七年级上九月份月考数学试题
上海市南洋模范中学2024-2025学年七年级上学期9月月考数学试题

上海市南洋模范中学2024-2025学年七年级上学期9月月考数学试题一、单选题1.下列各式中,是单项式的有( )①23xy ;②5;③2πS r =;④b ;⑤512+>; ⑥2a b +. A .3个 B .4个 C .5个 D .6个2.某种品牌的彩电降价30%以后,每台售价为元,则该品牌彩电每台原价应为( ) A .0.7a 元 B .0.3a 元 C .0.3a 元 D .0.7a 元 3.代数式32x -,4x y -,x y +,22x π+,98中是整式的有( ) A .1个 B .2个 C .3个 D .4个4.下列各式次数是5次的是( )A .5x yB .45xy -C .32xyD .32x x + 5.下列说法中,正确的是( )A .22x y - 的系数是−2 B .22x y -的系数是12 C .2342x y x +-的常数项为2- D .22422x y x -+-是四次三项式6.观察等式:232222+=-;23422222++=-;2345222222+++=-;…已知按一定规律排列的一组数:1001011021992002,2,2,,2,2L ,若1002S =,用含S 的式子表示这组数据的和是( )A .22S S -B .22S S +C .222S S -D .2222S S --二、填空题7.单项式3247x y 的系数是. 8.如果单项式14n x y +与23m x y 是同类项,那么n m -的值是.9.将多项式3223232y x y xy x +--按x 降幂排列为.10.计算:﹣x 2y •2xy 3=.11.用代数式表示:“a 、b 两数平方差的倒数”是.12.当3a =时,代数式22a a -+的值是.13.计算:222234m m m +-=.14.计算:()32a -=.15.若32m =,则23m =.16.当2x =时,整式31ax bx +-的值等于19-,那么当2x =-时,整式31ax bx +-的值为. 17.按规律排列一组单项式2342,4,8,16a a a a --,…其中第n 个单项式是.18.长方形ABCD 内,未被小长方形覆盖的部分用阴影表示,设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的方式放置,S 始终不变,则a ,b 应满足.三、解答题19.计算:2222132832a b ab a b ab +--. 20.化简:3523(32)(23)x y y x ⎡⎤⎡⎤-⋅-⎣⎦⎣⎦. 21.计算:()()23332482a b a a b -+⋅-. 22.运用公式简便计算:2021202013(3)()310-⋅-. 23.已知一个关于x 的整式不含一次项,这个整式与26x x -的和是231x mx -+,求m 的大小并写出这个整式.24.已知3m a =,3n b =,分别求值:(用a 、b 表示)(1)3m n +;(2)233m n +.25.已知22321A x xy x =++-,232B x xy x =++-.(1)先化简2A B -,且当2x y ==时,求2A B -的值;(2)若2A B -的值与x 无关,求y 的值.26.为鼓励人们节约用水,合肥市居民使用自来水实行阶梯式计量水价,按如下标准缴费(水费按月缴纳):(1)当a =2时,芳芳家5月份用水量为314m ,则该月需交水费________元;6月份芳芳家交了水费36元,则6月份用水量为________3m (直接写出答案);(2)当a =2时,亮亮家一个月用了328m 的水,求亮亮家这个月应缴纳的水费;(3)设某用户月用水量为3m n (20n >),该用户这个月应缴纳水费多少元?(用含a ,n 的式子表示)27.阅读理解下列材料:“数形结合”是一种非常重要的数学思想.在学习“整式的乘法”时,我们通过构造几何图形,用“等积法”直观地推导出了完全平方和公式:()2222a b a ab b +=++(如图1).所谓“等积法”就是用不同的方法表示同一个图形的面积,从而得到一个等式.如图1,从整体看是一边长为a b +的正方形,其面积为()2a b +.从局部看由四部分组成,即:一个边长为a 的正方形,一个边长为b 的正方形,两个长、宽分别为a ,b 的长方形.这四部分的面积和为222a ab b ++.因为它们表示的是同一个图形的面积,所以这两个代数式应该相等,即()2222a b a ab b +=++.同理,图2可以得到一个等式:()()22223a b a b a ab b ++=++.根据以上材料提供的方法,完成下列问题:(1)由图3可得等式:___________;(2)由图4可得等式:____________;(3)若0a >,0b >,0c >,且9a b c ++=,26ab bc ac ++=,求222a b c ++的值. ①为了解决这个问题,请你利用数形结合思想,仿照前面的方法在下方空白处画出相应的几何图形,通过这个几何图形得到一个含有a ,b ,c 的等式.②根据你画的图形可得等式:______________;③利用①的结论,求222a b c ++的值.。
浙江省杭州市锦绣育才中学2024-2025学年七年级上学期9月月考数学试题及答案解析

5×6
2
2
3
3
4
4
5
5
6
6 6
(3)
1
1×3
1
+
1
3×5
1
+
1
5×7
1
1
1
+ ⋯ + (2−1)(2+1)
1
1
1
1
1
= × �1 − � + × � − � + × � − � + ⋯ + × �
2
3
1
1
1
2
1
3
1
5
1
2
= × �1 − + − + − + ⋯ +
2
3
1
= × �1 −
2
=
{#{QQABJYYUoggIAJAAABhCQwVICAIQkACCAYgOxBAEsAIBwRNABAA=}#}
{#{QQABJYa05gA4kJTACJ5KRwEMCQsQsJGjLcgMgRAHuAYLwZNABIA=}#}
{#{QQABJYYUoggIAJAAABhCQwVICAIQkACCAYgOxBAEsAIBwRNABAA=}#}
1
3
2+1
5
5
7
5
1
7
2−1
−
1
2+1
2
1
2−1
−
�
�
2+1
则有:
2+1
=
17
,即:17 × (2 + 1) = 35,解得 n=17.
