农夫过河实验报告――数据结构
数据结构课程设计报告(农夫过河)

数据结构课程设计报告(农夫过河)第一篇:数据结构课程设计报告(农夫过河)目录引言...................................................2 问题描述..............................................3 基本要求 (3)2.1为农夫过河问题抽象数据模型体会数据模型在问题求解中的重要性;........3 2.2设计一个算法求解农夫过河问题,并输出过河方案;......................3 3 概要设计 (3)3.1 数据结构的设计。
....................................................3 3.1.1农夫过河问题的模型化.............................................3 3.1.2 算法的设计 (4)4、运行与测试 (6)5、总结与心得..........................................7 附录...................................................7 参考文献. (13)引言所谓农夫过河问题是指农夫带一只狼、一只羊和一棵白菜在河南岸, 需要安全运到北岸。
一条小船只能容下他和一件物品, 只有农夫能撑船。
问农夫怎么能安全过河, 当然狼吃羊, 羊吃白菜, 农夫不能将这两种或三种物品单独放在河的一侧, 因为没有农夫的照看, 狼就要吃羊, 而羊可能要吃白菜? 这类问题的实质是系统的状态问题, 要寻求的是从初始状态经一系列的安全状态到达系统的终止状态的一条路径。
1 问题描述一个农夫带一只狼、一棵白菜和一只羊要从一条河的南岸过到北岸,农夫每次只能带一样东西过河,但是任意时刻如果农夫不在场时,狼要吃羊、羊要吃白菜,请为农夫设计过河方案。
基本要求2.1为农夫过河问题抽象数据模型体会数据模型在问题求解中的重要性;2.2设计一个算法求解农夫过河问题,并输出过河方案;概要设计3.1 数据结构的设计。
数据结构实验-农夫过河问题

农夫过河问题一、实验目的掌握广度优先搜索策略,并用队列求解农夫过河问题二、实验内容问题描述:一农夫带着一只狼,一只羊和一颗白菜,身处河的南岸,他要把这些东西全部运到北岸,遗憾的是他只有一只小船,小船只能容下他和一件物品。
这里只能是农夫来撑船,同时因为狼吃羊、羊吃白菜、所以农夫不能留下羊和狼或羊和白菜在河的一边,而自己离开;好在狼属肉食动物,不吃白菜。
农夫怎么才能把所有的东西安全运过河呢?实验要求如下:(1)设计物品位置的表示方法和安全判断算法;(2)设计队列的存储结构并实现队列的基本操作(建立空队列、判空、入队、出队、取对头元素),也可以使用STL中的队列进行代码的编写;(3)采用广度优先策略设计可行的过河算法;(4)输出要求:按照顺序输出一种可行的过河方案;提示:可以使用STL中的队列进行代码编写。
程序运行结果:二进制表示:1111011011100010101100011001,0000三、农夫过河算法流程⏹Step1:初始状态0000入队⏹Step2:当队列不空且没有到达结束状态1111时,循环以下操作:⏹队头状态出队⏹按照农夫一个人走、农夫分别带上三个物品走,循环以下操作:⏹农夫和物品如果在同一岸,则计算新的状态⏹如果新状态是安全的并且是没有处理过的,则更新path[ ],并将新状态入队⏹当状态为1111时,逆向输出path[ ]数组附录一:STL中队列的使用注:队列,可直接用标准模板库(STL)中的队列。
需要#include<queue>STL中的queue,里面的一些成员函数如下(具体可以查找msdn,搜索queue class):front:Returns a reference to the first element at the front of the queue.pop:Removes an element from the front of the queuepush:Adds an element to the back of the queueempty:Tests if the queue is empty三、实验代码FarmerRiver.H#ifndef FARMERRIVER_H#define FARMERRIVER_Hint FarmerOnRight(int status); //农夫,在北岸返回1,否则返回0int WorfOnRight(int status); //狼int CabbageOnRight(int status); //白菜int GoatOnRight(int status); //羊int IsSafe(int status); //判断状态是否安全,安全返回1,否则返回0void FarmerRiver();#endifSeqQueue.h#ifndef SEQQUEUE_H#define SEQQUEUE_Htypedef int DataType;struct Queue{int Max;int f;int r;DataType *elem;};typedef struct Queue *SeqQueue;SeqQueue SetNullQueue_seq(int m);int IsNullQueue_seq(SeqQueue squeue);void EnQueue_seq(SeqQueue squeue, DataType x);void DeQueue_seq(SeqQueue);DataType FrontQueue_seq(SeqQueue);#endifFarmerRiver.c#include <stdio.h>#include <stdlib.h>#include "SeqQueue.h"#include "FarmerRiver.h"int FarmerOnRight(int status) //判断当前状态下农夫是否在北岸{return (0!=(status & 0x08));}int WorfOnRight(int status){return (0!=(status & 0x04));}int CabbageOnRight(int status){return (0!