同济大学数值分析matlab编程题汇编

合集下载

matlab编程题整理

matlab编程题整理

作业一1输出x,y两个中值较大的一个值x=input(‘x’);y=input(‘y’);if x>yxelseyend2输入x,计算y的值。

计算函数的值y=x+1,x<0,y=2x-1,x≧0x=input(‘x);if x<0y=x+1elsey=2*x-1end3输入一学生成绩,评定其等级,方法是:90~100分为“优秀”,80~89分为“良好”,70~79分为“中等”,60~69分为“及格”,60分为“不合格”x=input(‘x’)if x>100 | x<0y=’输入错误’elseif x>=90y=’优秀’elseif x>=80y=’良好’elseif x>=70y=’中等’elseif x>=60y=’及格’elsey=’不合格’emd4某超市节日期间举办购物打折的促销活动,优惠办法是:每位顾客当天一次性购物在100元以上者,按九五折优惠;在200元以上者,按九折优惠;在300元以上者,按八五折优惠;在500元以上者,按八折优惠。

x=input(‘x’);if x>=500y=x*0.8elseif x>=300y=x*0.85elseif x>=200y=x*0.9elseif x>=100y=x*0.95else y=xend 5编程计算:s=1+2+3+…+100sum=0;for i=1:100sum=sum+i;endsum引申 1!-2!+3!-4!+5!- (99)sum=0;for i=1:99pdr=1;for k=1:ipdr=pdr*k;endsum=sum+pdr*(-1)^(i-1);endsum引申 1*2*3*4*……*100sum=1;for i=1:100sum=sum*iendsum6计算1~100的奇数和sum=0;for i=1:2:100sum=sum+i;endsum7百元买百鸡问题。

matlab编程经典例题

matlab编程经典例题

例3-12 求[100,200]之间第一个能被21整除 的整数。 程序如下: for n=100:200 if rem(n,21)~=0 continue end break end n
4.循环的嵌套 如果一个循环结构的循环体又包括一个循环结构,就称为 循环的嵌套,或称为多重循环结构。 例3-13 若一个数等于它的各个真因子之和,则称该数为 完数,如6=1+2+3,所以6是完数。求[1,500]之间的全部完 数。 for m=1:500 s=0; for k=1:m/2 if rem(m,k)==0 s=s+k; end end if m==s disp(m); end end
2.while语句 while语句的一般格式为: while (条件) 循环体语句 end 其执行过程为:若条件成立,则执行 循环体语句,执行后再判断条件是否 成立,如果不成立则跳出循环。
例3-11 从键盘输入若干个数,当输入0时结束输入,求这 些数的平均值和它们之和。 程序如下: sum=0; cnt=0; val=input('Enter a number (end in 0):'); while (val~=0) sum=sum+val; cnt=cnt+1; val=input('Enter a number (end in 0):'); end if (cnt > 0) sum mean=sum/cnt end
for语句更一般的格式为: for 循环变量=矩阵表达式 循环体语句 end 执行过程是依次将矩阵的各列元 素赋给循环变量,然后执行循环体 语句,直至各列元素处理完毕。
例3-10 写出下列程序的执行结果。 s=0; a=[12,13,14;15,16,17;18,19,20;21,22,23]; for k=a s=s+k; end disp(s');

应用数值分析matlab练习及答案

应用数值分析matlab练习及答案

x sin( x ) 在 [0, 2 ] 上观察拉格朗日中值定理的几何意义。要求:将 2
f ( x ) 编写成一个函数,利用求导数的命令对编写的函数求导,并利用 eval 函数和 solve 函
数计算切点;绘制出切线、 割线和函数曲线,并在图上标识出切线、 切点、 割线和函数曲线; 7、利用 matlab 计算 段 AB 。 8、设一阶微分方程组
Matlab 作业题
一、基础知识
ax 2 by c 0 1、求代数方程组 关于 x,y 的解。 x y 0
2 、 已 知 f ax b, 对 其 进 行 符 号 变 量 替 换 a sin(t ), b cos(t ) , 符 号 常 量 替 换
nபைடு நூலகம்


