} \geq \ln{2} + \ln{\sqrt{ab}} \]\[ \ln{(a+b)} \geq \ln{2} + \frac{1}{2} \ln{ab} \]1.2 对数均值不等式的简单应用对数均值不等式在求证过程中往往与其他的不等式相结合,从而达到简化证明的目的。
例:设a、b、c为正数,证明以下不等式:\[ \frac{ab+bc+ca}{a+b+c} \leq \frac{(a+b)(b+c)(c+a)}{8abc}\] 解:由对数均值不等式可得:\[ \ln{(a+b)} \geq \ln{2} + \frac{1}{2} \ln{ab} \]\[ \ln{(b+c)} \geq \ln{2} + \frac{1}{2} \ln{bc} \]\[ \ln{(c+a)} \geq \ln{2} + \frac{1}{2} \ln{ca} \]将上述三个不等式相加,得到:\[ \ln{(a+b)} + \ln{(b+c)} + \ln{(c+a)} \geq 3 \ln{2} +\frac{1}{2}(\ln{ab}+\ln{bc}+\ln{ca}) \]\[ \ln{(a+b)(b+c)(c+a)} \geq 3 \ln{2} +\frac{1}{2}(\ln{ab}+\ln{bc}+\ln{ca}) \]由对数的性质可得:\[ (a+b)(b+c)(c+a) \geq 8abc \cdot \sqrt{2} \]将上述不等式代入原式,即可得到所要证明的不等式。
对数平均值的几何解释与探究(岳峻)

三、不等式链的证明
评注:涉及两个变量的不等式的证明,其解题策略耐人 寻味: 证法1是先将不等式逆推分析,进行等价转化,使得其 中的两个变量的特征、规律更明朗,然后将两个变量的比值 (或和、或差、或积)替换为新的一元变量,便于构造出新 的一元函数,再通过对新的一元函数求导,判断其单调性、 确定极值(或最值),达到解决问题的目的,可归结为 “化归-换元-构造-求导”; 证法2将地位均衡的两个变量之一作为主元,另外的一 个变量视为常量来处理,构造出一元函数,可归结为 “化归-主元-构造-求导”.
高考压轴题与对数平均值
一、对数平均值的概念
中学数学教育专家安振平在剖析2013年 陕西高考数学时指出,其压轴题的理论背景 是: 设 a, b 0, 则
ab a b ab 2 ln a ln b
其中
,
a b ln a ln b
被称之为对数平均值.
一、对数平均值的概念
对数平均值在现行高中教材没有出现, 但其蕴含着高等数学的背景,近几年的高考 压轴题中,频频出现。 安振平老师构造函数,借助于导数证明 了对数平均数的有关不等式,难度较大,为 此,本人作了一些探讨,以期对2016年的复 习迎考有所启发。
三、不等式链的证明
设函数 f x 1 x ln x 2 x 1 x 1 , 则
证法1:设 b a 0, a b ,则不等式等价于 骣 骣 b 鼢 b b 珑 1鼢 ln > 2 - 1 (a + b)(ln b - ln a) > 2(b - a) ? 珑 鼢 珑 桫 桫 a a a
ab
四、对数平均值的几何解释
(3)又 S矩形ABQX < S曲边梯形ABQP < S梯形ABQP , < S矩形ABYP , 1 1骣 1 1÷ 1 ç + ÷ (b - a) < (b - a),L ③ 所以 b (b - a) < ln b - ln a < 2 ç ÷ ç 桫 a b a
高考试题的探究(一)2对数平均数的不等关系的应用(定稿)

对数平均数的不等关系的应用安徽省太和县太和中学 岳 峻 236600中学数学教育专家安振平在剖析2013年陕西高考数学时指出,其压轴题的理论背景是: 当0ba时,2221122ln ln a b a bb ababa b aab. 其中ln ln a ba b--被称之为对数平均值.一、借助于对数平均数的不等关系巧妙放缩 对数平均数的不等式链,提供了多种巧妙放缩的途径,可以用来证明含自然对数的不等式问题.对数平均数的不等式链包含多个不等式,我们可以根据证题需要合理选取其中一个达到不等式证明的目的.例1 (2014年陕西)设函数)1ln()(x x f +=,()()g x xf x '=,其中()f x '是)(x f 的导函数.(1)(2)(略)(3)设+∈N n ,比较()()()12g g g n +++与()n f n -的大小,并加以证明.解析 (3)因为()1xg x x=+, 所以()()()1211112231231n g g g n n n n ⎛⎫+++=+++=-+++⎪++⎝⎭, 而()()ln 1n f n n n -=-+,因此,比较()()()12g g g n +++与()n f n -的大小,即只需比较113121++++n 与()ln 1n +的大小即可. 