燃气轮机及其热力循环

合集下载

2-燃气轮机-第二讲(热力循环)

2-燃气轮机-第二讲(热力循环)

比功与压比、温比的关系: 比功与压比、温比的关系:
结论2——效率与压比、温比的关系: 结论2——效率与压比、温比的关系: 效率与压比 仅取决于压比π,而与温比τ (1)燃气轮机的循环效率 仅取决于压比 ,而与温比 )燃气轮机的循环效率η仅取决于压比 无关; 无关; 随压比增大而增大。 (2)效率 随压比增大而增大。 )效率η随压比增大而增大
其他多种热力循环组合的联合循环
–必要性:单独的一种热力循环各有优缺点,而几种 必要性:单独的一种热力循环各有优缺点, 必要性 热力循环结合使用则可扬长避短,达到理想效果。 热力循环结合使用则可扬长避短,达到理想效果。 –多种热力循环组合的联合循环方式: 多种热力循环组合的联合循环方式: 多种热力循环组合的联合循环方式 间冷再热循环 间冷回热循环 再热回热循环 间冷再热回热循环 燃气-蒸汽联合循环
第二讲
燃气轮机热力循环
一、燃气轮机的理想简单循环 二、理想简单循环效率的影响因素 三、燃气轮机的实际简单循环 四、燃气轮机常见其他热力循环
第一节 燃气轮机的简单循环
思考题一:何为理想循环? 思考题一:何为理想循环? 1、理想气体 、 2、稳定流动 、 3、可逆过程 、
二、理想简单循环
思考题二:简单循环的组成? 思考题二:简单循环的组成?
q3-4= 0
工质在涡轮中膨胀做功,称为膨胀功wT
= c p (T3* − T4* )
= c pT3* (1 − π* -m )
* * p − v图上,wT = 面积3-4-p1 -p2 -3
④4s-1 大气中的等压放热过程
q2 = q4−1 = h − h
* 4
* 1
kJ/kg
q1
= c p (T4* − T1* )

燃气轮机的实际热力循环

燃气轮机的实际热力循环
燃气轮机的实际热力循环
作者:水之北
1. 燃气轮机的实际循环 1.1. 燃气轮机的实际循环如图 1 的实线所示,包括四个热力过程:
n n n
熵增的多变压缩过程:空气从 p1 压缩至 p2; 略有压降的的加热过程:燃烧后的烟气温度从 T2 升至 T3,压力从 p2 略降至 p3; 熵增的多变膨胀过程,热烟气从 p3 膨胀至 p4=p1,烟温从 T3 降至 T4; 等压放热过程,膨胀后的烟气从 T4 冷却至 T1。
h 02 h 01 1 h 02s h 01 c
(1)
其中ηc 是压气机的效率。那么:
h 02 h 02s 1 c h01 c
~1~
(Байду номын сангаас)
过程 1—2 的空气压缩功为:
L c 1 h 02 h 01
(3)
2.2. 略有压降的加热过程 2—3 已知参数:p2,T2,T3; 求解参数:p3,q2-3。 设燃烧室总压恢复系数为 σb,则:
(8)
将(8)带入(5) ,得到:
mf h 03 h 02 b H f K 03h 03 h f 2
(9)
2.3. 熵增膨胀过程 3—4 已知参数:p3,T3,p4; 求解参数:T4。
~2~
与式(1)类似,3—4 的等熵和熵增过程之间的关系为:
h g3 h g4 T h g3 h g4s h g4 1 T h g3 h g4s
p3 b p2
(4)
设喷油量为 mf,燃油的低发热值为 Hf,燃烧室燃烧效率为ηb,则:
q 23 b m f H f m f h f 2 1 m f h g3 h 02
(5)

燃气—蒸汽联合循环简介

燃气—蒸汽联合循环简介

燃气—蒸汽联合循环在世界范围内,使用化学燃料通过热力动力机械发电的火力发电量仍然占据最高的比例。

从节约资源和保护环境等各方面来说,作为一种重要的发电装置,火力发电机组首先要求有高的热效率。

在大型热力发电设备中,目前技术水平比较成熟的,能够经济地大规模应用的只有燃气轮机和蒸汽轮机。

但是它们的热效率都不高,一般都在38—42%左右,即使最先进的燃气轮机热效率也只能达到42—44%,最先进的超临界参数蒸汽轮机热效率也只能达到43—45%。

对这两种热力机械所使用的热力循环进行分析。

燃气轮机燃气初温很高,目前的技术水平一般能达到1350—1430℃,因此燃气轮机中的热力循环平均吸热温度高,但是它的排气温度也就是循环低温也高,一般要达到450—630℃,所以燃气轮机热力循环的卡诺效率不高。

