按键控制LED灯
键盘控制LED灯数码管

代码编写
总结词
代码编写是实现键盘控制LED灯数码管功能的核心环节,需要遵循一定的编程规范和逻 辑。
详细描述
在编写代码时,需要遵循良好的编程规范,如变量命名规范、注释清晰等,以提高代码 的可读性和可维护性。同时,需要确保代码逻辑正确,能够实现预期的功能。在键盘控 制LED灯数码管的实现中,需要编写代码以读取键盘输入,并根据输入控制LED灯数码
•·
• 数码管损坏:可能是数 码管本身损坏,需要更 换新的数码管。 • 程序错误:可能是程序 中存在错误,导致数码 管显示异常,需要检查 程序代码并修正错误。
• 连接问题:检查数码管 的连接线是否牢固,确 保连接线没有短路或断 路。
按键无响应
•·
• 按键损坏:可能是按键本身损 坏,需要更换新的按键。
管的显示。
代码测试
总结词
代码测试是确保键盘控制LED灯数码管功能正常的重要步骤,通过测试可以发现和修复潜在的错误。
详细描述
在完成代码编写后,需要进行充分的测试,以验证功能的正确性和稳定性。测试过程中应涵盖各种可 能的输入情况,包括正常输入和异常输入。通过测试可以发现潜在的错误并及时修复,从而提高整个 项目的质量。
输入。
硬件组装
将各元件按照设计好 的电路图进行连接。
将微控制器与电源连 接,为微控制器供电。
检查连接是否正确, 确保没有任何短路或 断路。
03
软件编程
编程语言选择
总结词
编程语言选择是键盘控制LED灯数码管的关键步骤,需要根据项目需求和开发者技能选择合适的编程语言。
详细描述
在实现键盘控制LED灯数码管的功能时,有多种编程语言可供选择,如C、C、Python等。这些语言各有优缺点, 需要根据项目需求和开发者的编程技能进行选择。例如,C语言具有高效、可控性强的优点,适用于对性能要求 较高的场合;Python则易于学习、语法简洁,适合初学者和快速开发。
4独立按键控制led灯

2)设置四个按键K1—K4,按下K1跑马灯,K2流水灯,K3鸳鸯戏水,K4则循环三种控制方式。
3)跑马灯:共8个LED逐次点亮,每隔100ms点亮一个LED,点亮100ms后关闭。
4)流水灯:共8个LED逐次点亮,每隔100ms点亮一个LED,点亮100ms后下一个LED点亮,当所有LED灯全部点亮后,延时100ms,然后全灭;然后继续上次操作。5)鸳鸯溪水灯:共8个LED,第一次1、3、5、7号灯点亮,延时100ms,关闭,延时100ms,2、4、6、8号灯点亮,延时100ms,关闭,延时100ms。然后继续上次操作。
{
P1=yua[i];
delay(100);
}
}
if(j==4)
{
for(i=0;i<9;i++)
{
P1=pao[i];
delay(100);
}
for(i=0;i<9;i++)
{
while(key2==0)
{
}
j = 2;
}
}
if(key3==0)//如果检测到低电平,说明按键按下
{
delay(10);//延时去抖,一般10-20ms
if(key3==0) //再次确认按键是否按下,没有按下则退出
{
while(key3==0)
{
}
j = 3;
}
}
if(key4==0)//如果检测到低电平,说明按键按下
{
delay(10);//延时去抖,一般10-20ms
if(key4==0) //再次确认按键是否按下,没有按下则退出
单片机独立按键控制led灯实验原理

主题:单片机独立按键控制LED灯实验原理目录1. 概述2. 单片机独立按键控制LED灯实验原理3. 实验步骤4. 结语1. 概述单片机在现代电子设备中起着至关重要的作用,它可以通过编程实现各种功能。
其中,控制LED灯是单片机实验中常见的任务之一。
本文将介绍单片机独立按键控制LED灯的实验原理及实验步骤,希望对初学者有所帮助。
2. 单片机独立按键控制LED灯实验原理单片机独立按键控制LED灯的实验原理主要涉及到单片机的输入输出端口及按键和LED的连接方式。
在单片机实验中,按键与单片机的输入端口相连,LED与单片机的输出端口相连。
通过按键的按下和松开来改变单片机输出端口电平,从而控制LED的亮灭。
3. 实验步骤为了完成单片机独立按键控制LED灯的实验,需要按照以下步骤进行操作:步骤一:准备材料- 单片机板- 按键- LED灯- 连线- 电源步骤二:搭建电路- 将按键与单片机的输入端口相连- 将LED与单片机的输出端口相连- 连接电源步骤三:编写程序- 使用相应的单片机开发软件编写程序- 程序中需要包括按键状态检测和LED控制的部分步骤四:烧录程序- 将编写好的程序烧录到单片机中步骤五:运行实验- 按下按键,观察LED的亮灭情况- 确保按键可以正确控制LED的亮灭4. 结语通过上述实验步骤,我们可以实现单片机独立按键控制LED灯的功能。
这个实验不仅可以帮助学习者了解单片机的输入输出端口控制,还可以培养动手能力和程序设计能力。
希望本文对单片机实验初学者有所帮助,谢谢阅读!实验步骤在进行单片机独立按键控制LED灯实验时,需要按照一定的步骤进行操作,以确保实验能够顺利进行并取得预期的效果。