x 3dx 3zy 2dy x 2dz ,其中 是从点 A(3, 2,1) 到 B(0, 0, 0) 的直线
dy dx 2 x 10cos( t ) dt dt dx dy 2 y 4e 2 t dt dt
当 t 0, x(0) 2, y(0) 0 ,利用 matlab 求微分方程在 t [0,15] 上的数值解,并画出
A(i( ) A(i ) 0) ,并编写一个函数程序文件,要求如下:
(1)删除不能开平方的元素及其后的元素; (2)删除不能开平方的元素; (3)输出删除以元素后的新数组 A 和平方根数组
A( i ) 。
5、某市长途汽车站与火车站相距 10Km,有两路公交车来往其间。一路是慢车,从起点到 终点需要 24min;令一路是直达快车,快车比慢车迟开 6min,却早 6min 到达。请你采用 matlab 编程计算:两车单程所有的路程 s 与行驶时间 t 的函数表达式,并用图示法(即绘制 出图像,做出图例、用线型、颜色区分快慢车)表示两车在何时、何地相遇?(假设两车匀 速行使) 6 、对函数 f ( x )

同济大学matlab课程练习题答案

同济大学matlab课程练习题答案
所以系数最大的项是131220*x^9和131220*x^8
题目7
>> syms a x
>> factor(a*(sin(x))^2-(2*a^2-a+1)*sin(x)+2*a-1)
ans =
(sin(x) - 2*a + 1)*(a*sin(x) - 1)
第四章极限与导数
题目1
(1)
>> syms x;lim1=limit([cos(x)-exp(-x^2/2)]/x^4,x,0)
"two-dimensional inverse FFT", and "pseudoinverse".
Contrast this with "which inverse" or "what inverse", which run
more quickly, but which probably fail to find anything because
35 1 6 26 19 24
3 32 7 21 23 25
31 9 2 22 27 20
8 28 33 17 10 15
30 5 34 12 14 16
4 36 29 13 18 11
c=A(2,1)
c =
3
(2)
t = 2:2:6;
B = A(t,:);
B
B =
3 32 7 21 23 25
8 28 33 17 10 15
(9)
abs([1 2;3 4]-pi) %绝对值
ans =
2.1416 1.1416
0.1416 0.8584

同济大学数值分析matlab编程题汇编

同济大学数值分析matlab编程题汇编

MATLAB 编程题库1.下面的数据表近似地满足函数21cxbax y ++=,请适当变换成为线性最小二乘问题,编程求最好的系数c b a ,,,并在同一个图上画出所有数据和函数图像.625.0718.0801.0823.0802.0687.0606.0356.0995.0628.0544.0008.0213.0362.0586.0931.0ii y x ----解:x=[-0.931 -0.586 -0.362 -0.213 0.008 0.544 0.628 0.995]'; y=[0.356 0.606 0.687 0.802 0.823 0.801 0.718 0.625]'; A=[x ones(8,1) -x.^2.*y]; z=A\y;a=z(1); b=z(2); c=z(3); xh=-1:0.1:1;yh=(a.*xh+b)./(1+c.*xh.^2); plot(x,y,'r+',xh,yh,'b*')2.若在Matlab工作目录下已经有如下两个函数文件,写一个割线法程序,求出这两个函数10 的近似根,并写出调用方式:精度为10>> edit gexianfa.mfunction [x iter]=gexianfa(f,x0,x1,tol)iter=0;while(norm(x1-x0)>tol)iter=iter+1;x=x1-feval(f,x1).*(x1-x0)./(feval(f,x1)-feval(f,x0));x0=x1;x1=x;end>> edit f.mfunction v=f(x)v=x.*log(x)-1;>> edit g.mfunction z=g(y)z=y.^5+y-1;>> [x1 iter1]=gexianfa('f',1,3,1e-10)x1 =1.7632iter1 =6>> [x2 iter2]=gexianfa('g',0,1,1e-10)x2 =0.7549iter2 =83.使用GS 迭代求解下述线性代数方程组:123123123521242103103x x x x x x x x x解:>> edit gsdiedai.mfunction [x iter]=gsdiedai(A,x0,b,tol) D=diag(diag(A)); L=D-tril(A); U=D-triu(A); iter=0; x=x0;while((norm(b-A*x)./norm(b))>tol) iter=iter+1; x0=x;x=(D-L)\(U*x0+b); end>> A=[5 2 1;-1 4 2;1 -3 10]; >> b=[-12 10 3]'; >>tol=1e-4; >>x0=[0 0 0]';>> [x iter]=gsdiedai(A,x0,b,tol); >>x x =-3.0910 1.2372 0.9802 >>iter iter = 64.用四阶Range-kutta 方法求解下述常微分方程初值问题(取步长h=0.01),(1)2xdyy e xy dxy解:>> edit ksf2.mfunction v=ksf2(x,y) v=y+exp(x)+x.*y;>> a=1;b=2;h=0.01; >> n=(b-a)./h; >> x=[1:0.01:2]; >>y(1)=2;>>fori=2:(n+1)k1=h*ksf2(x(i-1),y(i-1));k2=h*ksf2(x(i-1)+0.5*h,y(i-1)+0.5*k1); k3=h*ksf2(x(i-1)+0.5*h,y(i-1)+0.5*k2); k4=h*ksf2(x(i-1)+h,y(i-1)+k3); y(i)=y(i-1)+(k1+2*k2+2*k3+k4)./6; end >>y调用函数方法>> edit Rangekutta.mfunction [x y]=Rangekutta(f,a,b,h,y0) x=[a:h:b]; n=(b-a)/h; y(1)=y0; fori=2:(n+1)k1=h*(feval(f,x(i-1),y(i-1)));k2=h*(feval(f,x(i-1)+0.5*h,y(i-1)+0.5*k1)); k3=h*(feval(f,x(i-1)+0.5*h,y(i-1)+0.5*k2)); k4=h*(feval(f,x(i-1)+h,y(i-1)+k3)); y(i)=y(i-1)+(k1+2*k2+2*k3+k4)./6; end>> [x y]=Rangekutta('ksf2',1,2,0.01,2); >>y5.取0.2h =,请编写Matlab 程序,分别用欧拉方法、改进欧拉方法在12x ≤≤上求解初值问题。