根据③式中,1ln ln ,b a b a b令,1,a n b n 则1ln 1ln ,1n n n所以1ln 2ln1ln 22<-=,1ln 3ln 23<-,1,ln(1)ln 1n n n <+-+, 将以上各不等式左右两边相加得:()111ln 1231n n +++<++,故()()()()12gg g n n f n +++>-.评注 本题是高考试题的压轴题,难度较大,为了降低试题的难度采取多步设问,层层递进,上问结论,用于下问,其第二问是为第三问做铺垫的“梯子”,尽管如此,步骤依然繁琐,求解过程复杂,但我们这里应用对数平均数不等式链来证明,思路简捷,别具新意,易于学生理解、掌握. 若根据③式中1ln ln ,bab a a令,1,a n b n 则1ln 1ln ,n nn可得:111ln 1123n n.若根据③式中111ln ln 2b a b a ab,又会得出怎样的结论呢?请看下例.例2 (2010年湖北)已知函数0b f x ax c a x的图象在点1,1f 处的切线方程为1yx .(1)用a 表示出,b c ;(2)(略) (3)证明:1111ln 11.2321nn n nn解析 (1)1,12b a c a ;(3)根据③式中,111ln ln ,2b ab a a b令,1,a n b n 则111ln 1ln ,21n nn n所以111ln 2ln1,212111ln 3ln 2,223,111ln 1ln ,21n nnn将以上各不等式左右两边分别相加得:111111ln 1,223421n n n即111111ln11,234212n n n故1111ln 1.2321nn nn例3 (2013年新课标Ⅰ)已知函数()()()1ln 11x x f x x xλ+=+-+.(1)若0x≥时, ()0,f x ≤求λ的最小值;(2)设数列{}n a 的通项111123n a n =++++,证明:21ln 24n na a n-+>. 解析 (1)易得()()()221200,(1)x x f f x x λλ--'==+.令()0,f x '=则120,,x x λλ-==若0λ<,则当0x >时,()()0,f x f x '>是增函数,()()00,f x f >=不符合题意;若102λ≤<,则当120x λλ-≤<时,()()0,f x f x '>是增函数,()()00,f x f >=不符合题意;若12λ≥,则当0x >时,()()0,f x f x '<是减函数,()()00,f x f ≤=符合题意;综上,λ的最小值是12.(2)根据③式中,111ln ln 2bab a a b,令,1,a n b n 则111ln 1ln ,21n nn n 所以111ln 1ln ,21n nnn 111ln 2ln 1,212n n n n111ln 3ln 2,223n n n n111ln 2ln 21,2212n n n n将以上各不等式左右两边分别相加得:1122221ln 2ln ,2123212n nn n n n n n即111111ln 2,2123214nn nn n n故1111ln 21224n n n n++++>++. 评注 本题提供标准答案是借助于第一问的λ的最小值12λ=时,()()()2ln 1022x x x x x++<≥+加以赋值,并进行变形,令1x k=,有()121111ln 12121k k k k k k +⎛⎫⎛⎫+<=+ ⎪ ⎪++⎝⎭⎝⎭,亦即()111ln 1ln 21k k k k ⎛⎫+-<+ ⎪+⎝⎭达到放缩的目的.两者相比较,自然是运用对数平均值的不等式链的方法简捷.例4 (2012年天津)已知函数()()()ln 0f x x x a a =-+>的最小值为0.(1)(2)(略)(3)证明:()()12ln 212*.21ni n n N i =-+<∈-∑ 解析 (3)易求1a =,待证不等式等价于()2222ln 2135721n n ++++<+-.根据③式中,1ln ln ,ba b a b令21,21,a n bn 则22ln 21ln 21,21121n n n n2ln 3ln1,32ln 5ln 3,52ln 7ln 5,,72ln 21ln 21,211n n n将以上各不等式左右两边分别相加得:()22222ln 213572121n n n +++++<+-+,()122ln 21222121ni n i n =-+<-<-+∑.得证. 例5 (2014福建预赛)已知1()ln(1)311f x a x x x =+++-+. (1)(略)(2)求证:()222223411ln 21411421431414n n n +++++>+⨯-⨯-⨯-⨯-对一切正整数n 均成立.