用空间向量求直线与平面的夹角资料

合集下载

1.4.2用空间向量研究距离、夹角问题之二:夹角问题

1.4.2用空间向量研究距离、夹角问题之二:夹角问题
量的夹角,所以只需要求出这两个平面的
法向量的夹角即可.
典型例题
例5如图,在直三棱柱ABC-A1B1C1中,AC=CB=2,AA1=3,∠ACB=90°,P为BC的
中点,点Q, R分别在棱AA1,BB1上,A1Q=2AQ,BR=2RB1.求平面PQR与平面
A1B1C1夹角的余弦值.
解:先做出平面PQR与平面A1 1 1 的
典型例题
例5如图,在直三棱柱ABC-A1B1C1中,AC=CB=2,AA1=3,
∠ACB=90°,P为BC的中点,点Q, R分别在棱AA1,BB1上,
A1Q=2AQ,BR=2RB1.求平面PQR与平面A1B1C1夹角的余弦值.
分析:因为平面PQR与平面A1B1C1的夹角
可以转化为平面PQR与平面A1B1C1的法向
若异面直线l1,l2所成的角为 (0 ≤ ) ,其方向向量分别为 , Ԧ
则 =< , Ԧ >, 或 = −<, >
Ԧ
2
∙ Ԧ
= < , Ԧ > =
Ԧ
不要将两异面直线所成的角与其方向向量的夹角等
同起来,因为两异面直线所成角的范围是0 ≤ ,而
交线。
做PE⊥ 1 1 于E,则PE//Q1 ,PQ∩
1 = .
PR∩ 1 1 = ,则GH即为平面PQR与
平面A1 1 1 的交线。
做PF⊥ 于F,连C1 , ∠1 就是平面
PQR与平面A1 1 1 的二面角的平面角。
我们在⊿PF1 中求∠1 ,接下去就是
= < 1 , 2 > =
.
1 2
反思:1、三式中到底是sin还是cos,我们要通过记图来记住公

空间向量直线与平面的夹角公式

空间向量直线与平面的夹角公式

直线与平面的夹角公式是什么?
直线与平面的夹角公式为sina=cos=|n·s|/(|n|·|s|),其空间中平面方程为Ax+By+Cz+D=0,法向量n=(A,B,C)。

线面夹角是指过不平行于平面的直线上一点作平面的垂线,这条直线与平面的交点与原直线与平面的交点的连线与原直线构成的锐角或直角。

斜线与它在平面上的射影所成的角为线面夹角。

两平面夹角公式的推导
两平面的夹角公式为:k=(y2-y1)/(×2-x1)。

夹角公式是基本数学公式,分为正切公式和余角公式,正切公式用tan表示,余角公式用cos表示。

两直线的夹角指的是两直线所成的小于等于90°的角,但是当夹角为90°时,k不存在,故当k存在时,正切值始终为正。

用空间向量求直线与平面的夹角

用空间向量求直线与平面的夹角

精品文档
用空间向量求直线与平面的夹角
1、 平面的平行线与平面所成的角:规定为 0°;
2、 平面的垂线与平面所成的角:规定为
90°; 3、 平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这
条直线和这个平面所成的角。

4、 直线和平面所成的角的范围是(0 °,90°);
求斜线与平面所成角的思路类似于求异面直线所成角: “一作,二证,三计算” . AB - m
5、直线AB 与平面所成角: (
'为平面a 的法向
量) 6、两个非零向量夹角的概念:已知两个非零向量 dt 与&,在空间中任取一点
O,作
向;当 ,则/ AOB 叫做向量 ,当 =0时, 2时, -与 h 垂直,记口丄3 。

(2)两个向量的夹角唯一确定且 a r A
7、空间向量夹角的坐标表示: |31 丁 J 凸;+口:+虽-尿+皆+闰 注:(1)规定:
<7T a 与#的夹角,记作
时,
精品文档
欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习资料等等
打造全网一站式需求。