Matlab试题和答案

Matlab试题和答案

Matlab 上机考试试题考试要求:1、从10道题目中随机抽取3道独立完成,时间1小时。

(输入randperm (10),取前三个数)2、每个题目兴建一个.m 的文件,命名方式ks+N.m(N 为题号),然后将所选三个题目放入一个文件夹,文件名为学号+姓名。

考试完成后将文件夹通过FTP 提交。

3、考试完成后要写一份报告,内容包括以下:(建一个.Doc 的文档,文件名为学号+姓名)(1) 题号,题目;(2) 运行结果及其分析;(3) 图也要粘贴在文档中。

4、查阅资料写一篇2000字左右的关于matlab 在电子信息中的应用的小论文或综述, 也可以具体的写matlab 在电子信息中某一个方面或某一个点的应用。

(打印或手写都可,打印版要交电子文档)5、所有要交的东西在1月3号之前必须交齐。

(由学习委员统一收齐交给我,电子文档也拷到学习委员处,统一拷给我)。

所交项目包括:考试报告打印版,小论文打印版(两个装订在一起,考试报告在上,小论文在下,最好做一个统一的封皮),考试报告doc 文档,小论文doc 文档。

Matlab 上机考试试题1.求下列联立方程的解3x+4y-7z-12w=45x-7y+4z+ 2w=-3X +8z- 5w=9-6x+5y-2z+10w=-8(1)求系数矩阵的秩; (2)求出方程组的解。

2.在[-10,10;-10,10]范围内画出函数2222sin y x y x z ++=的三维图形。

3.试画出系统321()221H s s s s =+++的零极点分布图,判断系统是否稳定,同时求其单位冲激响应和频率响应(幅频特性和相频特性)。

4. 将一个屏幕分4幅,选择合适的步长在右上幅与左下幅绘制出下列函数的图形。

(1)]22[)cos(ππ,,-∈x x (曲线图); (2)4)y 2,-4x (-242),(2222≤≤≤≤+=;y x y x f (曲面图)。

5.系统传递函数为1121()10.81z H z z z---+=-+,按照以下要求求解: (1)求其极零点图,判断系统的稳定性,画出系统的频谱特性;(2)当系统输入信号为:()[5cos(0.2)2sin(0.7)]x n n n ππ=++,050n ≤≤时,画出系统的输出。

