计量经济学第三版部分答案(第六章之后的)
计量经济学课后答案第六章 自相关

第六章课后答案6.1(1)收入—消费模型为Se = (2.5043) (0.0075)t = (-3.7650) (125.3411)R2 = 0.9978,F = 15710.39,d f = 34,DW = 0.5234(2)对样本量为36、一个解释变量的模型、5%显著水平,查DW统计表可知,d L=1.411,d U= 1.525,模型中DW<d L,显然消费模型中有自相关。
(3)采用广义差分法查5%显著水平的DW统计表可知d L = 1.402,d U = 1.519,模型中DW= 2.0972>d U,说明广义差分模型中已无自相关。
同时,判定系数R2、t、F统计量均达到理想水平。
由差分方程式可以得出:所以最终的消费模型为:6.2(1)给定n=16, ,在的显著水平下,查DW统计表可知,。
模型中,所以可以判断模型中存在正自相关。
给定n=16, ,在的显著水平下,查DW统计表可知,。
模型中,所以可以判断模型中不存在自相关。
(2)自相关可能由于模型6.1的误设,因为它排除了趋势的平方项。
(3)虚假自相关是由于模型的误设造成的,因此就要求对可能的函数形式有先验知识。
真正的自相关是可以通过广义差分法等方法来修正。
6.3(1)收入—消费模型为(2)DW=0.575,取,查DW上下界,说明误差项存在正自相关。
(3)采用广义差分法使用普通最小二乘法估计的估计值,得DW=1.830,已知,模型中因此,在广义差分模型中已无自相关。
由差分方程式可以得出:因此,修正后的回归模型应为6.4(1)回归结果如下:(2)模型检验:从回归结果可以看出,参数均显著,模型拟和较好。
异方差的检验:通过white检验可以得知模型不存在异方差。
DW检验:给定n=25, ,在的显著水平下,查DW统计表可知,。
模型中,所以可以判断模型中存在正自相关。
(3)采用广义差分法修正模型中存在的自相关问题:给定n=24,,在的显著水平下,查DW统计表可知,。
计量经济学实验答案--第三版

实验一P42第二章第6题=+GDP+Dependent Variable: YMethod: Least SquaresDate: 01/11/08 Time: 09:03Sample: 1985 1998Included observations: 14Variable Coefficient Std.Errort-Statistic Prob.C12596.271244.56710.121010.0000GDP26.954154.1203006.5417920.0000 R-squared0.781002 Meandependent var20168.57Adjusted R-squared 0.762752 S.D. dependentvar3512.487S.E. of regression 1710.865 Akaike infocriterion17.85895Sum squared resid 35124719 Schwarzcriterion17.95024Log likelihood-123.0126 F-statistic42.79505Durbin-Watsonstat0.859998 Prob(F-statistic)0.000028(10.1) ( 6.5), =0.78 =0.76(一)对回归方程的结构分析:是这个样本回归方程的斜率,它表示GDP每增加1亿元,某市将增加26.95的货物运输量;是样本回归方程的截距,它表示不受GDP影响的某市的货物运输量。
(二)统计检验=0.78,说明总离差平方和的78%被样本回归直线解释,有22%未被解释,因此,样本回归直线的拟合优度是可以的。
给出显著水平,查自由度v=14-2=12的t分布表,得临界值,,,固回归系数均显著不为零,回归模型中应包含常数项,GDP对Y有显著影响。