解析 (2)根据 式中,ln ln ,b a ab令21,21,a n b n 则2ln 21ln 21,41n n n变形可得:222211142ln 21ln 21,444141n n n n n n n 则 212ln 3ln1,4411213ln 5ln 3,,4421211ln 21ln 21,441n n n n 将以上各不等式左右两边相加得:222223411ln(21)411421431414n n n +++++>+⨯-⨯-⨯-⨯-对一切正整数n 均成立.评注 本题提供标准答案是借助于第一问的a的最小值2a =-时,12ln(1)3101x x x -+++->+,即()1312ln 11x x x +->++,结合待证不等式的特征, 令()2*21x k N k =∈-,得122312ln(1)22121121k k k +⨯->+--+-,整理得:288212ln 4121k k k k ++>--,即()()211ln 21ln 21414k k k k +>+--⎡⎤⎣⎦-,借此作为放缩的途径达到证明的目的.你能注意到两种方法的区别吗?二、多变量问题蕴含的对数平均数的不等关系高考数学时常出现多变量的综合问题,且多出现在压轴题的位置,由于含有多个变量,使题目显得繁杂混乱,此类问题对学生的阅读能力、转化与划归的思维灵活性要求较高,许多学生面对此类问题往往一筹莫展,难以找到解决问题的突破口.如何从繁乱中理出头绪并顺利解决问题呢?例6 (2015合肥最后一卷)已知函数()ln .f x x kx =-(1)(略)(2)若函数()y f x =的有两个相异的零点12,,x x 求证:212.x x e > 分析 第(2)问属于多变量的综合问题,如何破解此类问题呢?因为函数()y f x =的有两个相异的零点12,,x x 显然0k >,不妨设120,x x <<则()()120f x f x ==,亦即1122ln ln 0x kx x kx -=-=,且()2121ln ln k x x x x -=-,要证212,x x e >即证12ln ln 2x x +>,只需证()122,k x x +>即212112ln ln 2,x x x x x x ->-+亦即()2121212ln ln x x x x x x -->+ 待证不等式()2121212ln ln x x x x x x -->+就是不等式2ln ln a b a ba b +->-的“化妆”而已, 破解此类问题,需运用转化与化归的思想,通过构造两个变量的比值(或差值)的函数,使之减少变量的个数,化归为我们所熟悉的一元函数,最后利用导数证明不等式.待证式()2121212ln ln x x x x x x -->+转化为21221121ln 1x x x x x x ⎛⎫- ⎪⎝⎭>+,令()211x t t x =>,则21221121ln 1x x x x x x ⎛⎫- ⎪⎝⎭>+等价于()21ln 1t t t ->+,令()()()21ln 11t g t t t t -=->+,则()()()()222114011t g t t t t t t -'=-=>++, 所以()g t 在区间()1,+∞单调递增,故()()10g t g >=,即()21ln 1t t t ->+成立,因此212x x e >得证.评注 以此为背景的两个变量的不等式的证明问题,其解题策略:先将待证不等式逆推分析,进行等价转化,使得其中的两个变量的特征显现出来,然后利用换元法将两个变量的比值(或差值)作为新的一元变量.这种解题策略是转化与化归、消元与换元、构造与求导等基本数学思想方法的有机整合,因此此类问题是高考考查的重点.对数平均数不等式链的证明方法与本例的证明方法是一样的.例7 (2014年绵阳三诊)已知函数()()()ln 0f x x a x a =+->有且只有一个零点.(1)(2)略(3)设()(),h x f x x =+对任意()()1212,1,x x x x ∈-+∞≠, 证明:不等式()()1212x x h x h x ->-恒成立.解析 (3)易求1a =,()()ln 1,h x x =+不妨设211x x >>-, 待证不等式等价于()()()()212111ln 1ln 1x x x x +-+>+-+根据④中的ln ln b a ab ba, 令211,1bx a x 即可.评注 本题原证的方法是令()21111x t t x +=>+,将待证不等式转化为()ln 1t t >>,()ln 1t t >>即可.想一想,若()1212,1,,x x x x ∈-+∞≠时,()()2112211ln 1ln 12x x x xx x -+<++-+是否恒成立呢?