蒸汽轮机虽然循环低温较低,也就是蒸汽的冷凝温度可以降低到30—33℃,但是由于受到材料上的限制,它的蒸汽初温不高,在目前的技术水平下一般难以达到600℃,即使采用再热之后,平均吸热温度也不会太高,所以蒸汽轮机热力循环的卡诺效率也不高。

进一步分析可以发现,蒸汽轮机蒸汽初温一般在535—565℃以下,所以实际上只要有570—610℃的热源就可以让蒸汽轮机工作,而燃气轮机的排气温度就很高,在排气中蕴含着大量的热能,能够给蒸汽轮机提供所需要的热能。

因此如果使用燃气轮机排气作为蒸汽轮机的热源,蒸汽轮机就可以不额外消耗燃料了。

也就是说,蒸汽轮机可以回收燃气轮机的排气热量,额外发出一些有用功,这样就相当于增加了燃气轮机的热效率。

如前所述,目前先进的燃气轮机和蒸汽轮机的热效率基本相当,都在38—42%左右,那么,此时这个相当于增加了燃气轮机热效率的系统,热效率必然比单纯的燃气轮机和蒸汽轮机都高。

实际上,如果把上述由燃气轮机和蒸汽轮机组成的系统看成一个整体,那么在它的热力循环中,循环高温就是燃气轮机的循环高温,而循环低温则是蒸汽轮机的冷凝温度。

内燃机热力循环-打印版

内燃机热力循环-打印版

内燃机热力循环一、燃气轮机循环燃气轮机理想循环为布雷顿循环(Brayton Cycle) ,它是工质连续流动做功的一种轮机循环,如图1所示 。

它既可作内燃布雷顿循环,又可作外燃布雷顿循环。

内燃的布雷顿循环为开式循环,常用工质为空气或燃气。

外燃的布雷顿循环是闭式循环,通过热交换器对工质加热,在另一热交换器排出工质余热。

循环过程为:工质在压气机中等熵压缩1-2,在燃烧室(或热交换器中)等压加热2-3 ,在燃气轮机中等熵膨胀3-4和等压排气4-1 。

图1 燃气轮机循环燃气轮机循环的指示热效率为11k k i c ηπ-=-式中,c π为压气机中气体的压比,k 为比热比。

燃气轮机开式循环常与内燃机基本循环配合使用。

二、涡轮增压内燃机热力循环将涡轮增压技术(或燃气轮机技术)应用到内燃机上是内燃机循环的一项重大技术发展。

一方面内燃机希望获得更多的进气(或可燃混合气)充量,以提高内燃机的功率和热效率;另一方面从内燃机排出的高温、高压废气能导入燃气涡轮中再作功,推动与燃气涡轮相连(同轴)的压气机来提高进气(或可燃混合气)的压力供给内燃机,这样就成为涡轮增压内燃机。