(三)预测2000年的某市货物运输量假如2000年某市以1980年不变价的国内生产总值为620亿元,得到2000年货物运输量的预测值29307.84万吨。
《计量经济学》第六章精选题及答案

第六章自相关二、问答题1、那些原因可以造成自相关;2、存在自相关时,参数的OLS估计具有哪些性质;3、如何检验是否存在自相关;4、当存在自相关时,如何利用广义差分法进行参数估计;5、当存在自相关时,如何利用广义最小平方估计法进行参数估计;6、异方差与自相关有什么异同;三、计算题1、证明:当样本个数较大时,)d。
≈-1(2ρα2、通过D-W检验,判断下列模型中是否存在自相关,显著性水平%5=(1)样本大小:20;解释变量个数(包括常数项):2;d=0.73;(2)样本大小:35;解释变量个数(包括常数项):3;d=3.56;(3)样本大小:50;解释变量个数(包括常数项):3;d=1.87;(4)样本大小:80;解释变量个数(包括常数项):6;d=1.62;(5)样本大小:100;解释变量个数(包括常数项):5;d=2.41;3、假定存在下表所示的时间序列数据:请回答下列问题:(1)利用表中数据估计模型:t t t x y εββ++=10;(2)利用D-W 检验是否存在自相关?如果存在请用d 值计算估计自相关系数ρ;(3)利用广义差分法重新估计模型:'''1011(1)()t t tt t y y x x ρβρβρε---=-+-+。
第三部分 参考答案二、问答题1、那些原因可以造成自相关?答:造成自相关的原因大致包括以下六个方面:(1)经济变量的变化具有一定的倾向性。
在实际的经济现象中,许多经济变量的现值依赖于他的前期值。
也就是说,许多经济时间序列都有一个明显的相依性特点,这种现象称作经济变量所具有的惯性。
(2)缺乏应有变量的设定偏差。
(3)不正确的函数形式的设定错误。
(4)蛛网现象和滞后效应。
(5)随机误差项的特征。
(6)数据拟合方法造成的影响。
2、存在自相关时,参数的OLS 估计具有哪些性质?答:当存在自相关,即I D ≠ΩΩ=,)(2σε时,OLS 估计的性质有:(1)βˆ是观察值Y 和X 的线性函数;(2)βˆ是β的无偏估计;(3)βˆ的协方差矩阵为112)()()ˆ(--'Ω''=X X X X X X D σβ;(4)βˆ不是β的最小方差线性无偏估计;(5)如果nX X n Ω'∞→lim存在,那么βˆ是β的一致估计;(6)2σ 不是2σ的无偏估计;(7)2σ不是2σ的一致估计。
《计量经济学》第三版课后题李子奈

第一章绪论参考重点:计量经济学的一般建模过程第一章课后题(1.4.5)1.什么是计量经济学?计量经济学方法与一般经济数学方法有什么区别?答:计量经济学是经济学的一个分支学科,是以揭示经济活动中客观存在的数量关系为内容的分支学科,是由经济学、统计学和数学三者结合而成的交叉学科。
计量经济学方法揭示经济活动中各个因素之间的定量关系,用随机性的数学方程加以描述;一般经济数学方法揭示经济活动中各个因素之间的理论关系,用确定性的数学方程加以描述。
4.建立与应用计量经济学模型的主要步骤有哪些?答:建立与应用计量经济学模型的主要步骤如下:(1)设定理论模型,包括选择模型所包含的变量,确定变量之间的数学关系和拟定模型中待估参数的数值范围;(2)收集样本数据,要考虑样本数据的完整性、准确性、可比性和—致性;(3)估计模型参数;(4)检验模型,包括经济意义检验、统计检验、计量经济学检验和模型预测检验。
5.模型的检验包括几个方面?其具体含义是什么?答:模型的检验主要包括:经济意义检验、统计检验、计量经济学检验、模型的预测检验。