七年级(上)月考数学试卷(9月份)

七年级(上)月考数学试卷(9月份)一、选择题(每小题3分,共计30分)1.下列四个式子中,是方程的是( )A .2x ﹣6B .2x +y=5C .﹣3+1=﹣2D . =2.下列方程中,解为x=2的方程是( )A .4x=2B .3x +6=0C .D .7x ﹣14=03.下列等式变形正确的是( )A .如果s=ab ,那么b=B .如果x=6,那么x=3C .如果x ﹣3=y ﹣3,那么x ﹣y=0D .如果mx=my ,那么x=y4.将(3x +2)﹣2(2x ﹣1)去括号正确的是( )A .3x +2﹣2x +1B .3x +2﹣4x +1C .3x +2﹣4x ﹣2D .3x +2﹣4x +25.若关于x 的一元一次方程k (x +4)﹣2k ﹣x=5的解为x=﹣3,则k 的值是( )A .﹣2B .2C .D .﹣6.解方程﹣=1,去分母正确的是( )A .3(x ﹣1)﹣2(2+3x )=1B .3(x ﹣1)﹣2(2x +3)=6C .3x ﹣1﹣4x +3=1D .3x ﹣1﹣4x +3=67.某小组分若干本图书,若每人分给一本,则余一本,若每人分给2本,则缺3本,那么共有图书( )A .6本B .5本C .4本D .3本8.某商贩在一次买卖中,同时卖出两件上衣,每件都以80元出售,若按成本计算,其中一件赢利60%,另一件亏本20%,在这次买卖中,该商贩( )A .不盈不亏B .盈利10元C .亏损10元D .盈利50元9.已知|x +1|+(x ﹣y +3)2=0,那么(x +y )2的值是( )A .0B .1C .4D .910.如图所示,第一个天平的两侧分别放2个球体和5个圆柱体,第二个天平的两侧分别放2个正方体和3个圆柱体,两个天平都平衡,则12个球体的质量等于( )个正方体的质量.A .12B .16C .20D .24二、填空题(每小题3分,共计30分)11.方程2x +5=0的解是x= .12.若x=﹣3是方程3(x ﹣a )=7的解,则a= .13.已知(a ﹣2)x |a |﹣1+4=0是关于x 的一元一次方程,则a= .14.当n=时,多项式7x2y2n+1﹣x2y5可以合并成一项.15.一张试卷只有25道选择题,做对一题得4分,做错1题倒扣1分,某同学做了全部试题共得85分,他做对了道题.16.如果关于x的方程3x+4=0与方程3x+4k=18是同解方程,则k=.17.有一列数,按一定规律排成:9,﹣27,81,﹣243,…,其中某三个相邻数的和是﹣1701,这三个数中最小数为.18.甲队有31人,乙队有26人,现另调24人分配给甲、乙两队,使甲队的人数是乙队人数的2倍,则应分配给甲队人.19.A、B两地相距64千米,甲从A 地出发,每小时行14千米,乙从B地出发,每小时行18千米,若两人同时出发相向而行,则需小时两人相距16千米.20.一个通讯员骑自行车需要在规定时间内把信件送到某地,每小时走15公里早到24分钟,如果每小时走12公里,就要迟到15分钟,原定时间是分.三、解答题(21题8分,22题10分,23题6分,24题8分,25题8分,26题10分,27题10分,共计60分)21.解方程(1)2x﹣x=6﹣8;(2)3x+7=32﹣2x.22.解方程(1)2x﹣(x+10)=5x+2(x﹣1);(2)﹣2=﹣.23.已知:方程x+k=2的解比方程x﹣k+3=2k的解大1,求k的值.24.某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母.为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?25.有一些相同的房间需要粉刷墙面,一天3名一级技工粉刷8个房间,结果还有50平方米没有刷完;同样时间5名二级技工粉刷完10个房间外,还多刷了另外的40平方米.已知每名一级技工比二级技工一天多刷10平方米,求每个房间需要粉刷的墙面面积.26.某商场经销甲、乙两种商品,甲种商品每件进价20元,售价35元;乙种商品每件进价30元,售价50元.(1)若该商场同时购进甲、乙两种商品共100件,且使这100件商品的总利润(利润=售价﹣进价)为1800元,需购进甲、乙两种商品各多少件?2“”打折后一次性付款440元,那么这两天他在该商场购买甲、乙两种商品一共多少件?27.十一黄金周(7 天)期间,萧红中学7年3班某同学计划租车去旅行,在看过租车公(1)如果此次旅行的总行程为800千米,请通过计算说明租用哪种型号的车划算;(2)设本次旅行行程为x千米(x是正整数),请通过计算说明如何根据旅行行程选择省钱的租车方案.参考答案与试题解析一、选择题(每小题3分,共计30分)1.下列四个式子中,是方程的是()A.2x﹣6 B.2x+y=5 C.﹣3+1=﹣2 D.=【考点】方程的定义.【分析】根据方程的定义选择正确的选项即可.【解答】解:A、2x﹣6是代数式,此选项错误;B、2x+y=5是方程,此选项正确;C、﹣3+1=﹣2,不含未知数,此选项错误;D、=是比例式,此选项错误;故选B.2.下列方程中,解为x=2的方程是()A.4x=2 B.3x+6=0 C.D.7x﹣14=0【考点】一元一次方程的解.【分析】看看x=2能使ABCD四个选项中哪一个方程的左右两边相等,就是哪个答案;也可以分别解这四个选项中的方程.【解答】解:(1)由4x=2得,x=;(2)由3x+6=0得,x=﹣2;(3)由x=0得,x=0;(4)由7x﹣14=0得,x=2.故选D.3.下列等式变形正确的是()A.如果s=ab,那么b=B.如果x=6,那么x=3C.如果x﹣3=y﹣3,那么x﹣y=0 D.如果mx=my,那么x=y【考点】等式的性质.【分析】答题时首先记住等式的基本性质,然后对每个选项进行分析判断.【解答】解:A、如果s=ab,那么b=,当a=0时不成立,故A错误,B、如果x=6,那么x=12,故B错误,C、如果x﹣3=y﹣3,那么x﹣y=0,C正确,D、如果mx=my,那么x=y,如果m=0,式子不成立,故D错误.故选C.4.将(3x+2)﹣2(2x﹣1)去括号正确的是()A.3x+2﹣2x+1 B.3x+2﹣4x+1 C.3x+2﹣4x﹣2 D.3x+2﹣4x+2【考点】去括号与添括号.【分析】根据去括号法则解答.【解答】解:(3x+2)﹣2(2x﹣1)=3x+2﹣4x+2.故选:D.5.若关于x的一元一次方程k(x+4)﹣2k﹣x=5的解为x=﹣3,则k的值是()A.﹣2 B.2 C.D.﹣【考点】一元一次方程的解.【分析】把x=﹣3代入已知方程,得到关于k的新方程,通过解新方程求得k的值即可.【解答】解:把x=﹣3代入,得k(﹣3+4)﹣2k+3=5,解得k=﹣2.故选:B.6.解方程﹣=1,去分母正确的是()A.3(x﹣1)﹣2(2+3x)=1 B.3(x﹣1)﹣2(2x+3)=6 C.3x﹣1﹣4x+3=1 D.3x﹣1﹣4x+3=6【考点】解一元一次方程.【分析】方程两边乘以6得到结果,即可做出判断.【解答】解:去分母得:3(x﹣1)﹣2(2x+3)=6,故选B7.