高中数学第二章空间向量与立体几何2.5.3直线与平面的夹角10121数学

高中数学第二章空间向量与立体几何2.5.3直线与平面的夹角10121数学
(1)证明:平面 POD⊥平面 PAC; (2)求二面角 B-PA-C 的余弦值.
12/13/2021
• [证明] 解法1:(1)连接OC,因为OA=OC,
D是AC的中点,所以AC⊥OD.
• 又PO⊥底面⊙O,AC 底面⊙O,所以 AC⊥PO,因为OD,PO是平面POD内的两 条相交直线,所以AC⊥ 平面POD,而AC
12/13/2021
设平面 ADE 法向量 n2=(x2,y2,z2), 则 n2·D→E=n2·A→D=0 解得:n2=(1,0, 2) 设平面 ABD 与平面 ADE 夹角为 θ,
cosθ=|cos〈n1,n2〉|=1+4×0+32=
3 2
∴平面 ABD 与平面 ADE 的二面角平面角为π6.
5.3直线与平面的夹角
12/13/2021
• 1.共面直线的夹角 • 当 角两中条,直范线围在l1与__l2_共_面_[0_,时_π2_],__我__们内把的两角条叫直作线两交直
线的夹角. • 2.异面直线的夹角 • 当直线l1与l2是异面直线时,在直线l1上任取
一点A作AB∥l2,我们把直线l1与直线AB的夹 角叫作异面直线l1和l2的夹角.
12/13/2021
4.平面夹角的概念 在两个平面所成的二面角的平面角中,称范围在 ___[_0_,__π2_]____ 内的角为两个平面的夹角. 5.平面夹角的求法 设平面 α 与平面 β 的法向量分别为 n1 与 n2,两平面的夹角为 θ.当 0≤〈n1,n2〉≤π2时,θ=_〈__n_1_,__n_2_〉___;当π2<〈n1,n2〉≤π 时,θ=_π_-__〈__n_1,__n__2〉_.即 cosθ=|_c_o_s〈__n_1_,__n_2_〉_.|

用空间向量求直线与直线、直线与平面所成的角

用空间向量求直线与直线、直线与平面所成的角

用空间向量求直线与直线、直线与平面所成的角作者:赵春祥来源:《理科考试研究·高中》2012年第03期在立体几何中,关于角的计算均可归结为求两个向量的夹角问题.对于空间向量a、b,有cos〈a,b〉=a·b|a||b|.利用这一结论,我们可以较方便地处理立体几何中的角的问题.一、异面直线所成的角例1如图1,在棱长为a的正方体ABCD-A1B1C1D1中,求异面直线BA1与AC所成角的大小.分析利用cos〈BA1,AC〉=BA1·AC|BA1||AC|,求出向量BA1与AC的夹角〈BA1,AC〉,再根据异面直线所成的角的范围确定异面直线BA1与AC所成角.解因为BA1=BA+BB1,AC=AB+BC,所以BA1·AC=(BA+BB1)·(AB+BC)=BA·AB+BA·BC+BB1·AB+BB1·BC.因为AB⊥BC,BB1⊥AB,BB1⊥BC,所以BA·BC=0,BB1·AB=0,BB1·BC=0,BA·AB=-a2,所以BA·AC=-a2.又cos〈BA1,AC〉=BA1·AC|BA1||AC|=-a22a×2a=-12,所以〈BA1,AC〉=120°.所以异面直线BA1与AC所成的角为60°.例2如图2,ABCD是一直角梯形,∠BAD=90°,AD∥BC,AB=BC=a,AD=2a,且AE⊥PD,E为垂足,PA⊥平面ABCD,PD与平面ABCD成30°角.求异面直线AE与CD所成角的余弦值.解以A为原点,AB、AD、AP所在直线为坐标轴,建立空间直角坐标系,则C(a,a,0)、D(0,2a,0),CD=(-a,a,0).由PA⊥平面ABCD,知∠PDA是PD与平面ABCD所成角,所以∠PDA=30°.在Rt△ADE中,因为AD=2a,所以AE=12AD=a.过E作EF⊥AD于F,在Rt△AEF中,因为AE=a,∠EAF=60°,所以AF=12a,EF=32a,所以E(0,12a,32a).于是AE=(0,12a,32a).设AE与CD的交角为θ,则cosθ=AE·CD|AE||CD|=0×(-a)+a2×a+32a×002+(a2)2+(32)2×(-a)2+a2+02=24.即异面直线AE与CD所成角的余弦值是24.评析求异面直线所成角的关键是求异面直线上两向量的数量积,而要求两向量的数量积,必须把所求向量用空间的一组基向量来表示(例1),或用坐标表示(例2).另外,应注意〈a,b〉的范围是[0,π],而异面直线a与b的夹角范围是(0,π2],两种夹角不一定相等,以防出错.(见例1)二、直线与平面所成的角例2已知四面体O—ABC的各棱长都是1,E,F分别为AB,OC的中点,(1)求OE与BF所成角的余弦值;(2)求BF与面ABC所成角的正弦值.分析取OA,OB,OC为基向量,来表示出OE,BF,再根据向量的夹角公式求解.解(1)记OA=a,OB=b,OC=c,则a·b=b·c=c·a=12.OE=12(a+b),BF=12c-b.OE·BF=12(a+b)·(12c-b)=12(12a·c+12b·c-a·b-|b|2)=12(14+14-12-1)=-12,所以cos〈OE,BF〉=OE·BF|OE||BF|=-1232×32=-23.从而OE与BF所成角的余弦值为23.(2)作OO′⊥平面ABC于O′,设OO′与BF所成角为θ(0因为OO′=13(a+b+c),所以|OO′|2=19(a+b+c)2=19(|a|2+|b|2+|c|2+2a·b+2a·c+2b·c)=19(3+3)=23,所以|OO′|=63.而cos〈OO′,BF〉=13(a+b+c)·(12c-b)63×32=23(12a·c+12b·c+12|c|2-a·b-|b|2-b·c)=23(14+14+12-1[]2-1-12)=-23,所以cosθ=23,从而sinφ=sin(π2-θ)=cosθ=23.即BF与平面ABC所成角的正弦值是23.评析直线l与平面α的夹角φ,是直线l的方向向量l与平面α的法向量n的夹角θ的余角,故有sinφ=cosθ=|l·n||l||n|.。