在经济意义检验中,需要检验模型是否符合经济意义,检验求得的参数估计值的符号与大小是否与根据人们的经验和经济理论所拟订的期望值相符合;在统计检验中,需要检验模型参数估计值的可靠性,即检验模型的统计学性质;在计量经济学检验中,需要检验模型的计量经济学性质,包括随机扰动项的序列相关检验、异方差性检验、解释变量的多重共线性检验等;模型的预测检验主要检验模型参数估计量的稳定性以及对样本容量变化时的灵敏度,以确定所建立的模型是否可以用于样本观测值以外的范围。
第二章经典单方程计量经济学模型:一元线性回归模型参考重点:1.相关分析与回归分析的概念、联系以及区别?2.总体随机项与样本随机项的区别与联系?3.为什么需要进行拟合优度检验?4.如何缩小置信区间?(P46)由上式可以看出(1).增大样本容量。
样本容量变大,可使样本参数估计量的标准差减小;同时,在同样置信水平下,n 越大,t 分布表中的临界值越小。
《计量经济学》第三版课后题答案李子奈

第一章绪论(一)参考重点:计量经济学的一般建模过程第一章课后题(1.4.5)1.什么是计量经济学?计量经济学方法与一般经济数学方法有什么区别?答:计量经济学是经济学的一个分支学科,是以揭示经济活动中客观存在的数量关系为内容的分支学科,是由经济学、统计学和数学三者结合而成的交叉学科。
计量经济学方法揭示经济活动中各个因素之间的定量关系,用随机性的数学方程加以描述;一般经济数学方法揭示经济活动中各个因素之间的理论关系,用确定性的数学方程加以描述。
4.建立与应用计量经济学模型的主要步骤有哪些?答:建立与应用计量经济学模型的主要步骤如下:(1)设定理论模型,包括选择模型所包含的变量,确定变量之间的数学关系和拟定模型中待估参数的数值范围;(2)收集样本数据,要考虑样本数据的完整性、准确性、可比性和—致性;(3)估计模型参数;(4)检验模型,包括经济意义检验、统计检验、计量经济学检验和模型预测检验。
5.模型的检验包括几个方面?其具体含义是什么?答:模型的检验主要包括:经济意义检验、统计检验、计量经济学检验、模型的预测检验。
在经济意义检验中,需要检验模型是否符合经济意义,检验求得的参数估计值的符号与大小是否与根据人们的经验和经济理论所拟订的期望值相符合;在统计检验中,需要检验模型参数估计值的可靠性,即检验模型的统计学性质;在计量经济学检验中,需要检验模型的计量经济学性质,包括随机扰动项的序列相关检验、异方差性检验、解释变量的多重共线性检验等;模型的预测检验主要检验模型参数估计量的稳定性以及对样本容量变化时的灵敏度,以确定所建立的模型是否可以用于样本观测值以外的范围。
第二章经典单方程计量经济学模型:一元线性回归模型参考重点:1.相关分析与回归分析的概念、联系以及区别?2.总体随机项与样本随机项的区别与联系?3.为什么需要进行拟合优度检验?4.如何缩小置信区间?(P46)由上式可以看出(1).增大样本容量。
样本容量变大,可使样本参数估计量的差减小;同时,在同样置信水平下,n越大,t分布表中的临界值越小。
计量经济学第三版部分答案第六章之后的1教学提纲

学习-----好资料第六章1、答:给定显著水平α,依据样本容量n和解释变量个数k',查D.W.表得d统计量的上界du和下界dL,当0<d<dL时,表明存在一阶正自相关,而且正自相关的程度随d向0的靠近而增强。
当dL<d<du时,表明为不能确定存在自相关。
当du<d<4-du时,表明不存在一阶自相关。
当4-du<d<4-dL时,表明不能确定存在自相关。
当4-dL<d<4时,表明存在一阶负自相关,而且负自相关的程度随d向4的靠近而增强。
前提条件:DW检验的前提条件:(1)回归模型中含有截距项;(2)解释变量是非随机的(因此与随机扰动项不相关)(3)随机扰动项是一阶线性自相关。
;(4)回归模型中不把滞后内生变量(前定内生变量)做为解释变量。
(5)没有缺失数据,样本比较大。
DW检验的局限性:(1)DW检验有两个不能确定的区域,一旦DW值落在这两个区域,就无法判断。