=(status & 0x02));}int GoatOnRight(int status){return (0!=(status & 0x01));}int IsSafe(int status) //判断当前状态是否安全{if ((GoatOnRight(status)==CabbageOnRight(status)) &&(GoatOnRight(status)!=FarmerOnRight(status)))return (0); //羊吃白菜if ((GoatOnRight(status)==WorfOnRight(status)) && (GoatOnRight(status)!=FarmerOnRight(status))) return 0; //狼吃羊return 1; //其他状态是安全的}void FarmerRiver(){int i, movers, nowstatus, newstatus;int status[16]; //用于记录已考虑的状态路径SeqQueue moveTo;moveTo = SetNullQueue_seq(20); //创建空列队EnQueue_seq(moveTo, 0x00); //初始状态时所有物品在北岸,初始状态入队for (i=0; i<16; i++) //数组status初始化为-1{status[i] = -1;}status[0] = 0;//队列非空且没有到达结束状态while (!IsNullQueue_seq(moveTo) && (status[15]==-1)){nowstatus = FrontQueue_seq(moveTo); //取队头DeQueue_seq(moveTo);for (movers=1; movers<=8; movers<<=1)//考虑各种物品在同一侧if ((0!=(nowstatus & 0x08)) == (0!=(nowstatus & movers)))//农夫与移动的物品在同一侧{newstatus = nowstatus ^ (0x08 | movers); //计算新状态//如果新状态是安全的且之前没有出现过if (IsSafe(newstatus)&&(status[newstatus] == -1)){status[newstatus] = nowstatus; //记录新状态EnQueue_seq(moveTo, newstatus); //新状态入队}}}//输出经过的状态路径if (status[15]!=-1){printf("The reverse path is: \n");for (nowstatus=15; nowstatus>=0; nowstatus=status[nowstatus]){printf("The nowstatus is: %d\n", nowstatus);if (nowstatus == 0)return;}}elseprintf("No solution.\n");}Sequeue.c#include <stdio.h>#include <stdlib.h>#include "SeqQueue.h"SeqQueue SetNullQueue_seq(int m){SeqQueue squeue;squeue = (SeqQueue)malloc(sizeof(struct Queue));if (squeue==NULL){printf("Alloc failure\n");return NULL;}squeue->elem = (int *)malloc(sizeof(DataType) * m);if (squeue->elem!=NULL){squeue->Max = m;squeue->f = 0;squeue->r = 0;return squeue;}else free(squeue);}int IsNullQueue_seq(SeqQueue squeue){return (squeue->f==squeue->r);}void EnQueue_seq(SeqQueue squeue, DataType x) //入队{if ((squeue->r+1) % squeue->Max==squeue->f) //是否满printf("It is FULL Queue!");else{squeue->elem[squeue->r] = x;squeue->r = (squeue->r+1) % (squeue->Max);}}void DeQueue_seq(SeqQueue squeue) //出队{if (IsNullQueue_seq(squeue))printf("It is empty queue!\n");elsesqueue->f = (squeue->f+1) % (squeue->Max); }DataType FrontQueue_seq(SeqQueue squeue) //求队列元素{if (squeue->f==squeue->r)printf("It is empty queue!\n");elsereturn (squeue->elem[squeue->f]);}main.c#include <stdio.h>#include <stdlib.h>#include "FarmerRiver.h"int main(void){FarmerRiver();return 0;}实验结果:四、实验总结。
农夫过河问题(C++编写)

cout<<" **
------------------------
**\n";
cout<<" **
|
农夫过河问题
|
**\n";
cout<<" **
------------------------
**\n";
cout<<"
****************************************************************************\n";
1、问题描述
从前,一个农夫带着一只狼,一只羊和一棵白菜要河(注意该狼被农夫训服了,但还会 吃羊)。他要将所有东西安全的带到河的对岸,不幸的是河边只有一条船,只能装下农夫和 他的一样东西,并且农夫必须每次都随船过,因为只有他能撑船。在无人看管的情况下,狼 要吃羊,羊要吃白菜,因此,农夫不能在河的某边岸上单独留下狼和羊,也不能单独留下羊 和白菜。那么农夫如何才能使三样东西平安过河呢?