《直线与平面的夹角》 知识清单

《直线与平面的夹角》 知识清单

《直线与平面的夹角》知识清单一、直线与平面夹角的定义直线与平面的夹角,简单来说,就是直线和它在平面内的射影所成的角。

我们想象一下,一条直线斜着穿过一个平面,那么这条直线和它在平面上留下的影子所形成的那个锐角(或者直角),就是我们所说的直线与平面的夹角。

这个夹角的范围是在0 度到90 度之间。

当直线和平面垂直的时候,夹角就是 90 度;当直线和平面平行的时候,夹角就是 0 度。

二、直线与平面夹角的求法1、几何法(1)找到直线在平面内的射影。

这通常需要通过一些几何图形的性质,比如垂线的性质来确定。

(2)计算出直线和射影所成的角。

可以利用三角函数,比如正切函数来计算这个角的大小。

2、向量法(1)先求出平面的法向量。

法向量是垂直于平面的向量,可以通过平面上两个不共线向量的叉乘来得到。

(2)再求出直线的方向向量。

(3)利用向量的点积公式,计算出直线的方向向量和平面法向量的夹角的余弦值。

(4)根据直线与平面夹角和直线的方向向量与平面法向量夹角的关系,求出直线与平面的夹角。

三、直线与平面夹角的性质1、唯一性直线与平面的夹角是唯一确定的。

无论我们用什么方法去求,得到的结果都是一样的。

2、最小性直线与平面所成的角是这条直线和平面内经过斜足的直线所成角中最小的角。

四、常见题型及解法1、给出直线和平面的几何图形,求夹角这种情况下,我们要善于利用图形中的垂直关系,找到直线在平面内的射影,然后通过解三角形来求出夹角。

2、已知直线和平面的方程,用向量法求夹角先根据方程求出直线的方向向量和平面的法向量,然后按照向量法的步骤进行计算。

五、易错点1、混淆直线与平面夹角和直线与平面内某条直线的夹角要清楚直线与平面夹角是直线和它在平面内的射影所成的角,不是和平面内任意一条直线所成的角。

2、计算错误在使用三角函数或者向量运算时,要注意计算的准确性,特别是一些符号和公式的运用。

3、忽略夹角的范围夹角的范围是 0 度到 90 度,结果超出这个范围就是错误的。

直线与平面的夹角

直线与平面的夹角

直线与平面的夹角直线与平面是几何学中的两个基本概念,它们之间的夹角是研究二者关系的重要内容之一。

本文将从不同角度探讨直线与平面的夹角,包括夹角的定义、计算方法以及在实际问题中的应用。

一、夹角的定义与性质夹角是指由两条直线或者由一条直线和一个平面所形成的角度。

在几何学中,夹角的度量单位通常采用弧度制。

夹角的定义具体如下:定义1:直线与平面的夹角是两者之间的最小的正向的角,这个角是由直线在相交点上方和平面上方所划分的。

根据这个定义,我们可以得到夹角的一些基本性质:性质1:夹角的度数大小不受直线或平面的方向而改变。

性质2:夹角的度数范围为0到180度(或0到π弧度)。

性质3:如果两条直线平行于同一个平面,那么它们与该平面的夹角为零。

二、计算计算直线与平面的夹角可以借助向量的概念来进行,具体步骤如下:步骤1:设定一条直线L和一个平面P,并选择直线L上的一个点A以及平面P上的一个点B。

步骤2:从点A到平面P作垂线,垂足为C。

步骤3:将向量AC和向量BC分别标记为向量a和向量b。

步骤4:计算向量a和向量b的夹角,即夹角的余弦值。

步骤5:夹角的度数可以通过反余弦函数来表示,即夹角的度数为arccos(cosine),其中cosine是步骤4中计算得到的夹角余弦值。

需要注意的是,在计算夹角时,我们需要确保向量a和向量b之间的夹角范围在0到π之间,以便得到直线与平面的最小夹角。

三、直线与平面夹角的应用直线与平面的夹角在几何学和物理学中有着广泛的应用。