这时,只有增大样本容量或选取其他方法(2)DW统计量的上、下界表要求n?15, 这是因为样本如果再小,利用残差就很难对自相关的存在性做出比较正确的诊断(3) DW检验不适应随机误差项具有高阶序列相关的检验.(4) 只适用于有常数项的回归模型并且解释变量中不能含滞后的被解释变量2、答:(1)当回归模型随机误差项有自相关时,普通最小二乘估计量是有偏误的和非有效的。
判断:错误。
当回归模型随机误差项有自相关时,普通最小二乘估计量是无偏误的和非有效的。
(2)DW检验假定随机误差项u的方差是同方差。
i判断:错误。
DW统计量的构造中并没有要求误差项的方差是同方差。
?为-1。
(3)用一阶差分法消除自相关是假定自相关系数?为1,即原原模型存在完全一阶判断:错误。
用一阶差分法消除自相关是假定自相关系数正自相关。
(4)当回归模型随机误差项有自相关时,普通最小二乘估计的预测值的方差和标准误差不再是有效的。
计量经济学_第三版_李子奈__课后习题答案

第一章 绪论
(一)基本知识类题型 1-1. 什么是计量经济学? 1-2. 简述当代计量经济学发展的动向。 1-3. 计量经济学方法与一般经济数学方法有什么区别? 1-4.为什么说计量经济学是经济理论、数学和经济统计学的结合?试述三者之关系。 1-5.为什么说计量经济学是一门经济学科?它在经济学科体系中的作用和地位是什么? 1-6.计量经济学的研究的对象和内容是什么?计量经济学模型研究的经济关系有哪两个基 本特征? 1-7.试结合一个具体经济问题说明建立与应用计量经济学模型的主要步骤。 1-8.建立计量经济学模型的基本思想是什么? 1-9.计量经济学模型主要有哪些应用领域?各自的原理是什么? 1-10.试分别举出五个时间序列数据和横截面数据,并说明时间序列数据和横截面数据有和 异同? 1-11.试解释单方程模型和联立方程模型的概念,并举例说明两者之间的联系与区别。 1-12.模型的检验包括几个方面?其具体含义是什么? 1-13.常用的样本数据有哪些? 1-14.计量经济模型中为何要包括随机误差项?简述随机误差项形成的原因。 1-15.估计量和估计值有何区别?哪些类型的关系式不存在估计问题? 1-16.经济数据在计量经济分析中的作用是什么? 1-17.下列假想模型是否属于揭示因果关系的计量经济学模型?为什么?
。 第 t 年农村居民纯收入总额(亿元) 1-18.指出下列假想模型中的错误,并说明理由:
. IVt (1) RS t 8300.0 0.24 RI t 112
(城镇 其中, RS t 为第 t 年社会消费品零售总额(亿元) , RI t 为第 t 年居民收入总额(亿元) 居民可支配收入总额与农村居民纯收入总额之和) , IVt 为第 t 年全社会固定资产投资总额
2
习题参考答案
计量经济学第三版部分答案(第六章之后的).(精选)

第六章1、答:给定显著水平α,依据样本容量n和解释变量个数k’,查D.W.表得d统计量的上界du和下界dL,当0<d<dL时,表明存在一阶正自相关,而且正自相关的程度随d向0的靠近而增强。
当dL<d<du时,表明为不能确定存在自相关。
当du<d<4-du时,表明不存在一阶自相关。
当4-du<d<4-dL时,表明不能确定存在自相关。
当4-dL<d<4时,表明存在一阶负自相关,而且负自相关的程度随d向4的靠近而增强。
前提条件:DW检验的前提条件:(1)回归模型中含有截距项;(2)解释变量是非随机的(因此与随机扰动项不相关)(3)随机扰动项是一阶线性自相关。
;(4)回归模型中不把滞后内生变量(前定内生变量)做为解释变量。
(5)没有缺失数据,样本比较大。
DW检验的局限性:(1)DW检验有两个不能确定的区域,一旦DW值落在这两个区域,就无法判断。
这时,只有增大样本容量或选取其他方法(2)DW统计量的上、下界表要求n≥15, 这是因为样本如果再小,利用残差就很难对自相关的存在性做出比较正确的诊断(3) DW检验不适应随机误差项具有高阶序列相关的检验.(4) 只适用于有常数项的回归模型并且解释变量中不能含滞后的被解释变量2、答:(1)当回归模型随机误差项有自相关时,普通最小二乘估计量是有偏误的和非有效的。