下面将详细介绍实验步骤,帮助读者更好地理解和掌握这一实验过程。
1. 准备材料在进行单片机独立按键控制LED灯实验前,首先需要准备相应的材料。
这些材料包括单片机板、按键、LED灯、连线和电源。
在选择单片机板时,需要根据具体的实验需求来确定,常见的有51单片机、Arduino等,不同的单片机板具有不同的特性和使用方法,因此需要根据实验要求来选择适合的单片机板。
使用按键控制LED灯亮—按键控制LED灯亮灭程序编写

9课Βιβλιοθήκη 任务编写由一个按键按制一个 LED 灯,当 按键按下时,LED 灯亮再按时 LED 灯 灭的 C 语言程序。
单片机技术及应用
单片机技术及应用
1
工作任务
任务要求:
当独立按
键 key 按下时, 发光二极管
LED 点亮,松 开按键 key 时 发光二极管
LED 熄灭。
任务分析:
按下
P3.0端口为“0”
程
亮
按键Key
序 控
松开
P3.0端口为“0”
制
灭
2
程序设计流程
一、流程图
二、按键软件延时消抖
1.延时程序编写
void delay(uint x)//ms延时函数 { uchar i; while(x--) for(i=0;0<i<123;i++)
下载程序及硬件调试
1.下载程序
2.连接电路
电路连接表
控制端口
连接位置
P1.0
VD26
P3.0
KEY1
3.硬件调试
7
成果展示及评价
•学生进行作品展示
8
任务小结
•学生小结:小组代表总结本组的学习心得,学会了什么, 还有什么没有理解等等。 •教师小结:教师对每组的成果进行点评,并对本节课的知识 点进行总结。
while(1) {
if(key==0) { delay(10); if(key==0) { 灯亮;} } } else {灯灭;} }
4 程序仿真调试
一、利用Proteuse软件绘制电路图
步骤: 打开Protues 软件 创建工程 创建文件 放置元件 连接电路 保存
二、装载Hex文件并仿真
通过按键实现LED灯的亮灭(含两种情况)

通过按键实现LED灯的亮灭(含两种情况)1 #include "stm32f10x.h"// 相当于51单⽚机中的 #include <reg51.h>2 #include "stm32f10x_gpio.h"3/*通过按键实现LED灯的亮灭4*本项⽬是两个效果,烧程序时注意分开5*1、LED实现的效果实是K1⼀直按下LED⼀直亮,直到K1松开LED熄灭6*2、按⼀下key实现LED亮,再按⼀下实现LED灭7*8*/910/*配置GPIO11*step1配置时钟12*结构体:Speed、Mode、Pin13*初始化14*/15int main(void)16 {17//点亮红⾊灯18//step1:使能1920 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);21//结构体22 GPIO_InitTypeDef a;23 a.GPIO_Speed=GPIO_Speed_50MHz;24 a.GPIO_Pin=GPIO_Pin_5;25//推挽输出26 a.GPIO_Mode=GPIO_Mode_Out_PP;27//调⽤GPIO初始化函数28 GPIO_Init(GPIOB,&a);29//设置PB5为低点平30//GPIO_ResetBits(GPIOB,GPIO_Pin_5);31//GPIO_SetBits(GPIOB,GPIO_Pin_5);32333435/**************按键初始*************/3637//step1:时钟使能38 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);39//step2:定义GPIO初始化结构体变量40 GPIO_InitTypeDef b;41 b.GPIO_Speed=GPIO_Speed_50MHz;42 b.GPIO_Pin=GPIO_Pin_0;43//浮空输⼊44 b.GPIO_Mode=GPIO_Mode_IN_FLOATING;45//stept3:调⽤GPIO初始化函数46 GPIO_Init(GPIOA,&b);47/************************1********************************/48/*49*知识点:读取电平的函数:GPIO_ReadInputDataBit(GPIOA,GPIO_Pin_0);50*详细见后⾯截图51*/5253/*LED实现的效果实是K1⼀直按下LED⼀直亮,直到K1松开LED熄灭*/5455while(1)//死循环随时检测按键的情况56 {57//读取引脚的点平并赋值给i58int i = GPIO_ReadInputDataBit(GPIOA,GPIO_Pin_0);59if(i==0)//判断K1的电平是否为060 {61//为0时,设置PB5为⾼电平,62 GPIO_SetBits(GPIOB,GPIO_Pin_5);63 }64else65 {6667//设置PB5为低点平68 GPIO_ResetBits(GPIOB,GPIO_Pin_5);69 }70 }717273/***************************2*********************************/74/*********以下代码实现按键按⼀下LED亮,再按以下LED灭*********/75int pre=0;//上⼀次循环按键的点平76while(1)77 {78//读取引脚的点平79int states = GPIO_ReadInputDataBit(GPIOA,GPIO_Pin_0);80if(states==0&&pre==1)//states是循环时检测的电平,难点在这81 {82//按键刚松开那⼀刻,states马上变为0,但是上⼀次循环中给pre赋的值还是183if(GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_5)==0)//再判断是否为低电平84 {85//给GPIOB端⼝5赋值为⾼电平,实现LED亮86 GPIO_SetBits(GPIOB,GPIO_Pin_5);87 }88else89 {90//给GPIOB端⼝5赋值为低电平,实现LED灭91 GPIO_ResetBits(GPIOB,GPIO_Pin_5);92 }93 }94 pre=states;//把本次循环按键的电平赋值给上⼀次95 }96/*******************************************************************/97 }。
按钮控制LED灯教学设计

按钮控制LED灯教学设计1. 引言按钮控制LED灯是一种基本的电子电路设计,本文将介绍如何使用按钮控制LED灯的原理和步骤,以便初学者能够快速掌握这一基础知识。
2. 设备清单在开始设计之前,我们需要准备以下设备:- Arduino开发板- 面包板- LED灯- 跳线3. 原理介绍按钮控制LED灯的原理很简单,当按钮按下时,电流会经过按钮,然后流入LED灯,从而点亮LED灯。
当按钮松开时,电流断开,LED灯熄灭。
在这个过程中,Arduino开发板起到控制电流流动方向的作用。
4. 连接步骤接下来,我们将详细介绍按钮和LED灯的连接步骤:步骤1:将Arduino开发板连接到面包板上,确保线路连接正确并稳定。
步骤2:将一个跳线连接到Arduino开发板的数字引脚2上,并将另一端连接到面包板的一侧。
这将是我们的按钮引脚。
步骤3:将另一个跳线连接到面包板的相邻位置上,并将其另一端连接到LED的正极。
这将是我们的LED正极引脚。
步骤4:将第三个跳线连接到面包板的另一侧,并将其另一端连接到LED的负极。
这将是我们的LED负极引脚。
5. 代码编写在连接完成后,我们需要编写一段简单的Arduino代码来控制按钮控制LED灯的开关。
```int buttonPin = 2; //将按钮连接到数字引脚2int ledPin = 13; //将LED连接到数字引脚13void setup() {pinMode(ledPin, OUTPUT); //设置LED引脚为输出pinMode(buttonPin, INPUT); //设置按钮引脚为输入}void loop() {int buttonState = digitalRead(buttonPin); //读取按钮状态if (buttonState == HIGH) { //如果按钮按下digitalWrite(ledPin, HIGH); //点亮LED灯} else {digitalWrite(ledPin, LOW); //熄灭LED灯}}```6. 实验结果当我们上传了上述代码到Arduino开发板后,即可通过按钮控制LED灯的开关状态。
按键控制LED灯
(2) 共阳极接法。把发光二极管的阳极连在一起构成公共阳极, 使用时公共阳极接高电平,每个发光二极管的阴极通过电阻与输 入端相连。如图 5-3(c)所示。当笔画(字段)接低电平时被点亮。
2、模拟开关灯
参考程序如下: ORG 0000H L1: JB P3.2,L2
转到L2 CLR P0.0
SJMP L1 L2: JB P3.3,L1
SETB P0.0
SJMP L1 END
;如果P3.2的状态为1(1号键未按),则跳 ;1号键按下,P0.0清0,输出低电平,LED
发光
;如果P3.3的状态为1(2号键未按),则跳 转到L1
;2号键按下,P0.0置1,输出高电平,LED 熄灭
按下1号键时,P3.2=0,程序从L1顺序执 行,P0.0被清0,输出低电平,LED发光, 1号键未按下,程序跳转到L2,检测2号 键,即P3.3的状态,如果P3.3的状态为1 (2号键未按),则跳转到L1,完成一个 循环;如果P3.3的状态为0(2号键被按 下),程序从L2顺序执行,P0.0置1,输 出高电平,LED熄灭。最后执行 SJMP L1,回到开始处继续执行。