某小组分若干本图书,若每人分给一本,则余一本,若每人分给2本,则缺3本,那么共有图书()A.6本B.5本C.4本D.3本【考点】一元一次方程的应用.【分析】若每人分给一本,则余一本,即人数=本数﹣1;每人分给2本,则缺3本即:人数=,则得到相等关系:本书﹣1=,就可以列出方程.【解答】解:设共有图书是x本,根据题意列方程组得:x﹣1=解得:x=5,故选B.8.某商贩在一次买卖中,同时卖出两件上衣,每件都以80元出售,若按成本计算,其中一件赢利60%,另一件亏本20%,在这次买卖中,该商贩()A.不盈不亏 B.盈利10元C.亏损10元D.盈利50元【考点】一元一次方程的应用.【分析】分别算出盈利衣服的成本和亏损衣服的成本,让两个售价相加减去两个成本的和,若得到是正数,即为盈利,反之亏本.【解答】解:设赢利60%的衣服的成本为x元,则x×(1+60%)=80,解得x=50,设亏损20%的衣服的成本为y元,y×(1﹣20%)=80,解得y=100元,∴总成本为100+50=150元,∴2×80﹣150=10,∴这次买卖中他是盈利10元.故选:B9.已知|x+1|+(x﹣y+3)2=0,那么(x+y)2的值是()A.0 B.1 C.4 D.9【考点】非负数的性质:绝对值;非负数的性质:偶次方;代数式求值.【分析】由|x+1|+(x﹣y+3)2=0,结合非负数的性质,可以求出x、y的值,进而求出(x+y)2的值.【解答】解:∵|x+1|+(x﹣y+3)2=0,∴,解得x=﹣1,y=2,∴(x+y)2=1.故选B.10.如图所示,第一个天平的两侧分别放2个球体和5个圆柱体,第二个天平的两侧分别放2个正方体和3个圆柱体,两个天平都平衡,则12个球体的质量等于()个正方体的质量.A.12 B.16 C.20 D.24【考点】认识立体图形;等式的性质.【分析】根据等式的性质:等式的两边同时乘以或除以同一个不为0的数或字母,等式仍成立,可得答案.【解答】解:一个球等于2.5个圆柱体,十二个球等于三十个圆柱体;一个圆柱体等于正方体,十二个球体等于二十个正方体,故选:C.二、填空题(每小题3分,共计30分)11.方程2x+5=0的解是x=.【考点】解一元一次方程.【分析】先移项,再化系数为1就可以求出方程的解,从而得出结论.【解答】解:移项,得2x=﹣5,化系数为1,得x=﹣,故答案为:﹣12.若x=﹣3是方程3(x﹣a)=7的解,则a=﹣.【考点】方程的解.【分析】使方程左右两边的值相等的未知数的值是该方程的解.若x=﹣3是方程3(x﹣a)=7的解,把x=﹣3代入方程就得到一个关于a的方程,就可以求出a的值.【解答】解:根据题意得:3(﹣3﹣a)=7解得:a=﹣.13.已知(a﹣2)x|a|﹣1+4=0是关于x的一元一次方程,则a=﹣2.【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:根据题意得:,解得:a=﹣2,故答案是:﹣2.14.当n=2时,多项式7x2y2n+1﹣x2y5可以合并成一项.【考点】多项式.【分析】根据同类项是字母项相同且相同字母的指数也相同可得答案.【解答】解:7x2y2n+1﹣x2y5可以合并,得2n+1=5.解得n=2,故答案为:2.15.一张试卷只有25道选择题,做对一题得4分,做错1题倒扣1分,某同学做了全部试题共得85分,他做对了22道题.【考点】一元一次方程的应用.【分析】设他做对了x道题,则做错了(25﹣x)道题,根据“做了全部试题共得85分,”列出方程并解答.【解答】解:设他做对了x道题,则做错了(25﹣x)道题,依题意得:4x﹣(25﹣x)=85,解得x=22.故答案是:22.16.如果关于x的方程3x+4=0与方程3x+4k=18是同解方程,则k=.【考点】同解方程.【分析】通过解方程3x+4=0可以求得x=﹣.又因为3x+4=0与3x+4k=18是同解方程,所以也是3x+4k=18的解,代入可求得.【解答】解:解方程3x+4=0可得x=﹣.∵3x+4=0与3x+4k=18是同解方程,∴也是3x+4k=18的解,∴3×(﹣)+4k=18,解得.故答案是:.17.有一列数,按一定规律排成:9,﹣27,81,﹣243,…,其中某三个相邻数的和是﹣1701,这三个数中最小数为﹣2187.【考点】规律型:数字的变化类.【分析】易得第n个数为(﹣3)n+1,根据条件建立方程,即可解决问题.【解答】解:第四行的第n个数为(﹣3)n+1,若第四行的第n个数、第(n+1)个数、第(n+2)个数的和为﹣1701,则有(﹣3)n+1+(﹣3)n+2+(﹣3)n+3=﹣1701,整理得(﹣3)n+1=﹣243=(﹣3)5,∴n+1=5,∴n=4,∴(﹣3)n+3=﹣2187,故答案为:﹣2187.18.甲队有31人,乙队有26人,现另调24人分配给甲、乙两队,使甲队的人数是乙队人数的2倍,则应分配给甲队23人.【考点】一元一次方程的应用.【分析】设应分配给甲队x人,则甲队现有人数是(31+x)人,乙队现有人数是(26+24﹣x)人,依据“甲队的人数是乙队人数的2倍”列出方程并解答.【解答】解:设应分配给甲队x人,依题意得:31+x=2(26+24﹣x),即应分配给甲队23人.故答案是:23.19.A、B两地相距64千米,甲从A 地出发,每小时行14千米,乙从B地出发,每小时行18千米,若两人同时出发相向而行,则需 1.5或2.5小时两人相距16千米.【考点】一元一次方程的应用.【分析】设需x小时两人相距16千米,此小题有两种情况:①还没有相遇他们相距16千米;②已经相遇他们相距16千米,利用相遇问题列方程求解.【解答】解:设两人同时出发相向而行,需y小时两人相距16千米,①当两人没有相遇他们相距16千米,由题意得:(14+18)y+16=64,解得:y=1.5(小时);②当两人相遇之后他们相距16千米,由题意得:(14+18)y=64+16,解得:y=2.5(小时).若两人同时出发相向而行,则需1.5或2.5小时两人相距16千米.故答案是:1.5或2.5.20.一个通讯员骑自行车需要在规定时间内把信件送到某地,每小时走15公里早到24分钟,如果每小时走12公里,就要迟到15分钟,原定时间是180分.【考点】一元一次方程的应用.【分析】设原定时间是x分,分别根据每小时走15公里早到24分钟,如果每小时走12公里,就要迟到15分钟,表示出两地之间的距离建立方程解答即可.【解答】解:设原定时间是x分,由题意得15(﹣)=12(+),解得:x=180.答:原定时间是180分.故答案为:180.三、解答题(21题8分,22题10分,23题6分,24题8分,25题8分,26题10分,27题10分,共计60分)21.解方程(1)2x﹣x=6﹣8;(2)3x+7=32﹣2x.【考点】解一元一次方程.【分析】(1)方程去分母,移项合并,把x系数化为1,即可求出解;(2)方程移项合并,把x系数化为1,即可求出解.【解答】解:(1)去分母得:4x﹣5x=12﹣16,合并得:﹣x=﹣4,解得:x=4;(2)移项合并得:5x=25,22.