判断:错误。
当回归模型随机误差项有自相关时,普通最小二乘估计量是无偏误的和非有效的。
(2)DW检验假定随机误差项u i的方差是同方差。
判断:错误。
DW统计量的构造中并没有要求误差项的方差是同方差。
ρ为-1。
(3)用一阶差分法消除自相关是假定自相关系数ρ为1,即原原模型存在完全一阶判断:错误。
用一阶差分法消除自相关是假定自相关系数正自相关。
(4)当回归模型随机误差项有自相关时,普通最小二乘估计的预测值的方差和标准误差不再是有效的。
判断:正确。
3、答:给定显著水平α=0.05,依据样本容量n=50和解释变量个数k’=4,查D.W.表得d 统计量的上界du=1.721,下界dL=1.378,4- du=2.279,4-dL=2.622。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章1、答:给定显著水平α,依据样本容量n 和解释变量个数k’,查D.W.表得d 统计量的上界du 和下界dL ,当0<d<dL 时,表明存在一阶正自相关,而且正自相关的程度随d 向0的靠近而增强。
当dL<d<du 时,表明为不能确定存在自相关。
当du<d<4-du 时,表明不存在一阶自相关。
当4-du<d<4-dL 时,表明不能确定存在自相关。
当4-dL<d<4时,表明存在一阶负自相关,而且负自相关的程度随d 向4的靠近而增强。
前提条件:DW 检验的前提条件:(1)回归模型中含有截距项;(2)解释变量是非随机的(因此与随机扰动项不相关)(3)随机扰动项是一阶线性自相关。
;(4)回归模型中不把滞后内生变量(前定内生变量)做为解释变量。
(5)没有缺失数据,样本比较大。
DW 检验的局限性:(1)DW 检验有两个不能确定的区域,一旦DW 值落在这两个区域,就无法判断。
这时,只有增大样本容量或选取其他方法(2)DW 统计量的上、下界表要求n ≥15, 这是因为样本如果再小,利用残差就很难对自相关的存在性做出比较正确的诊断(3) DW 检验不适应随机误差项具有高阶序列相关的检验.(4) 只适用于有常数项的回归模型并且解释变量中不能含滞后的被解释变量2、答:(1)当回归模型随机误差项有自相关时,普通最小二乘估计量是有偏误的和非有效的。
判断:错误。
当回归模型随机误差项有自相关时,普通最小二乘估计量是无偏误的和非有效的。
(2)DW 检验假定随机误差项u i 的方差是同方差。
判断:错误。
DW 统计量的构造中并没有要求误差项的方差是同方差 。
(3)用一阶差分法消除自相关是假定自相关系数为-1。
判断:错误。
用一阶差分法消除自相关是假定自相关系数为1,即原原模型存在完全一阶正自相关。
(4)当回归模型随机误差项有自相关时,普通最小二乘估计的预测值的方差和标准误差不再是有效的。
判断:正确。
3、答:给定显著水平α=0.05,依据样本容量n=50和解释变量个数k’=4,查D.W.表得d 统计量的上界du=1.721,下界dL=1.378,4- du=2.279,4-dL=2.622。
(1)DW=1.05<dL ,所以模型存在正自相关。
(2) dL <DW=1.40<du, 所以模型不能确定是否存在自相关。
ρρ(3)4- du <DW=2.50< 4-dL,所以模型不能确定是否存在自相关。
(4)DW=3.97>4-dL,所以模型存在负自相关。
4、在回归模型方程中无自相关,如果我们错误地判定模型中有一阶自相关,并使用了广义差分模型,将会产生什么问题?练习题6.1(1)建立居民收入-消费函数Y=79.93004+0.690488X(2)残差的变动有系统模式,连续为正和连续为负,表明残差项存在一阶自相关。