Matlab 考题题整理 带答案

Matlab 考题题整理 带答案

MATLAB 考试试题(1)产生一个1x10的随机矩阵,大小位于(-5 5),并且按照从大到小的顺序排列好!(注:要程序和运行结果的截屏)答案:a=10*rand(1,10)-5;b=sort(a,'descend')1.请产生一个100*5的矩阵,矩阵的每一行都是[1 2 3 4 5]2. 已知变量:A=’ilovematlab’;B=’matlab’, 请找出:(A)B在A中的位置。

(B)把B放在A后面,形成C=‘ilovematlabmatlab’3. 请修改下面的程序,让他们没有for循环语句!A=[1 2 3; 4 5 6; 7 8 9];[r c]=size(A);for i=1:1:rfor j=1:1:cif (A(i,j)>8 | A(i,j)<2)A(i,j)=0;endendend4. 请把变量A=[1 2 3; 4 5 6; 7 8 9]写到文件里(output.xls),写完后文件看起来是这样的1 2 3 4 5 6 7 8 95.试从Yahoo网站上获得微软公司股票的2008年9月的每日收盘价。

6.编写M文件,从Yahoo网站批量读取60000.SH至.SH在2008年9月份的每日收盘价(提示:使用字符串函数)。

7. 将金牛股份()2005年12月14日至2006年1月10日的交易记录保存到Excel中,编写程序将数据读入MATLAB中,进一步将数据读入Access数据库文件。

8.已知资产每日回报率为0.0025,标准差为0.0208,资产现在价值为0.8亿,求5%水平下资产的10天在险价值(Var)。

9.a=[1 2 3 4 5],b=a(1)*a(5)+a(2)*a(4)+a(3)*a(3)+a(4)*a(2)+a(5)*a(1).试用MATLAB中最简单的方法计算b,注意最简单哦。

1、求下列联立方程的解3x+4y-7z-12w=45x-7y+4z+ 2w=-3x +8z- 5w=9-6x+5y-2z+10w=-8求系数矩阵的秩;求出方程组的解。

数值分析作业MATLAB

数值分析作业MATLAB

1.用二分法解方程 x-lnx=2 在区间【2 ,4】内的根方法: 二分法算法:f=inline('x-2-log(x)');a=2;b=4;er=b-a; ya=f(a);er0=.00001;while er>er0x0=.5*(a+b);y0=f(x0);if ya*y0<0b=x0;elsea=x0;ya=y0;enddisp([a,b]);er=b-a;k=k+1;end求解结果:>> answer13 43.0000 3.50003.0000 3.25003.1250 3.25003.1250 3.18753.1250 3.15633.1406 3.15633.1406 3.14843.1445 3.1484 3.1445 3.1465 3.1455 3.1465 3.1460 3.1465 3.1460 3.1462 3.1461 3.1462 3.1462 3.14623.1462 3.1462 3.1462 3.1462 3.1462 3.1462 最终结果为: 3.14622.试编写MATLAB 函数实现Newton 插值,要求能输出插值多项式。