例8 (2015年江南十校联考)已知函数()ln .f x x ax =-(1)略;(2)若函数()y f x =的图像在1x =处的切线平行于x 轴,且()()()112212,,,A x y B x y x x <是函数()y f x =的图像上任意两个不同的点,设直线AB 的斜率为k ,证明:21111 1.k x x -<<- 解析 由题意可知()1,f x a x'=- ()110, 1.f a a '=-==()ln .f x x x =- ()()2211212121ln ln ln ln 1,x x x x x x k x x x x ----==---要证21111 1.k x x -<<-只需证21111,k x x <+<即212211ln ln 11,x x x x x x -<<-根据④中的ln ln b aba b a, 令21,bx a x 即可.对数平均数的不等式链的运用是近几年数学竞赛、名校模拟数学试题、高考数学真题的理论背景,正如罗增儒教授指出:通过有限的典型考题的学习去领悟那种解无限道题的数学机智。
高考数学 高考试题的探究(第二集)对数平均数的不等关系链的应用素材

对数平均数的不等关系链的应用中学数学教育专家安振平在剖析2013年陕西高考数学时指出,其压轴题的理论背景是: 当0b a >>时,2112ln ln a b b ab a b aa b+->>>>-+.其中ln ln a ba b--被称为对数平均值.对数平均数的不等式链,提供了多种巧妙放缩的途径,可以用来证明含自然对数的不等式问题.对数平均数的不等式链包含多个不等式,我们可以根据证题需要合理选取其中一个达到不等式证明的目的.1 ()0ln ln b ab a a b a->>>-的应用例1 (2014年陕西)设函数)1ln()(x x f +=,()()g x xf x '=,其中()f x '是)(x f 的导函数.(1)(2)(略) (3)设+∈N n ,比较()()()12g g g n +++L与()n f n -的大小,并加以证明.解析 (3)因为()1xg x x=+, 所以()()()1211112231231n g g g n n n n ⎛⎫+++=+++=-+++ ⎪++⎝⎭L L L , 而()()ln 1n f n n n -=-+,因此,比较()()()12gg g n +++L 与()n f n -的大小,即只需比较113121++++n Λ与()ln 1n +的大小即可. 根据0b a >>时,ln ln b ab b a ->-,即()1ln ln ,b a b a b -<-令,1,a n b n ==+则()1ln 1ln ,1n n n <+-+ 所以1ln 2ln1ln 22<-=,1ln 3ln 23<-,1,ln(1)ln 1n n n <+-+L , 将以上各不等式左右两边相加得:()111ln 1231n n +++<++L , 故()()()()12gg g n n f n +++>-L .评注 本题是高考试题的压轴题,难度较大,为了降低试题的难度采取多步设问,层层递进,上问结论,用于下问,其第二问是为第三问做铺垫的“梯子”,尽管如此,步骤依然繁琐,求解过程复杂,但我们这里应用对数平均数不等式链来证明,思路简捷,别具新意,易于学生理解、掌握.当0b a >>时,ln ln b a a b a ->-,即()1ln ln ,b a b a a-<-令,1,a n b n ==+则()1ln 1ln ,n n n +-<可得:()111ln 1123n n+<++++L .例2 (2012年天津)已知函数()()()ln 0f x x x a a =-+>的最小值为0.(1)(2)(略)(3)证明:()()12ln 212*.21ni n n N i =-+<∈-∑ 解析 (3)易求1a =,待证不等式等价于()2222ln 2135721n n ++++<+-L . 根据0b a >>时,ln ln b ab b a ->-,即()1ln ln ,b a b a b -<-令21,21,a n b n =-=+则()()()22ln 21ln 21,21121n n n n =<+--+-+2ln 3ln1,3<-2ln 5ln 3,5<-2ln 7ln 5,,7<-L()()()2ln 21ln 21,211n n n <+--+-将以上各不等式左右两边分别相加得:()22222ln 213572121n n n +++++<+-+L , ()122ln 21222121ni n i n =-+<-<-+∑.得证.