DW=0.574663,查表可知0<=DW<=dL,误差项存在着自相关用广义差分法进行补救Ρ=0.657352Yt*=45.35242+0.709686Xt*其中Yt*=Yt-0.657352Yt(-1),Xt*=Xt-0.657352Xt(-1)模型中DW=1.814502.dU<DW<4-dU,说明在5%显著性水平下广义差分模型已无自相关。
β=45.35242/(1-0.657352)=140.563152由此,得到的最终消费模型为:Y=140.563152+0.709686X(3)该模型的经济意义是,人均实际收入每增加一元,人均实际消费支出会增加0.669262元。
第七章7.3 库伊克模型、自适应预期模型与局部调整模型有哪些共性和不同之处?模型估计会存在哪些困难?如何解决?答:(1)相同之处:库伊克模型、自适应预期模型、局部调整模型三个模型的最终形式都是一阶自回归模型。
(2)不同之处:1)导出模型的经济背景和思想不同。
库伊克模型是在无限分布滞后模型的基础上,根据库伊克几何分布滞后假定导出的;自适应预期模型是由解释变量自适应过程得到的;局部调整模型是由应变量的局部调整得到的。
2)模型存在的问题不同。
三个模型的形成机理不同,所以随机误差项的结构不同,库伊克模型和自适应预期模型都存在自相关、解释变量与随机误差项相关的问题;而局部调整模型则不存在。
库伊克模型和自适应预期模型不能够直接使用最小二乘法直接估计,而局部调整模型则可以。
(2)模型估计存在的困难及解决的方法(a)出现了随机解释变量Yt-1 ,而Yt-1 可能与随机扰动项相关;(b)随机扰动项可能自相关,库伊克模型和自适应预期模型的随机扰动项都会导致自相关,只有局部调整模型的随机扰动无自相关.如果用最小二乘法直接估计自回归模型,则估计可能是有偏的,而且不是一致估计。
估计自回归模型需要解决两个问题:设法消除与的相关性;检验是否存在自相关。
所以应用工具变量法进行估计一阶自回归模型,就是在进行参数估计的过程中选择适当的工具变量,代替回归模型中同随机扰动项存在相关性的解释变量。
7.6 检验一阶自回归模型随机扰动项是否存在自相关,为什么用德宾h-检验而不用DW检验?答:因为DW检验法不适合于方程含有滞后被解释变量的场合,在自回归模型中,滞后被解释变量是随机变量,已有研究表明,如果用DW检验法,则d统计量值总是趋近于2。
也就是说,在一阶自回归中,当随机扰动项存在自相关时,DW检验却倾向于得出非自相关的结论。
练习题7.4(1)估计一阶自回归模型;回归估计:Yt=66247+0.04731X1t+0.27507X2t+0.4552Yt-1根据局部调整模型的函数关系,有lna*= δlna, β*0=δβ0, β*1=δβ1 ,β*2=1-δ将估计结果带入可得:δ=0.594479 a=111437073 β0=0.0796 β1=0.4627局部调整模型估计结果为Y*t=111437073+0.0796X1t+0.4627X2t经济意义:社会商品销售额每增加1亿元,未来预期年末货币流通量增加0.0796亿元城乡居民储蓄余额每增加1亿元,未来预期年末货币流通量增加0.4627亿元模型对数变换:在局部调整假定下,估计一阶自回归模型回归估计lnYt=0.672511+0.200421lnX1t+0.18120lnX2t+0.52471lnYt-1根据局部调整模型的参数关系,lna*= δlna, β*0=δβ0, β*1=δβ1 ,β*2=1-δ将估计结果带入可得:δ=0.465282 a=1.44538 β0=0.43075 β1=0.38944局部调整模型估计结果为:lnYt=1.44538+0.43075lnX1t+0.3894lnX2t经济意义:社会商品销售额每增加1%,未来预期年末货币流通量增加0.43075% 城乡居民储蓄余额每增加1%,未来预期年末货币流通量增加0.38944%第八章8.2虚拟变量为何只选0、1,选2、3、4行吗?为什么?答:虚拟变量是非此即彼的问题,一般情形下,虚拟变量的取值为0和1。