对函数141)(2+=x x f 在区间[-5,5]上实现10次多项式插值。

Matlab 程序代码如下:%此函数实现y=1/(1+4*x^2)的n 次Newton 插值,n 由调用函数时指定 %函数输出为插值结果的系数向量(行向量)和插值多项式 算法:function [t y]=func5(n) x0=linspace(-5,5,n+1)'; y0=1./(1.+4.*x0.^2); b=zeros(1,n+1); for i=1:n+1 s=0; for j=1:i t=1; for k=1:iif k~=jt=(x0(j)-x0(k))*t;end;end;s=s+y0(j)/t;end;b(i)=s;end;t=linspace(0,0,n+1);for i=1:ns=linspace(0,0,n+1);s(n+1-i:n+1)=b(i+1).*poly(x0(1:i));t=t+s;end;t(n+1)=t(n+1)+b(1);y=poly2sym(t);10次插值运行结果:[b Y]=func5(10)b =Columns 1 through 4-0.0000 0.0000 0.0027 -0.0000Columns 5 through 8-0.0514 -0.0000 0.3920 -0.0000Columns 9 through 11-1.1433 0.0000 1.0000Y =- (7319042784910035*x^10)/147573952589676412928 + x^9/18446744073709551616 + (256*x^8)/93425 -x^7/1152921504606846976 -(28947735013693*x^6)/562949953421312 -(3*x^5)/72057594037927936 + (36624*x^4)/93425 -(5*x^3)/36028797018963968 -(5148893614132311*x^2)/4503599627370496 +(7*x)/36028797018963968 + 1b为插值多项式系数向量,Y为插值多项式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MATLAB 编程题库 1.下面的数据表近似地满足函数21cxbax y ++=,请适当变换成为线性最小二乘问题,编程求最好的系数c b a ,,,并在同一个图上画出所有数据和函数图像.625.0718.0801.0823.0802.0687.0606.0356.0995.0628.0544.0008.0213.0362.0586.0931.0ii y x ----解:x=[-0.931 -0.586 -0.362 -0.213 0.008 0.544 0.628 0.995]'; y=[0.356 0.606 0.687 0.802 0.823 0.801 0.718 0.625]'; A=[x ones(8,1) -x.^2.*y]; z=A\y;a=z(1); b=z(2); c=z(3); xh=-1:0.1:1;yh=(a.*xh+b)./(1+c.*xh.^2); plot(x,y,'r+',xh,yh,'b*')2.若在Matlab工作目录下已经有如下两个函数文件,写一个割线法程序,求出这两个函数10 的近似根,并写出调用方式:精度为10解:>> edit gexianfa.mfunction [x iter]=gexianfa(f,x0,x1,tol)iter=0;while(norm(x1-x0)>tol)iter=iter+1;x=x1-feval(f,x1).*(x1-x0)./(feval(f,x1)-feval(f,x0));x0=x1;x1=x;end>> edit f.mfunction v=f(x)v=x.*log(x)-1;>> edit g.mfunction z=g(y)z=y.^5+y-1;>> [x1 iter1]=gexianfa('f',1,3,1e-10)x1 =1.7632iter1 =6>> [x2 iter2]=gexianfa('g',0,1,1e-10)x2 =0.7549iter2 =83.使用GS 迭代求解下述线性代数方程组:123123123521242103103x x x x x x x x x解:>> edit gsdiedai.mfunction [x iter]=gsdiedai(A,x0,b,tol) D=diag(diag(A)); L=D-tril(A); U=D-triu(A); iter=0; x=x0;while((norm(b-A*x)./norm(b))>tol) iter=iter+1; x0=x;x=(D-L)\(U*x0+b); end>> A=[5 2 1;-1 4 2;1 -3 10]; >> b=[-12 10 3]'; >>tol=1e-4; >>x0=[0 0 0]';>> [x iter]=gsdiedai(A,x0,b,tol); >>x x =-3.0910 1.2372 0.9802 >>iter iter = 64.用四阶Range-kutta 方法求解下述常微分方程初值问题(取步长h=0.01),(1)2xdyy e xy dxy解:>> edit ksf2.mfunction v=ksf2(x,y) v=y+exp(x)+x.*y;>> a=1;b=2;h=0.01; >> n=(b-a)./h; >> x=[1:0.01:2]; >>y(1)=2;>>fori=2:(n+1)k1=h*ksf2(x(i-1),y(i-1));k2=h*ksf2(x(i-1)+0.5*h,y(i-1)+0.5*k1); k3=h*ksf2(x(i-1)+0.5*h,y(i-1)+0.5*k2); k4=h*ksf2(x(i-1)+h,y(i-1)+k3); y(i)=y(i-1)+(k1+2*k2+2*k3+k4)./6; end >>y调用函数方法>> edit Rangekutta.mfunction [x y]=Rangekutta(f,a,b,h,y0) x=[a:h:b]; n=(b-a)/h; y(1)=y0; fori=2:(n+1)k1=h*(feval(f,x(i-1),y(i-1)));k2=h*(feval(f,x(i-1)+0.5*h,y(i-1)+0.5*k1)); k3=h*(feval(f,x(i-1)+0.5*h,y(i-1)+0.5*k2)); k4=h*(feval(f,x(i-1)+h,y(i-1)+k3)); y(i)=y(i-1)+(k1+2*k2+2*k3+k4)./6; end>> [x y]=Rangekutta('ksf2',1,2,0.01,2); >>y5.取0.2h =,请编写Matlab 程序,分别用欧拉方法、改进欧拉方法在12x ≤≤上求解初值问题。