3)、如果上两个条件都不满,则可执行运输的动作,但每次都应考虑,该运 输情况以前是否执行过(即两岸以及船上的东西以时四者各自的状态,并递归的进行下一次运载。
5、系统测试
6、经验总结
解决实际问题时,应先分析实际问题,找出实际问题的所有约束条件, 然后对问题进行数学模型的抽象化,抓主要因素,省去一些不需要的因素,将其 抽象为数学问题,然后再从整体上设计算法,搭建程序的框架,最后一步步完善 细节,这样做,会使本来毫无头绪的问题变得清晰起来。
if (a[ferryTimes][i] == a[ferryTimes][3]) {
农夫过河问题

课程设计题目:农夫过河一.问题描述一个农夫带着一只狼、一只羊和一箩白菜,身处河的南岸。
他要把这些东西全部运到北岸。
他面前只有一条小船,船只能容下他和一件物品,另外只有农夫才能撑船。
过河有以下规则:(1)农夫一次最多能带一样东西(或者是狼、或者是羊、或者是白菜)过河;(2)当农夫不在场是狼会吃羊;(3)当农夫不在场是羊会吃掉白菜。
现在要求为农夫想一个方案,能将3样东西顺利地带过河。
从出事状态开始,农夫将羊带过河,然后农夫将羊待会来也是符合规则的,然后农夫将羊带过河仍然是符合规则的,但是如此这般往返,搜索过程便进入了死循环,因此,在这里,采用改进的搜索算法进行搜索。
二.基本要求(1)为农夫过河问题抽象数据类型,体会数据模型在问题求解中的重要性;(2)要求利用数据结构的方法以及C++的编程思想来完成问题的综合设计;(3)在问题的设计中,使用深度优先遍历搜索方式,避免死循环状态;(4)设计一个算法求解农夫过河问题,并输出过河方案;(5)分析算法的时间复杂度。
三.概要设计(1)数据结构的设计typedef struct // 图的顶点{int farmer; // 农夫int wolf; // 狼int sheep; // 羊int veget; // 白菜}Vertex;设计Vertex结构体的目的是为了存储农夫、狼、羊、白菜的信息,因为在遍历图的时候,他们的位置信息会发生变化,例如1111说明他们都在河的北岸,而0000说明他们都在河的南岸。
t ypedef struct{int vertexNum; // 图的当前顶点数Vertex vertex[VertexNum]; // 顶点向量(代表顶点)bool Edge[VertexNum][VertexNum]; // 邻接矩阵. 用于存储图中的边,其矩阵元素个数取决于顶点个数,与边数无关}AdjGraph; // 定义图的邻接矩阵存储结构存储图的方法是用邻接矩阵,所以设计一个简单的AdjGraph结构体是为了储图的顶点数与边数,农夫过河问题我采用的是图的深度优先遍历思想。
数据结构实验-农夫过河问题

农夫过河问题一、实验目的掌握广度优先搜索策略,并用队列求解农夫过河问题二、实验内容问题描述:一农夫带着一只狼,一只羊和一颗白菜,身处河的南岸,他要把这些东西全部运到北岸,遗憾的是他只有一只小船,小船只能容下他和一件物品。
这里只能是农夫来撑船,同时因为狼吃羊、羊吃白菜、所以农夫不能留下羊和狼或羊和白菜在河的一边,而自己离开;好在狼属肉食动物,不吃白菜。
农夫怎么才能把所有的东西安全运过河呢?实验要求如下:(1)设计物品位置的表示方法和安全判断算法;(2)设计队列的存储结构并实现队列的基本操作(建立空队列、判空、入队、出队、取对头元素),也可以使用STL中的队列进行代码的编写;(3)采用广度优先策略设计可行的过河算法;(4)输出要求:按照顺序输出一种可行的过河方案;提示:可以使用STL中的队列进行代码编写。
程序运行结果:二进制表示:1111011011100010101100011001,0000三、农夫过河算法流程⏹Step1:初始状态0000入队⏹Step2:当队列不空且没有到达结束状态1111时,循环以下操作:⏹队头状态出队⏹按照农夫一个人走、农夫分别带上三个物品走,循环以下操作:⏹农夫和物品如果在同一岸,则计算新的状态⏹如果新状态是安全的并且是没有处理过的,则更新path[ ],并将新状态入队⏹当状态为1111时,逆向输出path[ ]数组附录一:STL中队列的使用注:队列,可直接用标准模板库(STL)中的队列。
需要#include<queue>STL中的queue,里面的一些成员函数如下(具体可以查找msdn,搜索queue class):front:Returns a reference to the first element at the front of the queue.pop:Removes an element from the front of the queuepush:Adds an element to the back of the queueempty:Tests if the queue is empty三、实验代码FarmerRiver.H#ifndef FARMERRIVER_H#define FARMERRIVER_Hint FarmerOnRight(int status); //农夫,在北岸返回1,否则返回0int WorfOnRight(int status); //狼int CabbageOnRight(int