()0ln ln b a b a b a->>-的应用 例3 设数列{}n a 的通项n a =,其前n 项的和为n S ,证明:()ln 1n S n <+.解析 根据0b a >>ln ln b ab a--,即ln ln b a b a -->,令1,,b n a n =+=则()ln 1ln n n +->=n a >>,易证()ln 1n S n <+.3 ()02ln ln a b b ab a b a+->>>-的应用 例4 设数列{}n a 的通项111123n a n=++++L ,证明:()ln 21n a n <+.解析 根据0b a >>时,2ln ln a b b a b a+->-,即()2ln ln b a b a a b -->+,令21,21,b n a n =+=-则()()1ln 21ln 21n n n+-->,易证()ln 21n a n <+. 4()2011ln ln b a b a b a a b->>>-+的应用例 5 (2010年湖北)已知函数()()0bf x ax c a x=++>的图象在点()()1,1f 处的切线方程为1y x =-.(1)用a 表示出,b c ;(2)(略) (3)证明:()()()1111ln 11.2321n n n n n ++++>++?+L 解析 (1)1,12b a c a =-=-;(3)当0b a >>时,211ln ln b a b a a b->-+,即()111ln ln 2b a b a a b 骣÷ç-<+-÷ç÷ç桫, 令,1,a n b n ==+则()111ln 1ln ,21n n n n 骣÷ç+-<+÷ç÷ç桫+ 所以111ln 2ln1,212骣÷ç-<+÷ç÷ç桫111ln 3ln 2,223骣÷ç-<+÷ç÷ç桫L , ()111ln 1ln ,21n n n n 骣÷ç+-<+÷ç÷ç桫+ 将以上各不等式左右两边分别相加得:()()111111ln 1,223421n n n 骣÷ç+<++++++÷ç÷ç桫+L 即()()111111ln 11,234212n n n +<++++++-+L 故()()1111ln 1.2321nn n n ++++>+++L例6 (2013年新课标Ⅰ)已知函数()()()1ln 11x x f x x xλ+=+-+.(1)若0x ≥时,()0,f x ≤求λ的最小值;(2)设数列{}n a 的通项111123n a n =++++L ,证明:21ln 24n na a n-+>. 解析 (1)易得()()()221200,(1)x x f f x x λλ--'==+.令()0,f x '=则120,,x x λλ-==若0λ<,则当0x >时,()()0,f x f x '>是增函数,()()00,f x f >=不符合题意;若102λ≤<,则当120x λλ-≤<时,()()0,f x f x '>是增函数,()()00,f x f >=不符合题意;若12λ≥,则当0x >时,()()0,f x f x '<是减函数,()()00,f x f ≤=符合题意; 综上,λ的最小值是12.(2) 当0b a >>时,211ln ln b a b a a b->-+,即()111ln ln 2b a b a a b 骣÷ç-<+-÷ç÷ç桫, 令,1,a n b n ==+则()111ln 1ln ,21n n n n 骣÷ç+-<+÷ç÷ç桫+ 所以()111ln 1ln ,21n n n n 骣÷ç+-<+÷ç÷ç桫+()()111ln 2ln 1,212n n n n 骣÷ç+-+<+÷ç÷ç桫++()()111ln 3ln 2,223n n n n 骣÷ç+-+<+÷ç÷ç桫++L ()111ln 2ln 21,2212n n n n骣÷ç--<+÷ç÷ç桫- 将以上各不等式左右两边分别相加得:1122221ln 2ln ,2123212n n n n n n n n骣÷ç-<++++++÷ç÷ç桫+++-L 即111111ln 2,2123214n n n n n n骣÷ç<++++++÷ç÷ç桫+++-L 故1111ln 21224n n n n++++>++L . 评注 本题提供标准答案是借助于第一问的λ的最小值12λ=时,()()()2ln 1022x x x x x ++<≥+加以赋值,并进行变形,令1x k=,有()121111ln 12121k k k k k k +⎛⎫⎛⎫+<=+ ⎪ ⎪++⎝⎭⎝⎭,亦即()111ln 1ln 21k k k k ⎛⎫+-<+ ⎪+⎝⎭达到放缩的目的.两者相比较,自然是运用对数平均值的不等式链的方法简捷.5)0ln ln b ab a b a->>>-的应用例7 (2014福建预赛)已知1()ln(1)311f x a x x x =+++-+. (1)(略) (2)求证:()222223411ln 21411421431414n n n +++++>+⨯-⨯-⨯-⨯-L 对一切正整数n 均成立.