分析该程序,我们发现,当按下P3口外接的按 键时,与之连接的引脚变成低电平,单片机执 行MOV A,P3指令时,该引脚的状态输入到A中。 在执行MOV P0,A时,输出到P0口,与之对应 的P0口引脚为低电平,点亮相应的LED灯。 P3.2、P3.3、P3.4、P3.5分别控制P0.2、P0.3、 P0.4、P0.5引脚连接的LED灯。
pyqt框架实现按键控制led灯的亮灭状态实验总结
pyqt框架实现按键控制led灯的亮灭状态实验总结下文以中括号内的主题为中心,详细探讨了使用PyQt框架实现按键控制LED灯的亮灭状态实验,涵盖了实验目的、实验背景、实验步骤、实验结果与分析以及对实验的总结。
一、实验目的本实验的目的是利用PyQt框架实现按键控制LED灯的亮灭状态,通过控制电路中的LED灯,达到对灯的开关进行控制的目的。
通过这个实验,我们可以了解PyQt框架的基本应用以及灯的电路控制原理。
二、实验背景随着科技的不断发展,图形化界面已经成为了现代软件设计的重要一环。
PyQt是Python语言的GUI编程解决方案之一,它结合了Qt库的功能和Python语言的灵活性,具有操作方便、界面友好等特点,被广泛应用于各个领域。
LED灯是现代电子设备中常见的一种指示灯。
通过控制LED灯的亮灭状态,我们可以在软件界面上显示不同的状态,从而提高用户体验。
三、实验步骤1. 确认实验所需硬件设备:一个LED灯、一个电阻、一个面包板、杜邦线等。
2. 搭建电路:将LED灯通过电阻连接到电源正极,并将其负极连接到面包板上。
3. 准备开发环境:安装Python和PyQt,并导入相关库文件。
4. 创建GUI窗口:使用PyQt框架创建一个窗口,并设置窗口大小、标题等属性。
5. 设计界面元素:在窗口中添加一个按钮,用于控制LED灯的亮灭状态。
6. 编写控制逻辑:通过编写相应的代码,实现点击按钮时灯亮灭的切换。
7. 运行程序:在终端中运行程序,查看窗口显示效果。
8. 调试与优化:根据实际情况进行调试,修复可能出现的bug,并对程序进行优化。
四、实验结果与分析经过以上步骤的实验操作,我们成功地使用PyQt框架实现了按键控制LED灯的亮灭状态。
通过点击按钮,我们可以对LED灯进行开关控制,从而在界面上显示不同的状态。
对于实验结果的分析,我们可以从以下几个方面进行讨论:1. 界面友好度:PyQt框架提供了丰富的控件和布局方式,使得界面的设计更加美观、直观。
day12:按键KEY1和KEY2控制LED灯的亮灭
day12:按键KEY1和KEY2控制LED灯的亮灭KEY1控制LED1,KEY2控制LED2bsp_led.h:/* 和LED功能模块相关的程序 */#ifndef __BSP_LED_H__#define __BSP_LED_H__#include "stm32f10x.h"/*宏定义*/#define GPIO_CLK_D4 RCC_APB2Periph_GPIOC // 时钟#define GPIO_PORT_D4 GPIOC // C端⼝#define GPIO_PIN_D4 GPIO_Pin_2 // PC2引脚#define GPIO_CLK_D5 RCC_APB2Periph_GPIOC // 时钟#define GPIO_PORT_D5 GPIOC // C端⼝#define GPIO_PIN_D5 GPIO_Pin_3 // PC2引脚/*参数宏定义*//*digitalTOGGLE(p,i)是参数宏定义,p表⽰LED的端⼝号,ODR是数据输出寄存器,查stm32f10x的官⽅中⽂⼿册的第8.2章的ODR寄存器,要点亮LED,根据原理图,要输出低电平0,C语⾔中,^表⽰异或,即a^b表⽰a和b不同时输出为1,相同时输出为0,⽐如0^1=1,1^1=0,0^0=0,这⾥为什么操作ODR,p是什么?查看stm32f10x.h⽂件,搜索GPIO_TypeDef就会明⽩,i是LED的引脚对应的位电平,经过digitalTOGGLE(p,i) {p->ODR ^= i;}之后,第⼀次p为0,i⼀直为1,第⼀次异或结果输出1,第⼆次输出0,第三次输出1,这样间断输出010101,灯不断亮灭*/#define digitalTOGGLE(p,i) {p->ODR ^= i;}#define LED1_TOGGLE digitalTOGGLE(GPIO_PORT_D4,GPIO_PIN_D4)#define LED2_TOGGLE digitalTOGGLE(GPIO_PORT_D5,GPIO_PIN_D5)/*配置GPIO*/void LED_GPIO_Config(void);#endif /*__BSP_LED_H__*/bsp_led.c:/* 和LED功能模块相关的程序头⽂件 */#include "./led/bsp_led.h" /*绝对路径,也可在Options for target中设置头⽂件*//*GPIO初始化*/void LED_GPIO_Config(void){/*外设结构体*/GPIO_InitTypeDef GPIO_InitStruct_D4, GPIO_InitStruct_D5;/*第⼀步:打开外设的时钟,看stm32f10x_rcc.c这个⽂件的RCC_APB2PeriphClockCmd函数介绍*/RCC_APB2PeriphClockCmd(GPIO_CLK_D4, ENABLE);/*第⼆步:配置外设的初始化结构体*/GPIO_InitStruct_D4.GPIO_Pin = GPIO_PIN_D4; // PC2的那盏LED灯(D4)的引脚GPIO_InitStruct_D4.GPIO_Mode = GPIO_Mode_Out_PP; // 推挽输出模式GPIO_InitStruct_D4.GPIO_Speed = GPIO_Speed_10MHz; // 引脚速率GPIO_InitStruct_D5.GPIO_Pin = GPIO_PIN_D5; // PC3的那盏LED灯(D5)的引脚GPIO_InitStruct_D5.GPIO_Mode = GPIO_Mode_Out_PP; // 推挽输出模式GPIO_InitStruct_D5.GPIO_Speed = GPIO_Speed_10MHz; // 引脚速率/*第三步:调⽤外设初始化函数,把配置好的结构体成员写到寄存器⾥⾯*/GPIO_Init(GPIO_PORT_D4, &GPIO_InitStruct_D4);GPIO_Init(GPIO_PORT_D5, &GPIO_InitStruct_D5);}bsp_key.h:#ifndef __BSP_KEY_H__#define __BSP_KEY_H__#include "stm32f10x.h"#define KEY_ON 1#define KEY_OFF 0// 按键相关的宏定义#define GPIO_CLK_KEY1 RCC_APB2Periph_GPIOA // 端⼝A时钟#define GPIO_PORT_KEY1 GPIOA // A端⼝#define GPIO_PIN_KEY1 GPIO_Pin_0 // PA0引脚#define GPIO_CLK_KEY2 RCC_APB2Periph_GPIOC // 端⼝C时钟#define GPIO_PORT_KEY2 GPIOC // C端⼝#define GPIO_PIN_KEY2 GPIO_Pin_13 // PC13引脚// 配置GPIOvoid KEY_GPIO_Config(void);// 按键扫描,看按键是否被按下,如果按下返回KEY_ON,否则返回KEY_OFF(进⾏宏定义)uint8_t KEY_SCAN(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin);#endif /* __BSP_KEY_H__ */bsp_key.c:#include "./key/bsp_key.h"/* 按键初始化 */void KEY_GPIO_Config(void){/*外设结构体*/GPIO_InitTypeDef GPIO_InitStruct_KEY1, GPIO_InitStruct_KEY2;/*第⼀步:打开外设的时钟,看stm32f10x_rcc.c这个⽂件的RCC_APB2PeriphClockCmd函数介绍*/RCC_APB2PeriphClockCmd(GPIO_CLK_KEY1|GPIO_CLK_KEY2, ENABLE); // 按下KEY1或KEY2/*第⼆步:配置外设的初始化结构体*/GPIO_InitStruct_KEY1.GPIO_Pin = GPIO_PIN_KEY1; // KEY1的引脚GPIO_InitStruct_KEY1.GPIO_Mode = GPIO_Mode_IN_FLOATING; // 浮空输出模式(引脚电平由外部决定) GPIO_InitStruct_KEY1.GPIO_Speed = GPIO_Speed_10MHz; // 引脚速率GPIO_InitStruct_KEY2.GPIO_Pin = GPIO_PIN_KEY2; // KEY1的引脚GPIO_InitStruct_KEY2.GPIO_Mode = GPIO_Mode_IN_FLOATING; // 浮空输出模式(引脚电平由外部决定) GPIO_InitStruct_KEY2.GPIO_Speed = GPIO_Speed_10MHz; // 引脚速率/*第三步:调⽤外设初始化函数,把配置好的结构体成员写到寄存器⾥⾯*/GPIO_Init(GPIO_PORT_KEY1, &GPIO_InitStruct_KEY1);GPIO_Init(GPIO_PORT_KEY2, &GPIO_InitStruct_KEY2);}/* 