解方程(1)2x﹣(x+10)=5x+2(x﹣1);(2)﹣2=﹣.【考点】解一元一次方程.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:2x﹣x﹣10=5x+2x﹣2,移项合并得:6x=﹣8,解得:x=﹣;(2)去分母得:15x+5﹣20=3x﹣2﹣4x﹣6,移项合并得:16x=7,解得:x=.23.已知:方程x+k=2的解比方程x﹣k+3=2k的解大1,求k的值.【考点】解一元一次方程.【分析】根据题意列出方程,求出方程的解即可得到k的值.【解答】解:由方程(1)得x=2﹣k,由方程(2)得x=6k﹣6,由题知:2﹣k=6k﹣6+1,解得:k=1.24.某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母.为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?【考点】二元一次方程组的应用.【分析】根据“车间22名工人”“一个螺钉要配两个螺母”作为相等关系列方程组求解即可.【解答】解:设分配x名工人生产螺钉,y名工人生产螺母,根据题意,得:,解之得.答:分配10名工人生产螺钉,12名工人生产螺母.25.有一些相同的房间需要粉刷墙面,一天3名一级技工粉刷8个房间,结果还有50平方米没有刷完;同样时间5名二级技工粉刷完10个房间外,还多刷了另外的40平方米.已知每名一级技工比二级技工一天多刷10平方米,求每个房间需要粉刷的墙面面积.【考点】一元一次方程的应用.【分析】设每一个房间的共有x平方米,则一级技工每天刷,则二级技工每天刷,以每名一级工比二级工一天多粉刷10平方米墙面做为等量关系可列方程求解.求出房间的面积代入可求每名一级工、二级工每天分别刷墙面多少平方米.【解答】解:设每个房间要粉刷的面积为x平方米,由题意得:﹣=10,解得x=52.答:每个房间需要粉刷的墙面面积为52平方米.26.某商场经销甲、乙两种商品,甲种商品每件进价20元,售价35元;乙种商品每件进价30元,售价50元.(1)若该商场同时购进甲、乙两种商品共100件,且使这100件商品的总利润(利润=售价﹣进价)为1800元,需购进甲、乙两种商品各多少件?2打折后一次性付款440元,那么这两天他在该商场购买甲、乙两种商品一共多少件?【考点】一元一次方程的应用.【分析】(1)等量关系为:甲商品总进价+乙商品总进价=1800,根据此关系列方程即可求解.(2)第一天的总价为210元,所以没有享受打折,第二天的也可能享受了9折,也可能享受了8折.应先算出原价,然后除以单价,得出数量.【解答】解:(1)设该商场购进甲种商品a件,则购进乙种商品件.根据题意得(35﹣20)a+(50﹣3 0)=1800,解得,a=40,100﹣a=60,答:需购进甲、乙两种商品各40,60件;(2)根据题意得,第一天只购买甲种商品不享受优惠条件∴210÷35=6 (件),第二天只购买乙种商品有以下两种可能:①:若购买乙商品打九折,440÷90%÷50=(件),不符合实际,舍去;②:购买乙商品打八折,440÷80%÷50=11(件),∴一共可购买甲、乙两种商品6+11=17(件).27.十一黄金周(7 天)期间,萧红中学7年3班某同学计划租车去旅行,在看过租车公(1)如果此次旅行的总行程为800千米,请通过计算说明租用哪种型号的车划算;(2)设本次旅行行程为x千米(x是正整数),请通过计算说明如何根据旅行行程选择省钱的租车方案.【考点】列代数式.【分析】(1)根据总费用=周租金+(实际行驶里程﹣免费行驶里程)×每千米费用,分别计算租用两种车辆所需费用,比较可得;(2)根据(1)中等量关系列式后比较即可.【解答】解:(1)若租用A型车,所需费用为:1740+×1.5=2790,若租用B型车,所需费用为:2640+×1.2=3336,∵3336>2790∴选择A型号车划算;(2)若租用A型车,所需费用为:1740+1.5×(x﹣100)=1.5x+1590,若租用B型车,所需费用为:2640+1.2×(x﹣220)=1.2x+2376,当1.5x+1590<1.2x+2376,即0<x<2620时,租用A型车省钱;当1.5x+1590=1.2x+2376,即x=2620时,租用A型车和B型车一样省钱;当1.5x+1590>1.2x+2376,即x>2620时,租用B型车省钱.。
七年级(上)月考数学试卷(9月份)(部分含答案)共3份

A. 4104
B. 0.4105
C. 4105
D.
0.4 108
【答案】C 【解析】 【分析】
科学记数法的形式是: a 10n ,其中1 a <10, n 为整数.所以 a 4 , n 取决于原数
小数点的移动位数与移动方向,n 是小数点的移动位数,往左移动,n 为正整数,往右移动, n 为负整数.本题小数点往左移动到 4 的后面,所以 n 5.
A. a 2020
B. a 0.1
C. a2
D.
a 20202
【答案】B 【解析】 【分析】 根据绝对值、平方的非负性,即可判断.
【详解】A、当 a=-2020 时, a 2020 =0,不是正数,故选项错误;
B、 a ≥0, a 0.1 ≥0.1,故选项正确;
C、当 a=0 时, a2 =0,故选项错误;
6 9 15,故 D 符合题意;
故选 D.
【点睛】本题考查的是有理数的加减乘除,掌握有理数的加减乘除运算的运算法则是解题的
关键.
5. 32 的相反数是( )
A. 9
B. 9
C. 6
D. 6
【答案】A
【解析】 【分析】 根据相反数的定义可得出答案.
【详解】解: 32 的相反数是 32 ,即 9.
计算:(1) 4 3 ______;
(2) 5 2 1 ______.
【答案】 【解析】
(1). -16
(2). 5
【分析】 (1)直接代入新运算公式进行运算即可得解;
(2)先求 2 1,再求 5 2 1即可求解;
【详解】解:(1) 43 43 4 12 4 16 ;
(2) 2 1= 21 2 0 ,
【详解】原式 55 91,
精选七年级(上)月考数学试卷(9月份)(部分含答案)共3份

【答案】数轴表示见解析,
【解析】
【分析】
首先在数轴上确定表示各数的点的位置,再根据在数轴上表示的有理数,右边的数总比左边的数大用“<”号把这些数连接起来即可.
【详解】解:数轴上表示如下:
用“<”号把这些数连接为:
【点睛】此题主要考查了有理数的比较大小,关键是正确在数轴上确定表示各数的点的位置.
【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
21.已知数轴上两点 对应的数分别为-1,3,点 为数轴上一动点,其对应的数为 .
(1)若点 到点 、点 的距离相等,求点 对应的数;
(2)①当点 到点 、点 的距离之和为8时,请求出 的值;
②数轴上是否存在点 ,使点 到点 、点 的距离之和最小?若存在,请求出最小值;若不存在,说明理由;
【解析】
【分析】
根据有理数的加法,绝对值的意义分别判断即可.