涡轮增压内燃机有等压涡轮和变压涡轮两种系统,它们的热力循环也有所不同。

1.恒压涡轮增压内燃机热力循环图2是等压涡轮增压内燃机热力循环。

它由内燃机基本循环1→2→3’→3→4→1和燃气轮机循环7→1→5→6→7组成。

图2 等压涡轮增压内燃机热力循环压气机将气体从状态7(大气压力p0)等熵压缩到状态1(压力为p s)之后进入内燃机。

按内燃机热力循环到达状态4。

气体在排气过程进入等压涡轮时由于排气门的节流损失和排气动能在排气总管内的膨胀、摩擦、涡流等损失而变成热能,气体温度升高,体积膨胀而到达状态5。

气体从4→5 这部分能量没有利用,对内燃机来说相当于从状态4直接回到状态1。

气体在等压涡轮中从状态5等熵膨胀到状态6,然后排入大气。

2 .变压涡轮增压内燃机热力循环变压涡轮增压内燃机热力循环如图3 。

燃气轮机热力循环原理

燃气轮机热力循环原理
燃料的热值是指单位燃料在量热计中燃烧后测得 的热量数值。由于燃料燃烧产物中的H2O在冷凝 的过程中会放出潜热包括在量热计所测的数值中, 所以测出的数值称为高热值。这部分潜热在发动 机中是无法利用的,因此要将这部分热量从高热 值中减去。燃料在气缸中燃烧后发出的有效热量 称为低热值。
• 热耗率 机组每输出产生l kW·h的功需要多
少焦耳的热量。
• 油耗 每产生lkW·h的功所消耗的标准燃
油(是指发热量为43124kJ/kg的燃油) 的克数。
燃气轮机理想简单循环性能分析
理想简单循环比功
w G Tcp T 1 * [(1 m ) (m 1 )]
推导上式
压气机耗功的计算:
3 T
w ch 2h 1cp(T 2T 1)
单机功率
• 合同额定功率 指在事先确定的运行工况下连续运行,
发电机能够保证的出力。
单机功率
• 现场额定功率 指在燃气轮机发电厂所处的当前环境
的条件下,诸如大气压、大气温度、压力 损失等条件下的最大持续功率。
单机功率
• 尖峰功率 在规定的运行条件下,保持一个约定
的短时间内,燃气轮机以高于连续额定功 率安全运行的最大功率。
k1
cpT1TT12
1cpT1
p2 p1
k
1
p 4
2 p
1
k1
cpT1( k 1)
s
燃气轮机作功量的计算:
w Th 3h 4cp(T 3T 4)
k1
k1
cpT 4 T T 4 31 cpT 4 p p4 3 k
1 cpT 4 p p1 2 k
1
一般来说,T3*每提高 100℃,机组比功大约增加 20%~40%,热效率增加 2%~5%