status); //白菜int GoatOnRight(int status); //羊int IsSafe(int status); //判断状态是否安全,安全返回1,否则返回0void FarmerRiver();#endifSeqQueue.h#ifndef SEQQUEUE_H#define SEQQUEUE_Htypedef int DataType;struct Queue{int Max;int f;int r;DataType *elem;};typedef struct Queue *SeqQueue;SeqQueue SetNullQueue_seq(int m);int IsNullQueue_seq(SeqQueue squeue);void EnQueue_seq(SeqQueue squeue, DataType x);void DeQueue_seq(SeqQueue);DataType FrontQueue_seq(SeqQueue);#endifFarmerRiver.c#include <stdio.h>#include <stdlib.h>#include "SeqQueue.h"#include "FarmerRiver.h"int FarmerOnRight(int status) //判断当前状态下农夫是否在北岸{return (0!=(status & 0x08));}int WorfOnRight(int status){return (0!=(status & 0x04));}int CabbageOnRight(int status){return (0!=(status & 0x02));}int GoatOnRight(int status){return (0!=(status & 0x01));}int IsSafe(int status) //判断当前状态是否安全{if ((GoatOnRight(status)==CabbageOnRight(status)) && (GoatOnRight(status)!=FarmerOnRight(status)))return (0); //羊吃白菜if ((GoatOnRight(status)==WorfOnRight(status)) && (GoatOnRight(status)!=FarmerOnRight(status))) return 0; //狼吃羊return 1; //其他状态是安全的}void FarmerRiver(){int i, movers, nowstatus, newstatus;int status[16]; //用于记录已考虑的状态路径SeqQueue moveTo;moveTo = SetNullQueue_seq(20); //创建空列队EnQueue_seq(moveTo, 0x00); //初始状态时所有物品在北岸,初始状态入队for (i=0; i<16; i++) //数组status初始化为-1{status[i] = -1;}status[0] = 0;//队列非空且没有到达结束状态while (!IsNullQueue_seq(moveTo) && (status[15]==-1)){nowstatus = FrontQueue_seq(moveTo); //取队头DeQueue_seq(moveTo);for (movers=1; movers<=8; movers<<=1)//考虑各种物品在同一侧if ((0!=(nowstatus & 0x08)) == (0!=(nowstatus & movers)))//农夫与移动的物品在同一侧{newstatus = nowstatus ^ (0x08 | movers); //计算新状态//如果新状态是安全的且之前没有出现过if (IsSafe(newstatus)&&(status[newstatus] == -1)){status[newstatus] = nowstatus; //记录新状态EnQueue_seq(moveTo, newstatus); //新状态入队}}}//输出经过的状态路径if (status[15]!=-1){printf("The reverse path is: \n");for (nowstatus=15; nowstatus>=0; nowstatus=status[nowstatus]){printf("The nowstatus is: %d\n", nowstatus);if (nowstatus == 0)return;}}elseprintf("No solution.\n");}Sequeue.c#include <stdio.h>#include <stdlib.h>#include "SeqQueue.h"SeqQueue SetNullQueue_seq(int m){SeqQueue squeue;squeue = (SeqQueue)malloc(sizeof(struct Queue));if (squeue==NULL){printf("Alloc failure\n");return NULL;}squeue->elem = (int *)malloc(sizeof(DataType) * m);if (squeue->elem!