【详解】解:①两个有理数的和为负数,则这两个数中至少有一个是负数,故正确;
②若a=-3,bBiblioteka 2,则 ,故错误;③ 为任何有理数,则 为负数或0,故错误;
④若 ,则 为非正数,正确;
故选B.
【点睛】本题考查了有理数的加法,绝对值的意义,属于基础知识.
【详解】解:(1)由题意可知:0.9+3.1+1.78-0.58=5.2万人,
故答案5.2;
(2)10月1日游客人数为:0.9+3.1=4(万人);
10月2日游客人数为:4+1.78=5.78(万人);
10月3日游客人数为:5.78-0.58=5.2(万人);
10月4日游客人数为:5.2-0.8=4.4(万人);
广东东莞某校2024-2025学年七年级上学期9月月考数学试题(解析版)

2024年秋七年级数学9月份综合练习(时间:120分钟满分:120分)一、选择题(本大题10小题,每小题3分,共30分)1. 计算:(2)3−+的结果是()A. 5−B. 1−C. 1D. 5【答案】C【解析】【分析】直接利用有理数的加法运算法则计算得出答案.【详解】解:(2)31.故选:C.【点睛】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键.2. 计算24−−的结果是()A. 6−B. 2−C. 2D. 6【答案】A【解析】【分析】根据有理数的减法法则计算即可【详解】解:-2-4=-(2+4)=-6故选:A【点睛】本题考查了有理数的减法,熟练掌握法则是解题的关键3. 一个有理数的倒数是它本身,这个数是()A. 0B. 1C. 1−D. 1或1−【答案】D【解析】【分析】本题考查了倒数,根据倒数的定义:乘积是1的两个数互为倒数,即可求解,掌握倒数的定义是解题的关键.【详解】解:一个数的倒数是它本身,这个数是1或1−,故选:D.4. 计算:2×|﹣3|=()A. 6B. ﹣6C. ±6D. ﹣1【答案】A【分析】根据有理数的乘法法则和绝对值的性质解答.【详解】解:2×|﹣3|=2×3=6.故选A .【点睛】一个负数绝对值是它的相反数.两数相乘,同号得正,异号得负,并把绝对值相乘. 5. 若ab <0,则a b 的值( ) A. 是正数B. 是负数C. 是非正数D. 是非负数 【答案】B【解析】【详解】 ab <0, 0a b ∴<.选B.6. 下列计算正确的是( )A. 443(3)−=−B. 21(7)77 −×−=C. 5151777+−+=−D. 20232024(1)(1)0−+−=【答案】D【解析】【分析】本题考查了有理数的运算,解题的关键是掌握有理数的相关运算法则.根据有理数得到加法法则、有理数的乘法和有理数的乘方,逐一判断即可.【详解】解:A 、443(3)−≠−,故选项A 不符合题意;B 、21(7)497177 −=−××−=− ,故选项B 不符合题意; C 、515147777−+−+==−,故选项C 不符合题意; D 、20232024(1)(1)110−+−=−+=,故选项D 符合题意;故选:D .7. 如图,数轴的单位长度是1,若点B 表示的数是1,则点A 表示的数是( )A. 1−B. 2−C. 3−D. 4−【答案】D的【分析】本题主要考查了数轴上两点之间的距离,用数轴上的点表示有理数,直接利用数轴结合A ,B 点位置进而得出答案.【详解】解:∵数轴的单位长度为1,点B 表示的数是1,∴点A 表示的数是:154−=−,故D 正确.故选:D .8. -10相反数是( ).A. 10B. -10C. 110− D. 110【答案】A【解析】【分析】根据相反数的定义即可求解.【详解】-10的相反数是10故选A .【点睛】此题主要考查相反数的求解,解题的关键是熟知a 的相反数为-a .9. 已知120x y −+−=,且()222m x y =+,则m 的值为( )A. 6B. 7C. 8D. 9【答案】C【解析】【分析】本题考查了绝对值的非负性,有理数的乘方等知识,先利用绝对值的非负性求出1x =,2y =,然后代入计算即可. 【详解】解:∵120x y −+−=,∴10x −=,20y −=,∴1x =,2y =,∴()222m x y =+()22212=×+8=,故选:C .的10. 定义一种新的运算:2a b a b a +=☆,如22122+×==2☆1,则(2☆3)☆1=( ) A. 52 B. 32 C. 94 D. 198【答案】B【解析】【分析】根据新定义先算2☆3=2232+×=4,再算4☆1即可. 【详解】解:(2☆3)☆1=2232+×☆1=4☆1=4214+×=32 故选B. 【点睛】本题主要考查了新定义运算,根据题目所给的规律(或运算方法),利用有理数的混合运算正确计算是关键.二、填空题(本大题5小题,每小题3分,共15分)11. 小东用天平秤得一个核桃的质量为15.47g ,用四舍五入法将15.47精确到0.1的近似值为_________;【答案】15.5【解析】【分析】根据四舍五入的法则处理.【详解】解:15.4715.5≈,故答案为:15.5【点睛】本题考查四舍五入取近似值;理解四舍五入的法则是解题的关键.12. 若12368000 1.236810n =×,则n =__.【答案】7【解析】【分析】本题考查科学记数法,根据科学记数法的表示方法求解即可.科学记数法的表示形式为10n a ×的形式,其中1<10a ≤,n 为整数.解题关键是正确确定a 的值以及n 的值.【详解】∵712368000 1.236810 1.236810n ×==×,∴7n =.故答案为:7.13. 已知a ,b 互为相反数,则a b +=______.【答案】0【解析】【分析】本题主要考查了相反数的定义,只有符号不同的两个数互为相反数,0的相反数是0,据此求解即可.【详解】解:∵a ,b 互为相反数,∴0a b +=,故答案为:0.14. 若7x =,则x =__.【答案】7±【解析】 【分析】本题主要考查了绝对值的性质,根据若()0x a a =>,则x a =±的性质判断即可,解答本题的关键是掌握绝对值的性质. 【详解】∵7x =,∴7x =±,故答案:7±.15. 已知3210a b −+−=,则a b +的值为______. 【答案】53【解析】【分析】根据绝对值非负性的性质可知320−=a ,10b −=,求出a 、b 的值代入即可得出答案 【详解】 3210a b −+−=320a ∴−=,10b −=23a ∴=,1b = 25133a b ∴+=+= 故答案为:53. 【点睛】本题考查了非负数的性质:有限个非负数的和为零,则每一个加数都为零.三、解答题(一)(本大题3小题,每小题7分,共21分)(1)()()()11786−−+−−−;(2)21133838 −−−+−. 【答案】(1)20−(2)12【解析】【分析】本题考查了有理数的混合运算,解题的关键是掌握运算法则和运算顺序.(1)根据有理数的加减混合运算法则求解即可;(2)根据有理数的加减混合运算法则求解即可.【小问1详解】()()()11786−−+−−−1886=−−+266=−+20=−;【小问2详解】21133838 −−−+− 21133388 =+−+− 112=− 12=. 17. 将下列有理数填入适当的集合中:2.5−,154,0,8, 2.7−,0.8,32−,74,0.0105−. 正有理数集合:负有理数集合:整数集合:【答案】见解析【分析】本题考查了有理数的分类;根据正有理数,负有理数和整数的定义进行分类即可. 【详解】解:正有理数集合:154,8,0.8,74; 负有理数集合: 2.5−, 2.7−,32−,0.0105−; 整数集合:0,8.18. 化简符号:(1)173−−; (2)233−+; (3)-(-3);(4)-(+9).【答案】(1)173−(2)233− (3)3 (4)-9【解析】【分析】(1)(2(3)(4)直接根据相反数的意义得出答案.小问1详解】 解:173−−=173−; 【小问2详解】 解:233−+=233−; 【小问3详解】解:-(-3)=3;【小问4详解】解:-(+9)=-9.