按键扫描(检测按键是否被按下):GPIOx为端⼝,GPIO_Pin为引脚 */uint8_t KEY_SCAN(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin){/*查看stm32f10x_gpio.h⽂件最后⾯的函数,这个函数表⽰读引脚的输⼊电平(按键触发后输⼊的)*/// 这个函数,如果按键按下,则输出1.8V⾼电平,置1,否则为0if(GPIO_ReadInputDataBit(GPIOx, GPIO_Pin) == KEY_ON){// 如果⼀直按着就进⼊死循环while(GPIO_ReadInputDataBit(GPIOx, GPIO_Pin) == KEY_ON);// 放开按键就置1return KEY_ON;}else{// 否则置0return KEY_OFF;}}main.c:#include "stm32f10x.h"#include "./led/bsp_led.h"#include "./key/bsp_key.h"// 延迟函数void delay(unsigned int i){for(; i!=0; i--);}int main(void){/*GPIO初始化,在程序来到main函数的时候,系统时钟已经配置成72MHz*/LED_GPIO_Config(); // LED初始化KEY_GPIO_Config(); // KEY初始化while(1){// 如果按下KEY1,则D4亮灭,KEY1对应的是PA0,A端⼝的第1个引脚if(KEY_SCAN(GPIOA, GPIO_PIN_KEY1) == KEY_ON){LED1_TOGGLE;}// 如果按下KEY2,则D5亮灭,KEY2对应的是PC13,C端⼝的第14个引脚if(KEY_SCAN(GPIOC, GPIO_PIN_KEY2) == KEY_ON){LED2_TOGGLE;}}}实验现象:程序烧录到板⼦中,⼀开始LED1和LED2都是亮的(应该都是灭的才对),按下KEY1控制LED1的亮和灭,按下KEY2控制LED2的亮和灭============================================下⾯是默认情况下LED2和LED2都是熄灭的情况:main.c/*KEY控制LED亮灭实验,LED⼀开始默认都熄灭,等按下KEY1或KEY2后才能亮*/#include "stm32f10x.h"#include "./led/bsp_led.h"#include "./key/bsp_key.h"// 延迟函数void Delay(unsigned int time){for(;time!=0;time--);}int main(void){uint8_t count = 1;KEY_GPIO_Config();while(1){// LED默认情况下是灭的,等按下KEY1或KEY2时,对应的LED才会亮if(KEY_SCAN(GPIO_PORT_KEY1, GPIO_PIN_KEY1) == KEY_ON){if(count == 1){LED_GPIO_Config(); // 按下KEY1时两个LED都亮LED2_TOGGLE; // 让LED2灭(其实是亮-->灭),时间很短,⼈眼分辨不出来count++;}else{LED1_TOGGLE;}}if(KEY_SCAN(GPIO_PORT_KEY2, GPIO_PIN_KEY2) == KEY_ON){if(count == 1){LED_GPIO_Config(); // 按下KEY2时两个LED都亮LED1_TOGGLE; // 让LED1灭(其实是亮-->灭),时间很短,⼈眼分辨不出来count++;}else{LED2_TOGGLE;}}}}。
单个按键控制4个LED实验报告
单个按键控制4个LED (入门级实验)实验介绍:通过单个按键控制4个LED 灯的亮灭状态。
正常情况下,一个按键控制1 个灯。
在本次实验中,要求使用1个按键,控制4个LED 灯。
通过按键按下的 次数,控制LED 的亮灭状态。
按下1次,1个LED 灯点亮,按下2次,2个LED 灯点亮,按下3次,3个LED 灯点亮,按下4次,4个LED 灯点亮,按下5次, 所有LED 灯都熄灭,如此循环。
如此就可以通过单个按键控制4个LED 灯的亮 灭。
在照明场所,控制LED 灯的点亮个数,就可以控制亮度。
实验目的:在使用单片机等控制器控制周边元件的时候,经常会遇到I/O 口不够用的情 况。
因此在使用的时候,尽量省着用。
本次实验通过单个按键控制4个LED 灯 的亮灭状态,正常情况下需要4个按键,因而达到了节省单片机I/O 口的目的。
通过此次实验室,学习单片机按键的编程控制方法,学习LED 灯输出的控 制方法。
学习最简单的输入设备(按键)控制最简单的输出设备(LED 灯)的 控制方法。