当虚拟变量取值为0时,表示某种属性或状态的类型或水平不出现或不存在;当虚拟变量取值为1时,表示某种属性或状态的类型或水平出现或存在。
取值一般不选2、3、4,否则对回归系数的分析带来不便。
8.5四种加法方式引入虚拟变量会产生什么效应?答:四种加法方式引入虚拟变量均改变了截距,可以用于分析虚拟变量不同类之间的水平差异。
8.6引入虚拟被解释变量的背景是什么?含有虚拟被解释变量模型的估计方法有哪些?答:某经济现象或活动受到多种因素的影响,需要对这一经济现象或活动进行是或否的判断或决策时,需要引入被解释变量。
虚拟被解释变量模型的估计方法主要有线性概率模型估计和对数单位模型估计。
练习题8.6经分析得边际效应=10第九章9.3 检验变量设定误差有哪几种方法?他们的共性和差异是什么?常用方法有:DW检验、LM检验、RESET检验、模型函数形式设定检验。
9.4 如何进行遗漏变量设定误差的后果分析?其检验有哪些方法?如何检验?当模型遗漏了真实的变量后,模型的参数估计是有偏且不一致的:参数估计的方差估计不正确,随机扰动项方差的估计也是不正确的,将使假设检验、空间估计失效。
检验的方法有DW检验、LM检验、RESET检验、模型函数形式设定检验。
9.5如何进行无关变量设定误差的后果分析?其检验有哪些方法?如何检验?模型的参数估计任然是无偏且一致的,随机扰动项的方差被正确估计,但所估计的方差将趋之于过大,从而使得参数估计的有效性降低,参数估计较为不准确,区间估计的精度下降。
检验方法除了上诉四种以外还有非嵌套模型设定的假设检验等。
练习题9.6答:在截面数据情况下题中所说的四条准则是正确的;但是在时序数据情况下,上诉准则则不一定是正确的。
第十章10.1 对时间序列进行分析,为什么提出平稳性问题?平稳是时间序列里面一个非常重要的假设,模型ar, ma, arma, var,garch,arch全部建立在时序平稳的基础上。
(1)计量经济学经典分析方法隐含着一个重要假设:数据是平稳的。
如果数据非平稳,那么在大样本下的统计推断基础——“一致性”要求就会被破坏。
这往往导致“伪回归”问题的出现。
但实践经验证明,现实经济现象中的时间序列数据通常是非平稳的,而且一些主要的国民经济变量往往表现出一致的上升或下降,这使得两个没有任何因果关系的变量,拥有较高的R^2。
通过经典因果关系模型对这样的数据进行分析很难获得有效的统计量,分析、检验和预测结果也都是无效的,时间序列的平稳性对计量回归分析的有效性有很大影响;(2)经典计量经济模型假定变量均为随机的,但时间序列是在不同时间观测的数据,不能看做是同一个随机变量的反复抽样,而只能是随机过程的一个实现,每个数据都是特定时间随机变量的唯一实现值,其样本均值和方差的含义与随机变量反复抽样的样本总体均值和方差有所不同,这有悖于经典计量经济模型统计推断的基础。
因而,对时间序列进行分析时,首先要考虑其平衡性问题。
10.3 什么是非平稳?为什么随机游走过程是非平稳的?所谓时间序列的非平稳,是指时间序列的统计规律随着时间的位移而发生变化,即生成变量时间序列数据的随机过程的特征随时间而变化。
对于随机游走序列,它的均值为零、方差无限大,所以它是一非平稳序列10.5怎样判断变量之间是否存在协整关系有两种检验方法,一种是基于回归残差的协整检验,这种检验也称为单一方程的协整检验;另一种是基于回归系数完全信息的Johansen协整检验。
10.6 什么是误差修正机制?误差修正模型的特点是什么?任何一组相互协整的时间序列变量都存在误差修正机制,误差修正模型把长期关系和短期变动结合起来,使得协整与误差修正模型之间存在一种对应关系,当变量之间存在协整关系时,变量在本期的变动,会根据上期偏差的情况做出调整,从而使其向长期均衡关系靠拢,这种不断进行调整的过程就是误差修正机制。