3,(1)0.4dy yx dx x y解:>> edit Euler.mfunction [x y]=Euler(f,a,b,h,y0) x=[a:h:b]; n=(b-a)./h; y(1)=y0; fori=2:(n+1)y(i)=y(i-1)+h*feval(f,x(i-1),y(i-1)); end>> edit gaijinEuler.mfunction[x y]=gaijinEuler(f,a,b,h,y0) x=[a:h:b]; n=(b-a)./h; y(1)=y0; fori=2:(n+1)y1=y(i-1)+h*feval(f,x(i-1),y(i-1)); y2=y(i-1)+h*feval(f,x(i),y1); y(i)=(y1+y2)./2; end>> edit ksf3.mfunction v=ksf3(x,y) v=x.^3-y./x;>>[x y]=Euler('ksf3',1,2,0.2,0.4) x =1.0000 1.2000 1.4000 1.6000 1.80002.0000 y =0.4000 0.5200 0.7789 1.2165 1.8836 2.8407>> [x y]=gaijinEuler('ksf3',1,2,0.2,0.4) x =1.0000 1.2000 1.4000 1.6000 1.80002.0000 y =0.4000 0.5895 0.9278 1.4615 2.2464 3.34666.请编写复合梯形积分公式的Matlab程序,计算下面积分的近似值,区间等分20n=。

编写辛普森积分公式的Matlab程序,计算下面积分的近似值,区间等分10n=。

12 011dxx 、11sin xdxx解:>> edit tixingjifen.mfunction s=tixingjifen(f,a,b,n)x=linspace(a,b,(n+1));y=zeros(1,length(x));y=feval(f,x)h=(b-a)./n;s=0.5*h*(y(1)+2*sum(y(2:n))+y(n+1));end>> edit simpson.mfunction I=simpson(f,a,b,n)h=(b-a)/n;x=linspace(a,b,2*n+1);y=feval(f,x);I=(h/6)*(y(1)+2*sum(y(3:2:2*n-1))+4*sum(y(2:2:2*n))+y(2*n+1));>> edit ksf4.mfunction v=ksf4(x)v=1./(x.^2+1);>>tixingjifen('ksf4',0,1,20)ans =0.7853>>simpson('ksf4',0,1,10)ans =0.7854>> edit ksf5.mfunction v=ksf5(x)if(x==0)v=1;elsev=sin(x)./x;end(第二个函数‘ksf5’调用求积函数时,总显示有错误:“NaN”,还没调试好。

见谅!)7.用Jacobi 迭代方法对下面方程组求解,取初始向量(0)(3,2,1)T x=-。

123244233334422x x x -⎡⎤⎛⎫⎛⎫ ⎪ ⎪⎢⎥=- ⎪ ⎪⎢⎥ ⎪ ⎪⎢⎥-⎣⎦⎝⎭⎝⎭解:>>edit Jacobi.mfunction[x iter]=Jacobi(A,x0,b,tol) D=diag(diag(A)); L=D-tril(A); U=D-triu(A); x=x0; iter=0;while(norm(A*x-b)/norm(b)>tol) iter=iter+1; x0=x;x=D\((L+U)*x0+b); end>> A=[2 4 -4;3 3 3;4 4 2]; >> b=[2 -3 -2]'; >>x0=[3 2 -1]';>> [x,iter]=Jacobi(A,x0,b,1e-4) x = 1 -1 -1 iter =38.用牛顿法求解方程cos 20x x +=在02x =附近的根。

解:>> edit Newton.mfunction [x iter]=Newton(f,g,x0,tol) iter=0; done=0 while ~donex=x0-feval(f,x0)/feval(g,x0); done=norm(x-x0)<=tol; iter=iter+1;if ~done,x0=x; end end>> edit ksf6.m function v=ksf6(x) v=x*cos(x)+2;>> edit ksg6.m function z=ksg(y) z=y.^5+y-1;>> [x iter]=Newton('ksf6','ksg6',2,1e-4) x =2.4988 iter = 39.分别用改进乘幂法、反幂法计算矩阵A 的按模最大特征值及其对应的特征向量、按模最小特征值及其对应的特征向量。

相关文档
最新文档