仿真原理图:在仿真软件Pwteus 中绘制仿真原理图如上图所示。
(注意事项:在进行实物 制作时,发光二极管串联的电阻可以省略,因为单片机引脚灌电流的能力有限, 限制了通过发光二极管电流的大小。
在仿真过程中,电阻R2〜R9的大小要合适, 太大LED 将无法点亮。
)VCC AXIA" O19C3 O4.7uF 于X13L2 O►XTAL1POO ADO XTAL2P0.1AO1 P02AD2 PM 仏 D3 R3TPO/lj^W P05AM P06AD6 P0.7AD7psef P2.QW8 P2.1/A9P2.2 心10P2・3fA" ALEP2.4fA12EA "P2.50M3 P1.0 P2.6fA14P2.MM5P3.CMRXD P1.1P3.1/TXDPI .2PI .3 P3.3tlT1PI .4P3.4/T0PI .5 P3.5H1 PI .6P3.&WFPI .7 P37爪DD2.LED <TE :KT>D4LED <TEXT>C11-2-3- 4-s f一亠丄U19AT99CS1 c7EXT>91D1 . LED <TEXT>R2203<TEXT>R5203 <TEXr>D3.LED WF <TE :KT>编程思路:当单片机上电后,所有的I/O 口默认高电平,因而四个发光二极管在单片机上电后,都为熄灭状态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、用LED数码管显示1、2、3、4
按下按键时,点亮正确的字段,就可以显示出数字,下表是实验板上使用的 共阳极LED数码管显示1、2、3、4的字型代码。
数字
1 2
dp
1 1
g
1 0
f
1 1
e
1 0
d
1 0
c
0 1
b
0 0
a
1 0
字段
0F9H 0A4H
3
4
1
1
0
0
1
0
1
1
0
1
0
0
0
0
0
1
0B0H
99H
字节 地址 PX.7 PX.6 PX.5
位地址
PX.4
PX.3
PX.2
PX.1
PX.0
P0
80H
87H
86H
85H
ቤተ መጻሕፍቲ ባይዱ
84H
83H
82H
81H
80H
P1
90H
97H
96H
95H
94H
93H
92H
91H
90H
P2
0A0H
0A7H
0A6H
0A5H
0A4H
0A3H
0A2H
0A1H
0A0H
P3
0B0H
0B7H
任务五 按键控制LED灯
在单片机应用系统中,通常都要求单片机有人机对 话功能。需要输入信息,实现对系统的控制,这时就需 要键盘。单片机的端口除了做输出外也可用做输入。本 任务通过制作一个使用按键控制LED灯,来学习单片机 端口输入的使用方法,同时学习常用的输出设备:LED 数码管。
硬件知识
1、硬件电路原理图
按下1号键时,P3.2=0,程序从L1顺序执 行,P0.0被清0,输出低电平,LED发光, 1号键未按下,程序跳转到L2,检测2号 键,即P3.3的状态,如果P3.3的状态为1 (2号键未按),则跳转到L1,完成一个 循环;如果P3.3的状态为0(2号键被按 下),程序从L2顺序执行,P0.0置1,输 出高电平,LED熄灭。最后执行 SJMP L1,回到开始处继续执行。
2、模拟开关灯
参考程序如下: ORG 0000H L1: JB P3.2,L2 转到L2 CLR P0.0
SJMP L1 L2: JB P3.3,L1 SETB P0.0 SJMP L1 END
;如果P3.2的状态为1(1号键未按),则跳 ;1号键按下,P0.0清0,输出低电平,LED 发光 ;如果P3.3的状态为1(2号键未按),则跳 转到L1 ;2号键按下,P0.0置1,输出高电平,LED 熄灭
3、按键控制任意LED灯点亮
参考程序如下: ORG 0000H ;定位伪指令,指定下一条指令的地址,第 一条指令必须放在0000H L1: MOV A,P3 ;把P3口的状态读入累加器A中 RL A ;A中的内容循环左移 RL A MOV P0,A ;把A中的数据送到P0口,控制P0口输出电平,控 制LED亮灭 SJMP L1 ;返回L1,循环执行程序 END ;结束伪指令 在以上的这段程序中,加了两条RL A指令,实现了两次左移,这 样P3.2、P3.3、P3.4、P3.5分别控制P0.4、P0.5 、P0.6、P0.7引 脚连接的LED灯。由于P0口的排列顺序问题,在实验板上看起来 灯是右移了。
2、89S51单片机端口的输入方法
89S51单片机的外部端口均为双向端口,即:既 可以用做输出,也可以用做输入。用做输入揣口 时应当注意以下问题。 (1)端口用于输入前必须向端口写“1” (2)P0口中无上拉电阻,用做开关输入时必 须外加上拉电阻,而其他端口内部含有上拉电阻 阻,用做开关输入时可不必外接上拉电阻。
0B6H
0B5H
0B4H
0B3H
0B2H
0B1H
0B0H
【实训内容与步骤】
1.按键控制对应LED灯点亮