=NULL){squeue->Max = m;squeue->f = 0;squeue->r = 0;return squeue;}else free(squeue);}int IsNullQueue_seq(SeqQueue squeue){return (squeue->f==squeue->r);}void EnQueue_seq(SeqQueue squeue, DataType x) //入队{if ((squeue->r+1) % squeue->Max==squeue->f) //是否满printf("It is FULL Queue!");else{squeue->elem[squeue->r] = x;squeue->r = (squeue->r+1) % (squeue->Max);}}void DeQueue_seq(SeqQueue squeue) //出队{if (IsNullQueue_seq(squeue))printf("It is empty queue!\n");elsesqueue->f = (squeue->f+1) % (squeue->Max); }DataType FrontQueue_seq(SeqQueue squeue) //求队列元素{if (squeue->f==squeue->r)printf("It is empty queue!\n");elsereturn (squeue->elem[squeue->f]);}main.c#include <stdio.h>#include <stdlib.h>#include "FarmerRiver.h"int main(void){FarmerRiver();return 0;}实验结果:四、实验总结。
【数据结构与算法】狼、羊、菜和农夫过河:使用图的广度优先遍历实现

【数据结构与算法】狼、⽺、菜和农夫过河:使⽤图的⼴度优先遍历实现【数据结构与算法】狼、⽺、菜和农夫过河:使⽤图的⼴度优先遍历实现Java农夫需要把狼、⽺、菜和⾃⼰运到河对岸去,只有农夫能够划船,⽽且船⽐较⼩。
除农夫之外每次只能运⼀种东西。
还有⼀个棘⼿问题,就是如果没有农夫看着,⽺会偷吃菜,狼会吃⽺。
请考虑⼀种⽅法,让农夫能够安全地安排这些东西和他⾃⼰过河。
解题思路学了图论的⼴度优先遍历算法后,我们可以使⽤⼴度优先遍历的思想来完成这道题。
⾸先定义如何表达农夫、狼、⽺、菜在河的哪⼀边。
只有两种状态:1. 在河的⼀边(假设为东边)2. 在河的另⼀边(假设为西边)那么恰好可以⽤0和1来表达,任务定义如下(使⽤字符串来表达):// ⼈狼⽺菜// 源: 0 0 0 0//⽬标: 1 1 1 1String s = "0000";String t = "1111";那接下来程序的任务就是搜索出从s到t的过程了。
那么如何转换成图论问题?我们知道,0000 代表农夫、狼、⽺、菜都在河的东边,那么下⼀种状态可以有如下⼏种选择:1. 东:空狼⽺菜 | 西:⼈空空空(农夫⾃⼰过河)2. 东:空空⽺菜 | 西:⼈狼空空(农夫带狼过河)3. 东:空狼空菜 | 西:⼈空⽺空(农夫带⽺过河)4. 东:空狼⽺空 | 西:⼈空空菜(农夫带菜过河)我们根据这个可以绘制⼀个图,顶点0000 分别与顶点1000、顶点1100、顶点1010、顶点1001有边连接;其中,根据规则在没有农夫的情况下,狼和⽺不能在⼀起,⽺和菜不能在⼀起,所以排除掉以上的1,2,4选项。
那么下⼀个状态就是 0101然后根据这个原理,再往下查找有哪些是可以的:1. 东:⼈狼空菜 | 西:空空⽺空(农夫⾃⼰过河)2. 东:⼈狼⽺菜 | 西:空空空空(农夫带⽺过河)我们根据这个也可以绘制⼀个图,顶点0101 分别与顶点0000、顶点0010有边连接;然后再根据规则进⾏查找。
农夫过河问题的求解

//从p(P!=NULL)指示的结点开始,依次对每个结点调用函数visit
其中部分操作的伪码算法如下:
BOOL InitList(OrderdeList &L)
{
if(MakeNode(head,ˊˊ)){ //头结点的虚设元素为空格符ˊˊ
{
//分配由p指向的数据元素为e、后继为“空”的结点,并返回TRUE,
//若分配失败,则返回FALSE
p=(Link Type)malloc(sixeof(Node Type));
if(!p)return FALSE;
p->data=e;p->next=NULL; return TRUE;
}
void freeNode(LinkType &p)
//销毁有序链表L
bool Listempty(OrderedList L);
//若L不存在或为“空表”,则返回TRUE,否则返回FALSE
int ListLengty(OrderedList L);
//返回链表的长度
Linktype GetelemPos(OrderedList L, int pos);