【点睛】本题考查了绝对值以及相反数的知识,属于基础题,注意掌握去括号时,若括号前面是“-”则【括号里面各项需变号.四、解答题(二)(本大题3小题,每小题9分,共27分)19. 比较下列两个有理数的大小.(1) 6.26−与254−; (2) 2.7−−和223−+. 【答案】(1)256.264−<−(2) 2.7−−<223 −+【解析】 【分析】本题考查了有理数的大小比较,化简绝对值;(1)根据两个负数比较大小,绝对值大的反而小,可得答案;(2)根据化简各数,再比较大小即可.【小问1详解】 解:因为256.264>, 所以256.264−<−; 【小问2详解】 因为 2.7 2.7−−=−,222233 −+=− ,2.7223>, 所以32.722−−<, 所以 2.7−−<223 −+. 20. 综合与实践某超市以同样的价格购进电风扇20台,由于在不同时间销售,因此销售价格也会变化,若以每台利润50元为标准,超过的金额记为正数,不足的金额记为负数,具体情况如下表: 电风扇(台)5 2 5 3 5 利润相对于标准利润20− 10− 5− 30+ 40+(元)(1)最高售价的一台比最低售价的一台高出多少元?(2)售完这20台电风扇,该超市销售这些电风扇的总利润是多少?请通过计算说明.【答案】(1)最高售价的一台比最低售价的一台高出60元(2)售完这20台电风扇,该超市获得的总利润为1145元【解析】【分析】(1)用最高售价减去最低售价列式计算即可;(2)先求出利润相对于标准利润的和,然后再加上标准利润即可【小问1详解】解:40(20)60−−=(元). 答:最高售价一台比最低售价的一台高出60元.【小问2详解】解:5(20)2(10)5(5)33054020501145×−+×−+×−+×+×+×=(元). 答:售完这20台电风扇,该超市获得的总利润为1145元.【点睛】本题主要考查了正负数的应用、有理数的运算等知识点,认真审题、根据题意正确列式是解答本题的关键.21. 已知a 、b是互为相反数,c 、d 是互为倒数,m 的绝对值等于3.求:m 2+(cd +a +b )m +(cd )2021的值.【答案】7或13【解析】【分析】根据相反数的性质,倒数的性质,绝对值的意义,分别求得,,a b cd m +的值,进而代入式子求解即可【详解】解:∵a ,b 互为相反数,c ,d 互为倒数,m 的绝对值等于3,的∴a +b =0,cd =1,|m |=3,当m =-3时,原式=(-3)2+(1+0)×(-3)+12 021=9+1×(-3)+1=9+(-3)+1=7;当m =3时,原式=32+(1+0)×3+12 02193113=++=综上所述,m 2+(cd +a +b )m +(cd )2 020的值为7或13.【点睛】本题考查了相反数的性质,倒数的性质,绝对值的意义,有理数的混合运算,求得,,a b cd m +的值是解题的关键.五、解答题(三)(本大题2小题,第22题13分,第23题14分,共27分)22. 有理数a ,b 在数轴上的位置如图所示:(1)在数轴上表示a −,b −;(2)把a ,b ,0,a −,b −这五个数用“<”连接起来;(3)a __________a ,b ___________b .(填“>”,“<”或“=”) 【答案】(1)见解析;(2)0b a a b −<<<−<;(3)>,=【解析】【分析】本题考查了数轴,绝对值和有理数的大小比较,能熟记有理数的大小比较法则是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.(1)根据已知a ,b 的位置在数轴上把a −,b −表示出来即可;(2)根据数轴上右边的数总比左边的数大比较即可;(3)a 是一个正数,a 是一个负数,比较即可,b 是一个正数,正数的绝对值等于它本身比较即可.【小问1详解】解:在数轴上表示为:【小问2详解】0b a a b −<<<−<;【小问3详解】a a>,b b=,故答案为:>,=.23. 根据绝对值的概念,我们在一些情况下,不需要计算出结果也能把绝对值符号去掉,例如:6767+=+;6776−=−;7676−=−;6767−−=+.请根据以上规律解答:(1)比较大小:150151;(填“>”“<”或“=”)(2)填空:1110099−=________(3)计算:112−+1132−+1143−++1110099−.【答案】(1)>(2)11 99100−(3)99 100【解析】【分析】本题主要考查有理数大小的比较、绝对值的化简以及有理数加减混合运算,正确化简绝对值是解答本题的关键.(1)根据“作差比较”即可得出结论;(2)先判断1110099−<,再去绝对值符号即可;(3)先根据绝对值的性质,求出绝对值,再根据前后两项的和为0,计算即可.【小问1详解】解:∵11515010 505150512550−−==>×,∴11 5051>,故答案:>【小问2详解】解:∵119910010 1009999009900−−==−<,∴111111 100991009999100−=−−=−,为故答案为:1199100−; 【小问3详解】 解:112−+1132−+1143−++ 1110099− 111111112233499100=−+−+−++− 11100=−99100=。
吉林省吉林市第七中学校2024-2025学年九年级上学期9月月考数学试题(含答案)

2024—2025学年度上学期七年级第一次月考试题数学试卷考生须知:1.本试卷满分为120分,考试时间为120分钟.2.答题前,考生先将自己的“姓名”、“考号”、“考场”、“座位号”在答题卡上填写清楚,将“条形码”准确粘贴在条形码区域内.3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题纸上答题无效.4.选择题必须使用2B 铅笔填涂:非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.5.保持卡面整洁,不要折叠、不要弄脏、弄皱,不准使用涂改液、刮纸刀.第Ⅰ卷 选择题(共30分)(涂卡)一、选择题(每题3分,计27分,每题只有一个正确的答案)1.的相反数是()A .B.C .D .20242.下列化简正确的是()A .B .C .D .3.质检员抽查4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准质量的足球是( )A .B .C .D .4.在1.5,,,,6,15%中,负分数有( )A .2个B .3个C .4个D .5个5.已知,,则的值为( )A .B .C .0D .6.若,则等于( )A .B .1C .0D .7.若,,则有( )A .,B .、异号,且正数的绝对值较大C .,D .、异号,且负数的绝对值较大8.有理数、对应的点在数轴上的位置如图所示,那么()2024-12024-120242024-()22-+=()22-=-()22+-=-22-+=2-52-0.7-3a =-a b =b 3+3-3±210a b -++=a b +1-2-0a b +<0a b >0a >0b >a b 0a <0b <a b a bA .B .C .D .9.下列说法:①两个有理数相加,它们的和一定大于每一个加数;②一个正数与一个负数相加一定得0;③绝对值是它本身的数是正数;④表示的数一定是负数,其中正确的个数有()A .3个B .2个C .1个D .0个第Ⅱ卷 非选择题(共90分)二、填空题(每小题3分,共计27分)11.中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若把气温为零上10℃记作,则零下3℃记作______℃.11.比较大小:______(填“>”,“<”或“=”)12.已知有理数1,,,,请你任选两个数相乘,运算结果最大是______.13.