参考程序如下: ORG 0000H ;定位伪指令,指定下一条指令的地 址, 第一条指令必须放在0000H L1:MOV A,P3 ;把P3口的状态读入累加器A 中 MOV P0,A ;把A中的数据送到P0口,控制P0口 输出 电平,控制LED亮灭 SJMP L1 ;返回L1,循环执行程序 END ;结束伪指令
LED 数码显示器的结构与显示段码
【软件知识】
1、用于输入的指令
举 例 功 能 指 令 指令 功 能 把P3.2端口的状态送到C
读取一个端 口的状 态 读取一组端 口的状 态 根据端口状 态进行 转移操 作
MOV C,bit
MOV C, P3.2
MOV A,dir ect JB bit,标 号
把这段程序在WAV6000中编辑、汇编,用软件 仿真运行、调试无误,把得到bin格式或者hex 格式的目标文件,通过烧录器或者下载线,保 存到单片机的程序存储器中。把单片机插入实 验板插座里,上电运行,按下按键,观察LED 灯的亮灭。 分析该程序,我们发现,当按下P3口外接的按 键时,与之连接的引脚变成低电平,单片机执 行MOV A,P3指令时,该引脚的状态输入到A中。 在执行MOV P0,A时,输出到P0口,与之对应 的P0口引脚为低电平,点亮相应的LED灯。 P3.2、P3.3、P3.4、P3.5分别控制P0.2、P0.3、 P0.4、P0.5引脚连接的LED灯。
举 例
功 能 指 令 指令 功 能 把C的值传送到P0.0端口输出
把Cy的内容传送给 指定位
MOV bit ,C
MOV C,P0.0
把指定位清0 把指定位置1
CLR bit SETB bit
CLR P0.0 SETB P0.1
P0.0清0,输出低电平 P0.1置1,输出高电平
把立即数送内部存 储单元
端口在上拉电阻的作用下保持为高电平 按键按下端口为低电平状态,输入逻辑“0” 输入逻辑“1”
图5-2 独立式按键输入
89S51单片机中各端口用做输入时除P0 端口外,其他端口内部都具有上拉电阻, 因此使用这些端口做开关输入时可不用 外接上拉电阻。由于实验板上的按键使 用了P3口的4根I/O口线,因此可以省略 外接上拉电阻。
MOV direct,#data
MOV P0,#0F9H
把立即数0F9H送给P0端口输出
3、位操作与字节操作
从上表中可以看出:指令MOV C,P3.2 与MOV A,P3有一个很大的不同就是操 作的对象不同。MOV C,P3.2一次操作 一位,而MOV A,P3一次操作一个字节。 类似的以位作为操作对象的指令一共有 17条,称为位处理指令。例如JB P0.1, L1,就是一条位处理指令。
4、LED数码管
LED 数码显示器是一种由 LED 发光二极管组合显示字符的显示器 件。它使用了 8 个LED 发光二极管,其中 7个发光二极管构成字 形“8”的各个笔画(段)a~g,另1 个用于显示小数点dp,故通 常称之为 8 段发光二极管数码显示器。其内部结构如图 5-3(a)所 示。LED 数码显示器有两种连接方法: (1) 共阴极接法。把发光二极管的阴极连在一起构成公共阴极, 使用时公共阴极接低电平。每个发光二极管的阳极通过电阻与输 入端相连。如图 5-3(b)所示。当笔画(字段)接高电平时被点亮。 (2) 共阳极接法。把发光二极管的阳极连在一起构成公共阳极, 使用时公共阳极接高电平,每个发光二极管的阴极通过电阻与输 入端相连。如图 5-3(c)所示。当笔画(字段)接低电平时被点亮。
【拓展训练】
编写程序实现按键显示另外6个数字中的 4个。
位处理指令操作的对象是可直接寻址位,其寻址范围 是00H—0FFH,共256位。其中低128位的地址是连续 的,地址范围是00H—7FH。地址在80H以上的位都是 特殊功能寄存器里的可直接寻址位,这些特殊功能寄 存器的共同特点是其地址(注意:是特殊功能寄存器 自己的字节地址,不是位地址)能被8整除,这样的特 殊功能寄存器有12个,共有93个可直接寻址位(有3个 位IP.7、IP.6、IE.6没有定义)。因此80H以上的位地 址并不连续。详见任务三的相关部分。下表中列出了 P0~P3口字节地址与位地址的关系。
MOV A, P3
把P3中8个端口的状态送到 累加器A中
JB P0.1, L1
如果P0.1为状态“1”,则 转移至L1,如果P0.1 为状态“0”,则顺序 执行 如果P1.6为状态“0”,则 转移至L2,如果P1.6 为状态“1”,则顺序 执行
JNB bit,标 号
JNB P1.6, L2
2、其他指令
3、开关输入的连接方法
当需要使用的开关数量较少时,一般直接使用 独立式按键输入,每个开关占用一个端口,其 优点是编程简单,缺点是占用端口资源多。当 需要的开关数量较多,CPU端口不够用时,使 用矩阵式输入,其优点是占用端口资源少,缺 点是编程比较复杂。本任务中使用独立式按键 输入方法。 图5-2所示为一个独立式按键输入的常用连接 方法,当按键按下时CPU端口为“0”,当按键 松开时CPU端口为“1”。通过程序读取端口状 态就能知道开关的状态。