解析 (2)根据0b a >>时,ln ln b ab a->-ln ln b a -<令21,21,b n a n =+=-则()()ln 21ln 21n n +--<变形可得:()()2111ln 21ln 21,441n n n n +轾+--<=臌-则 ()212ln 3ln1,4411-<?()213ln 5ln 3,,4421-<?L ()()211ln 21ln 21,441n n n n +轾+--<臌- 将以上各不等式左右两边相加得:222223411ln(21)411421431414n n n +++++>+⨯-⨯-⨯-⨯-L 对一切正整数n 均成立. 评注 本题提供标准答案是借助于第一问的a 的最小值2a =-时,12ln(1)3101x x x -+++->+,即()1312ln 11x x x +->++,结合待证不等式的特征, 令()2*21x k N k =∈-,得122312ln(1)22121121k k k +⨯->+--+-, 整理得:288212ln 4121k k k k ++>--,即()()211ln 21ln 21414k k k k +>+--⎡⎤⎣⎦-,借此作为放缩的途径达到证明的目的.你能注意到两种方法的区别吗?对数平均数的不等式链的运用是近几年数学竞赛、名校模拟数学试题、高考数学真题的理论背景,正如罗增儒教授指出:通过有限的典型考题的学习去领悟那种解无限道题的数学机智。
对数平均不等式的证明及应用

对数平均不等式的证明及应用对数平均不等式是数学中的一种重要不等式,它描述了一组正数的平均数和几何平均数之间的关系。
对数平均不等式的证明和应用在不同领域都有着重要的意义,比如在概率论、统计学、金融学等领域都能找到它的影子。
在本文中,我们将对对数平均不等式进行详细的介绍,包括其定义、证明和应用。
一、对数平均不等式的定义对数平均不等式通常是指调和平均数、几何平均数和算术平均数之间的关系。
如果有n个正实数a1,a2,...,an,那么它们的调和平均数、几何平均数和算术平均数分别为:调和平均数H = n / (1/a1 + 1/a2 + ... + 1/an)对数平均不等式表示为:G ≤ A ≤ H等号成立的条件是a1 = a2 = ... = an,即所有的数相等。
对于n个正实数a1,a2,...,an,我们可以使用数学归纳法来证明对数平均不等式。
我们来证明对数平均不等式的一个特例:n=2。
当n=2时,我们有两个正实数a和b,则它们的调和平均数、几何平均数和算术平均数分别为:G = √(ab)A = (a + b) / 2(G/A) ^ 2 = (ab) / ((a+b)/2)^2 = 4ab / (a+b)^2我们可以把上式转化为4ab ≤ (a+b)^2化简得显然成立。
G ≤ A。
再来证明A ≤ H:= 1/2通过上述证明,我们得到了n=2的情况下的对数平均不等式成立。
接下来,我们可以使用数学归纳法来证明n>2时的情况。
这里不再赘述。
对数平均不等式在不同领域都有着重要的应用。
我们以概率论中的应用为例来说明。
在概率论中,我们经常会遇到一些随机变量的期望值,而对数平均不等式可以帮助我们对这些期望值的大小进行估计。
设X1,X2,...,Xn是n个非负随机变量,我们可以使用对数平均不等式来估计它们的算术平均数和几何平均数之间的关系。
设E(Xi)表示随机变量Xi的期望值,那么有对数平均不等式:E(∏(Xi)^(1/n)) ≤ ∏(E(Xi))^(1/n) ≤ E(∑(Xi)/n)其中∏表示求积,∑表示求和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对数平均数的不等式链的几何解释及应用[文档副标题][日期][公司名称][公司地址]对数平均数的不等式链的几何解释及应用中学数学教育专家安振平先生在剖析2014年陕西高考数学试题时指出,其压轴题的理论背景是:设,0,,a b a b >≠则2ln ln a b a ba b+->>-ln ln a b a b --被称之为对数平均数.