燃气轮机燃烧系统的热力学性能分析与优化设计

燃气轮机燃烧系统的热力学性能分析与优化设计

燃气轮机燃烧系统的热力学性能分析与优化设计近年来,燃气轮机技术得到了快速发展,在能源领域发挥着重要的作用。

燃气轮机的核心是燃烧系统,而燃烧系统的热力学性能分析与优化设计对燃气轮机的效率和环境友好性具有重要意义。

本文将对燃气轮机燃烧系统的热力学性能进行深入分析,并探讨优化设计的方法。

1. 燃气轮机燃烧系统的热力学基础燃气轮机燃烧系统是将燃料和氧化剂进行反应,产生高温高压燃气流,从而驱动涡轮机旋转,产生功。

燃气轮机的热力学性能主要包括热效率、功率密度和排放特性。

热效率指的是燃料的化学能转化为机械能的比例,是燃气轮机的重要性能指标。

功率密度是指单位体积或单位质量的燃气轮机所能输出的功率,高功率密度意味着更高的性能和更小的体积。

排放特性是指燃气轮机在燃烧过程中产生的污染物和温室气体的排放情况,对环境保护和可持续发展至关重要。

2. 燃烧系统的热力学分析燃烧系统的热力学分析是对燃气轮机燃烧过程中的能量转化和损失进行综合评估。

燃烧系统主要包括氧化剂供应、燃料供应、混合和点火四个阶段。

在氧化剂供应阶段,燃气轮机通过压氧机将大气中的氧气挤入燃烧室,形成所需的氧化剂。

在燃料供应阶段,燃气轮机通过燃料喷嘴向燃烧室中喷入燃料。

在混合阶段,氧化剂和燃料进行充分的混合,以保证燃料能够完全燃烧。

在点火阶段,通过火花塞或者火花放电来点燃混合气体。

在燃烧过程中,热效率的提高是燃气轮机热力学性能分析的重点之一。

燃烧反应的热效率主要取决于燃料的分解和氧化过程中的能量转化效率。

高效的燃烧系统应该能够实现燃料的完全燃烧,减少可燃物的残留,提高热效率。

同时,燃气轮机的排放特性也是需要考虑的因素。

燃烧过程中产生的氮氧化物和颗粒物等有害物质对环境和健康造成一定的影响,因此需要探索降低排放的方法。

3. 热力学性能分析的方法燃气轮机燃烧系统的热力学性能分析和优化设计需要借助计算模拟和实验测试。

计算模拟可以利用数值计算方法对燃烧过程进行模拟和分析。

燃气轮机基础知识

燃气轮机基础知识
燃气轮机基础知识
第一章 绪论
一、燃气轮机发电装置的组成 燃气轮机是近几十年迅速发展起来的热能动力机械。现广泛应用的是按 开式循环工作的燃气轮机。它不断地由外界吸入空气,经过压气机压缩,在 燃烧室中通过与燃料混合燃烧加热,产生具有较高压力的高温燃气,再进入 透平膨胀作功,并把废气排入大气。输出的机械功可作为驱动动力之用。因 此,由压气机、燃烧室、透平再加上控制系统及基本的辅助设备,就组成了 燃气轮机装置。如果用以驱动发电机供应电力,就成了燃气轮机发电装置。
燃气轮机基础知识
第一章 绪论
先进的燃气轮机已普遍应用模块化结构。运输、安装、维修和更换都比 较方便,而且广泛地应用了孔探仪、振动、温度监控、焰火保护等措施,其 可靠性和可用率大为提高,指标已超过了蒸汽轮机电站的相应指标。此外, 在环保方面,出于燃气轮机的燃烧效率很高,排气干净,未燃烧的碳氢化合 物,CO、S0X,等排放物一般的都能够达到严格的环保标准,再结合应用 干式低NOX燃烧室、排气烟道中安装选择性催化还原装置(SCR)等技术措施, 可施使NOX的排放低至9ppm,满足最严格的环保要求。因此,燃气轮机发 电机组,特别是燃气-蒸汽联合循环机组已作基本负荷机组或备用机组得到 了迅速的应用。 燃气轮机的发展主要还是圈绕着增加单机功率,提高效率和经济性,燃 用多种燃料和廉价燃料,减少对环境的有害影响来进行的。诸如加强高温材 料的开发,提高冷却技术,发展闭回路蒸汽冷却燃气轮机,发展新型航空改 型燃气轮机,开发先进的燃气轮机循环,进一步发展清洁煤技术等等。燃煤 的燃气-蒸汽联合循环是“煤的清洁燃绕”技术中最为令人瞩目的项目,是九十 年代到下世纪之初最有发展前途的方式。到目前为止最具竞争力的方案有三 个,即(1)增压流化床方案(PFBC);(2)增压流化床加炭化炉加顶置燃烧室方 案(简称CPFBC燃气· 蒸汽联合循环);(3)整体煤气化联合循环(IGCC)。

燃气轮机叶片冷却技术

燃气轮机叶片冷却技术

例:M701F叶片冷却技静叶冷却结构图
图12 M701F第一级叶片冷却结构图
(4)层板冷却
(a) 层板结构示意图
(b) 多孔层板全气膜传热
图13 层板冷却结构及传热图
在高温部件冷却中,为了有效利用空气,在形成气膜之前,一定要增强内部 对流换热,可以通过内部对流冷却、冲击冷却、扰流柱、肋壁等强化换热方 式对叶片进行冷却。基于这种理论及全气膜冷却形成了多层壁气膜冷却结构。
(5)壁面通道冷却
图14 壁面通道冷却结构
壁面通道冷却是在气膜冷却 和通道内强化换热的基础上 增加了冲击冷却,也可以说 是在层板冷却的基础上去掉 了扰流柱 强化换热,在工艺
上比层板冷却简单,比较容 易实现。冲击孔和气膜孔的 位置对壁面通道内流动结构 影响显著,当有内部横流存 在时,壁面通道过长,会导 致通道内部压力分布的不均 匀从而使不同气膜孔的出流 量差别较大。甚至会发生燃 气倒灌入通道内部。
(6)热管冷却
热管冷却属于新型冷却技术。由于热管具有极高的热效 率,可以有效的减少冷气的用量,同时热管靠液体气化来 吸收热量,当热端部件的传热量增加,热管的冷却能力也 随之增强。但是目前叶片的热管冷却应用是全新的概念, 用什么冷却工质,如何带走传递的热量以及如何保证动叶 片高转速工况下热管的正常工作都需要进行理论和实验确 证。
(3)气膜冷却
图10 典型的气膜冷却叶片
图11 气膜冷却简图
气膜冷却是一种广泛采用的有效冷却技术,它通过在高温部件表面开设槽缝 或者小孔,将冷却介质以横向射流的形式注入到主流中。在主流的压力和摩 擦作用下,射流弯曲并覆盖于高温部件表面,形成温度较低的冷气膜,从而 对高温部件起到隔热和冷却作用。透平叶片采用气膜冷却后,可以提高透平 进口温度,增加热效率,提高推重比及降低油耗。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