以下列举几个相关的应用例子:例子1:光的反射与折射当光线从一个介质进入另一个介质时,会发生折射和反射现象。

直线与平面的夹角可以帮助我们计算光线在介质之间的折射角和反射角,从而理解和预测光的传播路径。

例子2:建筑和工程设计在建筑和工程设计中,直线与平面的夹角可以帮助工程师确定建筑物的结构和材料的选择。

例如,太阳光的入射角可以影响建筑物的采光和能量效率。

例子3:航天与导航航天器和导航系统通常会使用直线与平面的夹角来确定飞行轨迹和导航目标。

空间几何中的平面与直线的夹角

空间几何中的平面与直线的夹角

空间几何中的平面与直线的夹角空间几何是数学中的一个重要分支,研究了点、线、面以及它们之间的关系。

在空间几何中,平面和直线是两个基本的几何元素,它们之间的夹角是我们研究的主题之一。

一、在平面上的夹角在二维平面中,两条线段之间的夹角可以通过它们的斜率来计算。

设直线L1的斜率为k1,直线L2的斜率为k2,则直线L1和L2之间的夹角θ可以表示为:θ = arctan(|(k1-k2)/(1+k1k2)|)其中,arctan函数代表反正切函数,|x|代表x的绝对值。

举个例子来说明,假设直线L1的斜率为1,直线L2的斜率为-1/2,则它们之间的夹角θ可以计算为:θ = arctan(|(1-(-1/2))/(1+1/2)|) = arctan(3/2)二、在三维空间中的夹角在三维空间中,平面与直线的夹角的计算稍微复杂一些。

我们可以通过计算平面的法向量与直线的方向向量之间的夹角来确定。

1. 平面的法向量平面可由一般式方程表示为Ax + By + Cz + D = 0。

其法向量可由系数A、B、C得到,即向量N = (A, B, C)。

2. 直线的方向向量直线可表示为参数方程:x = x0 + aty = y0 + btz = z0 + ct其中向量V = (a, b, c) 就是直线的方向向量。

3. 夹角的计算设平面的法向量为N = (A, B, C),直线的方向向量为V = (a, b, c),则平面与直线的夹角θ可以计算为:θ = arccos(|N·V| / (|N| * |V|))其中,·代表向量的点乘,|N|和|V|分别表示向量N和向量V的模。

举个例子来说明,假设平面的法向量为N = (1, 2, 3),直线的方向向量为V = (4, 5, 6),则它们之间的夹角θ可以计算为:θ = arccos(|(1, 2, 3)·(4, 5, 6)| / (√(1^2+2^2+3^2) * √(4^2+5^2+6^2)))= arccos(32 / (√14 * √77))在计算夹角的过程中,要注意向量的模不为零,否则会出现除数为零的情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品文档
精品文档用空间向量求直线与平面的夹角
1、平面的平行线与平面所成的角:规定为0°;
2、平面的垂线与平面所成的角:规定为90°;
3、平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这
条直线和这个平面所成的角。

4、直线和平面所成的角的范围是(0°,90°);
求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”。

5、直线AB 与平面所成角:(为平面α的法向量);
6、两个非零向量夹角的概念:已知两个非零向量与,在空间中任取一点O ,作
,则∠AOB 叫做向量与的夹角,记作。

注:(1)规定:,当=0时,与同向;当时,与反向;当时,与垂直,记。

(2)两个向量的夹角唯一确定且。

7、空间向量夹角的坐标表示:。

相关文档
最新文档