童永奇老师构造函数,借助于导数证明了对数平均数的上述不等式,难度较大,为此,我作了深入地探讨,给出对数平均数的不等关系的几何解释,形象直观,易于理解.1 对数平均数的不等关系的几何解释反比例函数()()10f x x x=>的图象,如图所示,AP BC TU KV ||||||,MN CD x ||||轴, (),0,A a 1,,P aa ⎛⎫ ⎪⎝⎭()1,0,,Bb Q b b ⎛⎫ ⎪⎝⎭, ,T 作()f x 在点2,2a b K a b +⎛⎫⎪+⎝⎭处的切线分别与,AP BQ 交于,E F ,根据左图可知,因为ABNM ABQPABFES S S 矩形曲边梯形梯形,所以12ln ln ,badx b ab a xab①又1ln ln ab AUTPaS dx aba x曲边梯形,11ln ln 22ABQP b a S 曲边梯形, 11111222AUTPABCD b a S abaS aabab梯形梯形,根据右图可知, AUTP AUTP S S 曲边梯形梯形 ,所以ln ln bab a ab, ② 另外,ABQXABYP ABQPABQPS S S S 矩形矩形曲边梯形梯形,可得:11111ln ln ,2b a b ab ab a baba③综上,结合重要不等式可知:211111ln ln 2b a ba b ab ab ab a ba ba baab ,即20112ln ln a bb a baba b a b aab. ④2 不等式链的应用对数平均数的不等式链,提供了多种巧妙放缩的途径,可以用来证明含自然对数的不等式问题.对数平均数的不等式链包含多个不等式,我们可以根据证题需要合理选取其中一个达到不等式证明的目的.2.10ln ln b a ba ab a的应用例1,,(2014年陕西)设函数)1ln()(x x f +=,()()g x xf x '=,其中()f x '是)(x f 的导函数.(1)(2)(略) (3)设+∈N n ,比较()()()12g g g n +++与()n f n -的大小,并加以证明.解析,,(3)因为()1xg x x=+, 所以()()()1211112231231n g g g n n n n ⎛⎫+++=+++=-+++⎪++⎝⎭, 而()()ln 1n f n n n -=-+,因此,比较()()()12gg g n +++与()n f n -的大小,即只需比较113121++++n 与()ln 1n +的大小即可. 根据0ba时,ln ln b abb a ,即1ln ln ,b ab a b令,1,a n bn 则1ln 1ln ,1n n n所以1ln 2ln1ln 22<-=,1ln 3ln 23<-,1,ln(1)ln 1n n n <+-+,将以上各不等式左右两边相加得:()111ln 1231n n +++<++, 故()()()()12gg g n n f n +++>-.评注 ,本题是高考试题的压轴题,难度较大,为了降低试题的难度采取多步设问,层层递进,上问结论,用于下问,其第二问是为第三问做铺垫的“梯子”,尽管如此,步骤依然繁琐,求解过程复杂,但我们这里应用对数平均数不等式链来证明,思路简捷,别具新意,易于学生理解、掌握.当0ba 时,ln ln b a a b a,即1ln ln ,b ab a a令,1,an bn则1ln 1ln ,n nn可得:111ln 1123n n. 例2 (2012年天津)已知函数()()()ln 0f x x x a a =-+>的最小值为0.(1)(2)(略)(3)证明:()()12ln 212*.21ni n n N i =-+<∈-∑ 解析 (3)易求1a =,待证不等式等价于()2222ln 2135721n n ++++<+-.根据0ba 时,ln ln b abb a,即1ln ln ,b ab a b令21,21,a n bn 则22ln 21ln 21,21121n n n n2ln 3ln1,32ln 5ln 3,52ln 7ln 5,,72ln 21ln 21,211n n n将以上各不等式左右两边分别相加得:()22222ln 213572121n n n +++++<+-+,()122ln 21222121ni n i n =-+<-<-+∑.得证. 2.22202ln ln b b aba b a的应用例3 设数列{}n a 的通项n a =,其前n 项的和为n S ,证明:()ln 1n S n <+.解析 根据0ba222ln ln b b ab a,即222ln ln b a b aab,令1,,b n an 则222ln 1ln 1n nnn 22221nn22222n a nn ,易证()ln 1n S n <+.2.302ln ln a bb aba b a的应用例4 设数列{}n a 的通项111123na n=++++,证明:()ln 21n a n <+. 解析 根据0b a 时,2ln ln a bb ab a,即2ln ln b ab aa b,令21,21,b n a n 则1ln 21ln 21n n n,易证()ln 21n a n <+. 