q3s-4s= 0
工质在涡轮中膨胀做功,称为膨胀功wTs
c p (T3*s T4*s )
c pT1* * (1 π
*k 1 k
)
* * p v图上,wTs 面积3s-4s-p1 -p2 -3s
* T4*s p 4 s * * T3s p 3 s
c p (T2*s T1* )
c pT1* (π
k 1 * k
1)
* 2 * 1
p v图上,wcs 面积1-2s-p -p -1
* T2*s p 2 * * T1 p1
k-1 k

k 1 * k
q (h h ) ws
* 2 * 1
2013-8-10 4
2-2
性能指标
燃气轮机热力性能指标
——衡量一台动力装置好坏的标准。
——有很多,例如经济性、动力性、可靠性、变工况特 性以及排放性能等,需用不同的方法来分析。
主要用热力学方法分析:
反映动力性能好坏的指标,常用比功和功率; 反映经济性好坏的指标,常用热效率、耗油率和热耗率等。
一、热力参数
T3*s * T1*
k-1 k
p1* * p 2
k-1 k

k 1 * k
q (h h ) ws
* 2 * 1
④4s-1 大气中的等压放热过程
与外界没有功的交换 w4s-1= 0 ;向外界放出的热量为q2
* q2 q4s1 h4s h1* kJ/kg
q1
c p (T T )
* 4s * 1
c pT1* ( π
k 1 * * k
q2
-1)
k 1 T4*s * k * T3s
T s图上,q2 q4s1 面积4s - s3s - s1 -1- 4s
T3*s * T1*
讨论循环的比功和热效率。
2、理想简单循环的比功ws
T s图上,q1 q2s3s 面积s1 - 2s - 3s - s3s - s1
q (h h ) ws
* 2 * 1
③3s-4s 涡轮中进行可逆绝热膨胀过程
* q3s4s (h4s h3*s ) wTs 0
* * wTs h3s h4s kJ/kg
s 随压比π 增加而提高,即 π 时, s 。
4、理想简单循环的有用功系数 ,
wCs 1 wTs
1 c p (T2*s T1* ) c p (T T )
* 3 * 4s
1
T1* ( π* - 1) T (1 -- *m/*
二者关系为:
Ne = Ni m
比功可表征机组的重量和大小。
2、热效率
燃料的低位发 热值,kJ/kg
—燃气轮机输出的有用功与其所耗燃料的热量的比值。 (1)内效率i ——内比功与热量的比值(装置热效率)
燃料空气比 Gf f kg燃料/kg空气 GC
wi wi wi 3600N i i q f Hu G f BHu Hu 燃料流量,kg/s GC
1、压比 *
—说明工质在压气机内受压缩的程度。
—压气机出口的气流压力与其进口的气流压力的比值。 用滞止压力(总压)表示:
p p
*
* 2 * 1
决定循环性能的重要参数
2、温比 *
—说明工质被加热的程度。
—涡轮前进口燃气温度与压气机进口气流温度的比值 用滞止温度(总温)表示:
T T
q (h h ) ws
* 2 * 1
1、分析热力过程
q1-2s= 0 压气机消耗的功用来压缩气体,称为压缩功wcs
①1-2s 压气机中的可逆绝热压缩过程
* q12s (h2s h1* ) (wcs ) 0
* wcs h2s h1* kJ/kg
理想气体 定比热
利用热力学中的p-v图 和T-s图研究循环
讨论影响循环动力性和经济性的因素
二、理想简单循环
假设条件:
工质为理想气体; 热力过程均是可逆的,无能量损耗; 工质的比热容和流量不变。
组成:2个可逆绝热过程 2个可逆定压过程
1-2s 等熵压缩 3s-4s 等熵膨胀 2s-3s 等压加热 4s- 1 等压放热
2-3 燃气轮机的简单循环
在工质流动的主要流程中,只有压气机、 燃烧室和涡轮三大件组成——简单循环 一、稳定流动能量方程式在燃气轮机中的应用
任何热机必须依靠工质经过一系列热力过程完成 一个循环,才能连续不断地对外做功。 在燃气轮机中,工质要完成压缩、加热、膨胀以 及放热等热力过程,必需连续不断地流进和流出设备。 进行热力学分析时,视稳定工作时工质的流动为 稳定流动,各能量间相互转化关系服从稳定流动能量方 程式。
所谓稳定流动,就是热力系统在任何截面上,工 质的一切参数都不随时间而变。
稳定流动的条件: (1)进出口工质的热力状态不随时间而变; (2)进出口工质的流量相等且不随时间而变; (3)系统与外界交换的一切能量不随时间而变。
2、什么是滞止现象?滞止参数?
滞止现象:当流动工质受到阻碍而使工质流速降 为零时所发生的现象。 滞止参数: 通过可逆绝热压缩过程使工质流速降为零时所得 到的参数。
本课程主要讨论相关热力装置的理论循环,重点在于 分析热力循环的能量转换效应,必要时也会涉及一些实 际循环的问题。 ⑵ 对实际气体动力循环所作的理想化处理 ① 实际的气体动力循环中,在循环的不同阶段工质成 份不同,有时是空气,有时是燃气。 燃气的热物性与空气相近 理论分析中视工质为类同空气的某种定比热容理想气体。 ② 实际装置的工作循环是开式的,每个工作循环后均 将废气排弃,更换新的工质。 理论分析时抽象成闭式循环 燃烧过程视为对工质的加热过程 排气过程视为工质的放热过程
燃料消耗量,kg/h
(2)有效效率e——有效比功与热量的比值
we we we 3600N e e q f Hu G f BHu Hu GC
e = i m
3、耗油率和热耗率
(1)耗油率 ge
——产生单位有效功率时的燃料消耗量,kg/(kWh)
G B 3600 f 3600 ge kg/(kW h) Ne Ne e H u
(1)循环比功wi
忽略机械损失
(又称指示比功、内比功、装置比功)
wi = wT - wC kJ/kg
相应的,指示功率、内比功率 :
Ni = Gc wi
kW
进入压气机的空气流量,kg/s。
wi和Ni:反映机组循环本身动力性能的好坏。
(2)有效比功we
考虑机械损失,
设机械效率为m,则
we = wi m= (wT – wC)m 相应的,有效功率: Ne = Gc we kW we和Ne:反映整个机组动力性能的好坏。 kJ/kg
q2
排气
4 3
q1
2
燃烧室
燃 气 轮 机 循 环