构造有序集算法createset读入n个元素逐个用locateelem判定不在当前集合中及确定插入位置后才用insertafetr插入到有序集中所以时间复杂度是on求并集算法union利用集合的有序性将两个集合的个元素不重复地依次利用append插入到当前并集的末尾故可在omn时间内完成
实验报告
题目:编制一个演示农夫过河问题的求解的程序
per=L.head; p=pre->next;
农夫过河问题

df=d[i].f-d[j].f;
dw=abs(d[i].w-d[j].w);
ds=abs(d[i].s-d[j].s);
dc=abs(d[i].c-d[j].c);
if(df!=0&&(dw+ds+dc)<=1)
{
edge[num].col=i;
edge[num++].row=j;
}
}
return num;
int right_edge(DataType *vertex,RowCol *edge,int n) //选出满足题意的边
void DepthFSearch(AdjLGraph G,int v,int visited[],DataType vert[],int *a)
//图的深度优先遍历
3.3抽象数据类型的设计
{
if(!visited[w])
DepthFSearch(G,w,visited,d1,s);
w=GetNextVex(G,v,w);
}
}
4.3函数的调用关系图
5.测试结果
农夫过河问题
1.问题描述
一个农夫带着一只狼、一只羊和一棵白菜,身处河的南岸。他要把这些东西全部运到北岸。他面前只有一条小船,船只能容下他和一件物品,另外只有农夫才能撑船。如果农夫在场,则狼不能吃羊,羊不能吃白菜,否则狼会吃羊,羊会吃白菜,所以农夫不能留下羊和白菜自己离开,也不能留下狼和羊自己离开,而狼不吃白菜。
typedef struct
{
AdjLHeight a[100];//邻接表数组
int numOfVerts;//结点个数
int numOfEdges;//边个数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广度优先就是在搜索过程中总是首先搜索下面一步的所有可能状态,再进一步考虑更后面的各种情况。要实现广度优先搜索,可以使用队列。把下一步所有可能的状态都列举出来,放在队列中,再顺序取出来分别进行处理,处理过程中把再下一步的状态放在队列里„„。由于队列的操作遵循先进先出的原则,在这个处理过程中,只有在前一步的所有情况都处理完后,才能开始后面一步各情况的处理。这样,具体算法中就需要用一个整数队列moveTo,它的每个元素表示一个可以安全到达的中间状态。另外还需要一个数据结构记录已被访问过的各个状态,以及已被发现的能够到达当前这个状态的路径。由于在这个问题的解决过程中需要列举的所有状态(二进制0000-1111)一共16种,所以可以构造一个包含16个元素的整数顺序表来实现。顺序表的第i个元素记录状态i是否已被访问过,若已被访问过则在这个顺序表元素中记入前驱状态值,把这个顺序表叫做route。route的每个分量初始值均为-1。route的一个元素具有非负值表示这个状态已访问过,或是正被考虑。最后可以利用route顺序表元素的值建立起正确的状态路径。于是得到农夫过河问题的广度优先算法。
return (0);//狼吃羊
return (1);//其他状态是安全的
}
3、将各个安全状态还原成友好的提示信息的功能模块。
由于程序中route表中最终存放的是整型的数据,如果原样输出不利于最终用户理解问题的解决方案,所以要把各个整数按照4位二进制的各个位置上的0、1代码所表示的含义输出容易理解的文字。
二、【数据结构设计】
求解这个问题的简单的方法是一步一步进行试探,每一步搜索所有可能的选择,对前一步合适的选择再考虑下一步的各种方案。
要模拟农夫过河问题,首先需要对问题中每个角色的位置进行描述。一个很方便的办法是用四位二进制数顺序分别表示农夫、狼、白菜和羊的位置。用0表示农夫或者某东西在河的南岸,1表示在河的北岸。例如整数5(其二进制表示为0101)表示农夫和白菜在河的南岸,而狼和羊在北岸。
if (paqu == NULL)
cout<<"Out of space!"<<endl;
else
paqu->f=paqu->r=0;
return (paqu);
}
int isEmptyQueue_seq( PSeqQueue paqu ) //判断paqu所指是否是空队列
{
return paqu->f==paqu->r;
{
if ((goat(location) == cabbage(location)) && (goat(location) != farmer(location)) )
return 0;
if ((goat(location) == wolf(location)) && (goat(location) != farmer(location)))
return 0;
return 1; //其他状态是安全的
}
void farmerProblem( )
{
4int movers, i, location, newlocation;
int route[16]; //记录已考虑的状态路径
int print[MAXNUM];
PSeqQueue moveTo;