2.42011ln ln b a b a b aab的应用例 5 ,(2010年湖北)已知函数0b f x axc a x的图象在点1,1f 处的切线方程为1y x .(1)用a 表示出,b c ;(2)(略) (3)证明:1111ln 11.2321nn nnn解析 (1)1,12b a c a ;(3)当0b a 时,211ln ln b a b aab,即111ln ln 2b ab a a b,,令,1,a n b n 则111ln 1ln ,21n nnn所以111ln 2ln1,212111ln 3ln 2,223,111ln 1ln ,21n nnn将以上各不等式左右两边分别相加得:111111ln 1,223421n n n即111111ln11,234212n nn 故1111ln 1.2321nn nn例6 ,(2013年新课标Ⅰ)已知函数()()()1ln 11x x f x x xλ+=+-+.(1)若0x ≥时,,()0,f x ≤求λ的最小值;(2)设数列{}n a 的通项111123na n =++++,证明:21ln 24n n a a n-+>. 解析 (1)易得()()()221200,(1)x x f f x x λλ--'==+.令()0,f x '=则120,,x x λλ-==若0λ<,则当0x >时,()()0,f x f x '>是增函数,()()00,f x f >=不符合题意;若102λ≤<,则当120x λλ-≤<时,()()0,f x f x '>是增函数,()()00,f x f >=不符合题意;若12λ≥,则当0x >时,()()0,f x f x '<是减函数,()()00,f x f ≤=符合题意; 综上,λ的最小值是12.(2) 当0ba 时,211ln ln b a b aab,即111ln ln 2b ab a a b,令,1,a n b n 则111ln 1ln ,21n nn n 所以111ln 1ln ,21n nnn 111ln 2ln 1,212n n n n111ln 3ln 2,223n n n n111ln 2ln 21,2212n n n n将以上各不等式左右两边分别相加得:1122221ln 2ln ,2123212n nn n n nn n即111111ln 2,2123214nn nn n n故1111ln 21224n n n n++++>++. 评注 本题提供标准答案是借助于第一问的λ的最小值12λ=时,()()()2ln 1022x x x x x ++<≥+加以赋值,并进行变形,令1x k=,有()121111ln 12121k k k k k k +⎛⎫⎛⎫+<=+ ⎪ ⎪++⎝⎭⎝⎭,亦即()111ln 1ln 21k k k k ⎛⎫+-<+ ⎪+⎝⎭达到放缩的目的.两者相比较,自然是运用对数平均值的不等式链的方法简捷.2.50ln ln b a ab b a b a的应用例7 (2014福建预赛)已知1()ln(1)311f x a x x x =+++-+. (1)(略)(2)求证:()222223411ln 21411421431414n n n +++++>+⨯-⨯-⨯-⨯-对一切正整数n 均成立.解析 (2)根据0b a 时,ln ln b a ab b a,即ln ln ,b ab aab令21,21,b n a n 则22ln 21ln 21,41n n n变形可得:2222111142ln 21ln 21,4414141n n n n n n n 则 212ln 3ln1,4411213ln 5ln 3,,4421211ln 21ln 21,441n n n n将以上各不等式左右两边相加得:222223411ln(21)411421431414n n n +++++>+⨯-⨯-⨯-⨯-对一切正整数n 均成立.评注 本题提供标准答案是借助于第一问的a 的最小值2a =-时,12ln(1)3101x x x -+++->+即()1312ln 11x x x +->++,结合待证不等式的特征, 令()2*21x k N k =∈-,得122312ln(1)22121121k k k +⨯->+--+-, 整理得:288212ln 4121k k k k ++>--,即()()211ln 21ln 21414k k k k +>+--⎡⎤⎣⎦- 借此作为放缩的途径达到证明的目的.你能注意到两种方法的区别吗?对数平均数的不等式链的运用是近几年数学竞赛、名校模拟数学试题、高考数学真题的理论背景,正如罗增儒教授指出:通过有限的典型考题的学习去领悟那种解无限道题的数学机智.这里的领悟解题的数学机智从某种意义上说就是对问题本质的理解,而对问题本质的发现还在于我们对问题信息的审视和挖掘,水有源,题有根,茫茫题海,寻觅其根源,领悟其通性通法方是提升数学素养的途径.。