压气机
涡轮
燃料
1
进气
▲定压加热理想循环
1-2 等熵压缩(压气机内)

T3 T2 p2 p1
循环增压比
2-3 定压吸热(燃烧室内) 循环增温比
3-4 等熵膨胀(燃气透平内) 4-1 定压放热(排气,假想换热器)
理想简单循环 简单循环
实际简单循环
循环比功 ws = wTs-wCs= q1- q2 = qs
p-v图和T-s图上, ws 面积1-2s-3s-4s-1
讨论影响循环比功的因素
ws cp (T3*s T4*s ) cp (T2*s T1* )
c pT1* * (1 π
*k 1 k
) c pT1* (π
h h c
* 1 2
滞止参数
滞止焓或总焓 i*
2
滞止压力或总压 p*
p* p 1 c 2 2
滞止温度或 总温 T*
c2 T* T 2c p
静参数
T * p p T
*
k k 1
q h2 h1 c c
1 2 2 2
工质吸收 的热量
②2s-3s 燃烧室中的等压加热过程 从外界吸收的热量为q1 与外界没有功的交换 w2s-3s= 0 ;
q1 q2s3s h h
* 3s
* 2s
kJ/kg
* 2s
q1
c p (T T )
* 3s
c pT1* ( * - π
k 1 * k
)
T3*s * T1*
k 1 T2*s * k * T1
*
* 3 * 1
决定循环性质的最重要参数
*愈高,性能愈好,但对耐高温材料或冷却技术的要求越高。
二、性能参数
1、比功和功率
比功w—单位质量工质所做的功,kJ/kg;
wC —压气机的比功, kJ/kg; wT —涡轮比功, kJ/kg。 功率N—单位时间内工质所做的功,kW。 燃气轮机的比功—进入压气机内1kg空气完成 一 个循环后,对外界输出的有效轴功。
k 1 * k
1)
k 1 m k
=
cpT1*[*(1-
*-m)-(
*m-1)]
= f( * , *)
影响理想简单循环 循环比功ws的重要因素:压比*和温比* 影响
(1)压比

*
一定时,温比

*
增大,循环比功ws增大(公式上看)。
规律: 温比 *一定时,有一最佳压比 * 使比功最大 (2)
= f(*,*)
规律: (1) 压比 *一定时, 随温比 *增加而增加 ; (2) 温比 *一定时, 随压比 *增加而减少。
相关文档
最新文档