如果与互为倒数,与互为相反数,那么的值是______.14.如果两数的商是,被除数是,则除数是______.15.已知,,且,则的值为______.16.比大而比小的所有整数的和等于______.17.定义:对于一个有理数,我们把称为的有缘数.若,则.若,则.计算的结果为______.18.如图1,点,,是数轴上从左到右排列的三个点,分别对应的数为,,,某同学将刻度尺如图2放置,使刻度尺上的数字0对齐数轴上的点,发现点对应刻度,点对齐刻度.若点从点处向点方向跳动,当点在之间且点到点的距离等于点到点的距离2倍时,点所表示的数是______.三、解答题:(本大题共9小题,共66分)19.(本题6分)把下列各数的序号填在相应的数集内:①2:②;③3.5;④0;⑤;⑥.(1)整数:{__________________…};(2)分数:{__________________…};(3)负有理数:{__________________…}.20.计算:(本题7分)b a ->a b -<0ab >0a b -<m -10+℃2- 1.5-8-11+2-a b c d ()2024ab c d -++516-122-3m =5n =m n >2m n +153-335[]x x 0x ≥[]113x x =-0x <[]122x x =-+[][]31+-A B C 5-b 4A B 1.8cm C 5.4cm P C B P BC P C P B P 23-π7-(1);(2).21.计算:(本题7分)(1);(2)22.(本题8分)把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”号连接起来:,0,,,23.(本题5分)学习有理数的乘法后,老师给同学们这样一道题目:计算:,看谁算的又快又对,小明同学的解法如下:原式,根据上面的解法,请你再写一种你认为合适的方法计算.24.(本题6分)有资料表明,某地区高度每增加100米,气温下降0.6℃.登山队由此想出了测量山峰高度的办法:一名队员在山脚,一名队员在山顶,他们在某天上午1时整测得山脚和山顶的气温分别为和.由此可推算出该山峰高多少米?25.(本题8分)若两个有理数,满足,则称,互为“吉祥数”.如5和3就是一对“吉祥数”,回答下列问题:(1)求的“吉样数”:(2)若的“吉祥数”是,求的;(3)和9能否互为“吉祥数”?若能,请求出的值;若不能,请说明理由.26.(本题9分)外卖送餐为我们生活带来了许多便利,某学习小组调查了一名外卖小哥一周的送餐情况,规定每天送餐量超过50单(送一次外卖称为一单)的部分记为“+”,低于50单的部分记为“-”,下表是该外卖小哥一周的送餐量:星期一二三四五六日送餐量(单位:单)(1)该外卖小哥这一周送餐量最多的一天比最少的一天多多少单?(2)求该外卖小哥这一周一共送餐多少单?()()231410+---531353246767⎛⎫⎛⎫--+--- ⎪ ⎪⎝⎭⎝⎭()13644⎛⎫÷-⨯- ⎪⎝⎭()143669⎛⎫-+⨯- ⎪⎝⎭3.5-1- 3.5-()1.5--()2449525⨯-12491249452492555=-⨯=-=-5-℃8.6-℃A B 8A B +=A B 4-3x 4-x a a 3-4+5-14+8-6+12+(3)外卖小哥每天的工资由底薪60元加上送单补贴构成,送单补贴的方案如下:每天送餐量不超过50单的部分,每单补贴2元;超过50单但不超过60单的部分,每单补贴4元;超过60单的部分,每单补贴6元.求该外卖小哥这一周的工资收入27.(本题10分)如图所示,在数轴上点表示的数是4,点位于点的左侧,若是最大负整数,点与点的距离是个单位长度.(1)点表示的数是______;(2)动点从点出发,沿着数轴的正方向以每秒2个单位长度的速度运动.经过多少秒点与点的距离是2个单位长度?(3)在(2)的条件下,点出发的同时,点也从点出发,沿着数轴的负方向,以1个单位每秒的速度运动.经过多少秒,点到点的距离等于到点的距离的一半?A B A aB A10aBP B P AP Q AP A Q B2024-2025学年度上学期七年级第一次月考试题数学试卷参考答案一、1-5.DCBAD6-9.BCAD ADCDB 二、10.-3 11.< 12.16 13.-1 14.8 15.1或-11 16.-9 17.52 18.0三、19.整数:①④⑥............2'分数:②③............2' 负有理数:②⑥............2'20.(1)解:原式=23+(-14)+10............1'=19............2' (2)解:原式=............1'=-8+1............2' =-7............1'21.(1)解:原式=-9×(-14)............1' =94............2'(2)解:原式=-16×(-36)+49×(-36)............1'=6+(-16)............2'=-10............1'22.描点正确............5',-3.5<-1<0<-(-1.5)< ............3'23.法一、解:原式=(49+2425)×(-5)............1'=49×(-5)+2425×(-5)............1'=-245+(-245)............1'=-24945............1'法二、解:原式=(50-125)×(-5)............1'=50×(-5)-125×(-5)............1'=-250+15............1'=-24945............1'24.解:[-5-(-8.6)]÷0.6×100............3'=3.6÷0.6×100............1')734733(]612(655[+-+-+-5.3-=600(米)............1'答:该山峰高600米.............1'25.解:(1)-4的“吉祥数”是:8-(-4)=12;............2'(2)若3x的“吉祥数”是-4,则3x+(-4)=8,............1'∴3x=8+4,∴3x=12,解得x=4;............2'(3)a和9能互为“吉祥数”,............1'则a+9=8,............1'解得:a=-1.............1'26.解:(1)14-(-8)=14+8=22(单)............2'答:该外卖小哥这一周送餐量最多的一天比最少的一天多22单;............1'(2)50×7+(-3+4-5+14-8+6+12)............2'=350+20=370(单)............1'答:该外卖小哥这一周一共送餐370单;(3)(50×7-3-5-8)×2+(4+6+10×2)×4+(4+2)×6+60×7............2'=668+120+36+420=1244(元).............1'答:该外卖小哥这一周的工资收入是1244元27.解:(1)由题意得,点B表示的数为4-10=-6,............2'(2)设运动的时间是x秒,则点P表示的数是-6+2x.根据题意,当点P在点A的左侧时,4-(-6+2x)=2 ............1'解得x=4............1'当点P在点A的右侧时-6+2x-4=2.............1'解得x=6............1'.答:经过4秒或6秒,点P,A之间的距离是2个单位长度.(3)设运动时间为t秒,由题意得,...........1'...........1'...........1'解得t=6..............1'经过103秒或6秒,点P到点A的距离等于Q到点B的距离的一半。
精选七年级上册9月份月考数学试题(部分带答案)共3份

﹣3,﹣1.5,﹣1,2.5,4.