1在具体应用时,采用链队和顺序队均可,为叙述的方便,不妨设为使用顺序队。
三、【功能(函数)设计】
1、确定农夫、狼、羊和白菜位置的功能模块。
用整数location表示上述四位二进制描述的状态,由于采用四位二进制的形式表示农夫、狼、白菜和羊,所以在要使用位操作的“与”操作来考察每个角色所在位置的代码是0还是1。函数返回值为真表示所考察的角色在河的北岸,否则在南岸。例如某个状态和1000做“与”操作后所得结果为0,则说明农夫的位置上的二进制数为0,即农夫在南岸,如果所得结果为1,则说明农夫的位置上的二进制数为1,即农夫在北岸。狼、羊和白菜的处理办法以此类推。可以如下设计函数:
}
int cabbage(int location) //判断白菜位置
{
return 0 != (location & 0x02);
}
int goat(int location) //判断羊的位置
{
return 0 !=(location & 0x01);
}
int safe(int location) //若状态安全则返回true
break;
}
int num=i-1;
int j;
for(i=num;i>=0;i--)
{
}
for(i=1;i<=num;i++)
{
cout<<"\t\t\tNO . "<<i<<"\t";
if(i%2==1)
{
if(temp[i][3]!=temp[i-1][3])
cout<<"农夫带羊过南岸";
现在问题变成:从初始状态二进制0000(全部在河的南岸)出发,寻找一种全部由安全状态构成的状态序列,它以二进制1111(全部到达河的北岸)为最终目标,并且在序列中的每一个状态都可以从前一状态到达。为避免瞎费功夫,要求在序列中不出现重复的状态。
实现上述求解的搜索过程可以采用两种不同的策略:一种是广度优先(breadth_first)搜索,
}
void enQueue_seq(PSeqQueue paqu,int x) //在队列中插入一元素x
{
if ((paqu->r+1)%MAXNUM==paqu->f)
cout<<"队列已满."<<endl;
else
{
paqu->q[paqu->r]=x;
paqu->r=(paqu->r+1)%MAXNUM;
4、输出路径
将二进制的表示转化为文字表示输出,输出过河的各个步骤
2
四、【界面设计】
如果能力和时间允许,可以使用动画设计将运送的过程演示出来。一般情况下可以使用最终的状态表描述出来就可以了。
五、【编码实现】
#include<ห้องสมุดไป่ตู้ostream.h>
#include<stdio.h>
#define MAXNUM 20
{
return (paqu->q[paqu->f]);
}
int farmer(int location) //判断农夫位置对0做与运算,还是原来的数字,用来判断位置
{
return 0 != (location & 0x08);
}
int wolf(int location) //判断狼位置
{
return 0 != (location & 0x04);
typedef struct //顺序队列类型定义
{
int f, r; //f表示头,r表示尾
int q[MAXNUM];//顺序队
}SeqQueue ,*PSeqQueue;
PSeqQueue createEmptyQueue_seq( ) //创建队列
{
PSeqQueue paqu = new SeqQueue;
{if((goat(location) = = cabbage(location)) &&(goat(location)!=farmer(location)))
return (0);//羊吃白菜
if((goat(location) = = wolf(location)) && (goat(location)!= farmer(location)))
cout<<"农夫自己回北岸";
}
cout<<endl;
}
}
else
cout<<"No solution."<<endl;
}
int goat(int location) {
return (0 !=(location & 0x01));
}
2、确定安全状态的功能模块。
此功能模块通过位置分布的代码来判断当前状态是否安全。若状态安全返回1,状态不安全返回0。可以如下设计函数:
int safe(int location)//若状态安全则返回1
cout<<"农夫带狼过南岸";
if(temp[i][3]==temp[i-1][3]&&temp[i][2]==temp[i-1][2]&&temp[i][1]==temp[i-1][1])
cout<<"农夫自己过南岸";
6}
else if(i%2==0)
{
if(temp[i][3]!=temp[i-1][3])
}
}}
}
/*打印出路径*/
if(route[15] != -1)
{
cout<<"过河步骤是: "<<endl;
i=0;
for(location = 15; location >= 0; location = route[location])
{
5print[i]=location;
i++;
if (location == 0)