【答案】数轴表示见解析,4>2.5>-1>-1.5>-3
【解析】
【分析】
先在数轴上表示各个数,再比较即可.
【详解】解:如图所示:
4>2.5>-1>-1.5>-3.
【点睛】本题考查了有理数 大小比较,数轴的应用,能正确在数轴上表示各个数是解此题的关键,注意:在数轴上表示各个数,右边的数总比左边的数大.
【详解】
故选:B.
【点睛】本题考查绝对值的化简,是基础考点,难度容易,掌握绝对值的代数意义、绝对值的几何意义是解题关键.
4.-2的倒数是()
A. B.2C. D.
【答案】D
【解析】
【分析】
根据乘积为1的两个数互为倒数进行求解即可.
【详解】因为 ,
所以-2的倒数为 ,
故选D.
【点睛】本题考查了倒数,熟练掌握倒数的概念以及求解方法是解题的关键.
【解析】
【分析】
直接运用等式的性质进行判断即可.
【详解】A、若 ,等式两边都加3再减 ,则 ;所以A正确;
B、若 ,等式两边都乘以2,则 ;所以B错误;
C、若 ,当 时,则 ;所以C错误;
D、若 ,等式两边都乘以2同时除以 ,则 ;所以D错误;
故选:A.
【点睛】本题主要考查了等式的基本性质.等式性质1、等式的两边同时加上或减去同一个数或字母,等式仍成立;等式性质2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.
9.如图是几个小立方块所搭的几何体从上面看到的图形,小正方形中的数字表示在该位置的小立方块的个数,则这个几何体从正面看到的图形是( )
A. B. C. D.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级第一次月考数学试题
一、填空题(每小题3分,共24分)
1) 在数轴上,与表示 -1的点距离为3的点所表示是数是
2) 若m 、n 互为相反数,m +n = .
3) 重庆市某天的最高气温是17 ℃,最低气温是 -5℃,那么当天的最大温差
是 ℃.
4) -0.02的倒数是 . 5. 5--=
6) 绝对值小于5的整数共有 个,它们的和为 .
7)四舍五入得到的近似数7.542的真值a 的值的范围是
8)若a ,b 互为相反数,c ,d 互为倒数,m =2,则()2c a b cd m d
+∙
+-= .
二、选择题(每小题3分,共30分)
9).点A 在数轴上表示+2,则从点A 沿数轴向左平移3个单位到点B ,点B 所
表示的数是 ( )
A 3
B -1
C 5
D -1或3
10)下列说法正确的是 ( )
①0是绝对值最小的有理数 ②相反数大于本身的数是负数
③数轴上原点两侧的数互为相反数 ④两个数比较,绝对值大的反而小
A.①② B ①③ C ①②③ D ①②③④
11)下列运算正确的是 ( ) A .5252()17777
-+=-+=- B.(-7-2)×5=-9×5=-45 C.54331345÷⨯=÷= D. 2(3)9--=
12)某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±
0.2)kg,(25±0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差( )
A. 0.8kg B 0.6kg C 0.5kg D 0.4kg
13.横跨深圳及香港之间的深圳湾大桥是中国唯一倾斜的独塔单索面桥,大桥
全长4770米,这个数字用科学计数法表示为(保留两个有效数字)( )
A .24710⨯
B .34.710⨯
C .34.810⨯
D .35.010⨯
14、1.996精确到0.01的近似数是( )
A .2
B .2.0
C .1.99
D .2.00
15). 已知a 、b 都是有理数,且|a|=a ,|b|=-b 、,则ab 是( )
A .负数; B.正数; C.负数或零; D.非负数
16.下列结论正确的是 ( )
A. -a 一定是负数
B. -|a|一定是非正数
C. |a|一定是正数 D . |a|一定是负数
17、巴黎与北京的时差为-7时(正数表示同一时刻比北京时间早的小时数)如
果北京时间是7月2日14:00,那么巴黎此时的时间是( )
A 、7月2日21时
B 、7月2日17时
C 、7月2日5时
D 、7月2日7时
18)已知|a -3|=3-a,则a 的取值范围是 ( )
A )a ﹥3
B )a ﹤3
C )a ≥3
D )a ≤3
三解答题 (共66分)
19)计算题(每小题5分,共40分)
(1)⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛-+3121543221 (2)()()1581315413-+⎪⎭
⎫ ⎝⎛----
(3)()()169
441281-÷⨯÷- (4)()()12833523÷---⨯
(5)()()1952184.05219-⨯+-⨯-⨯ (6)2012201313(2)(0.5)(6)714
-⨯-+-⨯
(7)911936÷⎪⎭⎫ ⎝
⎛- (8)6322112(0.5)(2)(3)0.5338⎡⎤---÷⨯-----⎣⎦
20.(本小题5分)把下列各数在数轴上表示出来,并用“>”连接各数。
3
21,―4,―22
1,0,―1,1
21.(5分)(1)计算下列各式并且填空:
=+31()2 =++531 ()2 =+++7531 ()2
=++++97531()2 … …
(2)细心观察上述运算和结果,你会发现什么规律?
(3)你能很快算出135792013+++++⋅⋅⋅+等于多少吗?
22.(6分)计算:12112()()3031065-
÷-+- 解法1:原式=1211215111()[()()]()()3303610530623010
-÷++--=-÷-=-⨯=- 解法2:原式的倒数为:211212112()()()(30)310653031065
-+-÷-=-+-⨯- 20351210=-+-+=-
故原式=110
- 请阅读上述材料,选择合适的方法计算⎪⎭
⎫ ⎝⎛-+÷216132181
23、(10分)出租车司机小李某天下午运营全是在东西走向的陈沙公路上进行的,如果规定向东为正向西为负,这天下午他的行车里程(单位:千米)如下: +15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6
(1)将最后一名乘客送到目的地时,小李距下午出车时的出发点多远?
(2)若汽车耗油量为3升/千米,这天下午小李共耗油多少升?。