电压基准的特性及选用

合集下载

三极管电压基准原理

三极管电压基准原理

三极管电压基准原理三极管电压基准原理在电子电路中,为了保证电路正常运行,经常需要稳定的参考电压源。

而三极管电压基准是一种常用的电路,能够提供相对稳定的基准电压。

本文将对三极管电压基准的原理进行详细介绍,并探讨其在电子领域中的广泛应用。

1. 三极管基本原理三极管是一种半导体器件,由发射极、基极和集电极三个区域组成。

它是目前广泛应用于电子电路中的一种器件,常用于放大、开关和稳压等电路中。

2. 三极管稳压原理三极管的稳压原理基于其特殊的伏安特性曲线。

在特定的工作点上,三极管的输入电流较小,输出电流较大。

当输入电流发生变化时,三极管能够通过内部偏置电流的反馈机制自动调整输出电流,从而实现稳定的输出电压。

3. 三极管电压基准电路的基本结构三极管电压基准电路由三极管以及一些辅助元器件组成。

该电路的基本结构遵循电路成分和连接原则,以达到稳定输出电压的目的。

4. 三极管电压基准电路的工作原理三极管电压基准电路的工作原理基于三极管的稳压特性。

通过合理选择电路参数和工作点,通过负反馈机制使得输出电压相对稳定,从而满足电子电路对参考电压源的需求。

5. 三极管电压基准电路的应用三极管电压基准电路在电子领域中具有广泛的应用。

它常用于温度补偿、精密测量仪器以及一些要求高精度的模拟电路中。

6. 个人观点和理解三极管电压基准原理的实现是电子电路设计中不可或缺的一部分。

它能够提供稳定的电压作为其他电路的参考,为电子设备的正常运行提供重要支持。

对于理解三极管和电路稳压原理也具有深远的意义。

在实际应用中,我们需要根据特定需求选择合适的三极管电压基准电路,并进行合理的调试和优化,以保证电路的稳定性和性能。

总结回顾:通过本文,我们详细介绍了三极管电压基准原理,并探讨了其在电子领域中的广泛应用。

三极管作为一种常用的半导体器件,其稳压特性使其成为稳定参考电压的理想选择。

在实际应用中,我们需要根据特定需求选择合适的三极管电压基准电路,并进行合理的调试和优化,以确保电路的稳定性和性能。

电压基准芯片的参数解析及应用技巧(精)

电压基准芯片的参数解析及应用技巧(精)

电压基准芯片的参数解析及应用技巧电压基准芯片是一类高性能模拟芯片,常用在各种数据采集系统中,实现高精度数据采集。

几乎所有电压基准芯片都在为实现“高精度”而努力,但要在各种不同应用场合真正实现高精度,则需要了解电压基准的内部结构以及各项参数的涵义,并要掌握一些必要的应用技巧。

电压基准芯片的分类根据内部基准电压产生结构不同,电压基准分为:带隙电压基准和稳压管电压基准两类。

带隙电压基准结构是将一个正向偏置PN结和一个与VT(热电势)相关的电压串联,利用PN结的负温度系数与VT的正温度系数相抵消实现温度补偿。

稳压管电压基准结构是将一个次表面击穿的稳压管和一个PN结串联,利用稳压管的正温度系数和PN结的负温度系数相抵消实现温度补偿。

次表面击穿有利于降低噪声。

稳压管电压基准的基准电压较高(约7V);而带隙电压基准的基准电压比较低,因此后者在要求低供电电压的情况下应用更为广泛。

根据外部应用结构不同,电压基准分为:串联型和并联型两类。

应用时,串联型电压基准与三端稳压电源类似,基准电压与负载串联;并联型电压基准与稳压管类似,基准电压与负载并联。

带隙电压基准和稳压管电压基准都可以应用到这两种结构中。

串联型电压基准的优点在于,只要求输入电源提供芯片的静态电流,并在负载存在时提供负载电流;并联型电压基准则要求所设置的偏置电流大于芯片的静态电流与最大负载电流的总和,不适合低功耗应用。

并联型电压基准的优点在于,采用电流偏置,能够满足很宽的输入电压范围,而且适合做悬浮式的电压基准。

电压基准芯片参数解析安肯(北京)微电子即将推出的ICN25XX系列电压基准,是一系列高精度,低功耗的串联型电压基准,采用小尺寸的SOT23-3封装,提供1.25V、2.048V、2.5V、3.0V、3.3V、4.096V输出电压,并提供良好的温度漂移特性和噪声特性。

图1. 串联型电压基准芯片和并联型电压基准芯片示意图表1列出了电压基准芯片与精度相关的各项参数。

电压基准芯片的参数解析及应用技巧

电压基准芯片的参数解析及应用技巧

电压基准芯片的参数解析及应用技巧电压基准芯片是一类高性能模拟芯片,常用在各种数据采集系统中,实现高精度数据采集。

几乎所有电压基准芯片都在为实现“高精度”而努力,但要在各种不同应用场合真正实现高精度,则需要了解电压基准的内部结构以及各项参数的涵义,并要掌握一些必要的应用技巧。

电压基准芯片的分类根据内部基准电压产生结构不同,电压基准分为:带隙电压基准和稳压管电压基准两类。

带隙电压基准结构是将一个正向偏置PN结和一个与VT(热电势)相关的电压串联,利用PN结的负温度系数与VT的正温度系数相抵消实现温度补偿。

稳压管电压基准结构是将一个次表面击穿的稳压管和一个PN结串联,利用稳压管的正温度系数和PN结的负温度系数相抵消实现温度补偿。

次表面击穿有利于降低噪声。

稳压管电压基准的基准电压较高(约7V);而带隙电压基准的基准电压比较低,因此后者在要求低供电电压的情况下应用更为广泛。

根据外部应用结构不同,电压基准分为:串联型和并联型两类。

应用时,串联型电压基准与三端稳压电源类似,基准电压与负载串联;并联型电压基准与稳压管类似,基准电压与负载并联。

带隙电压基准和稳压管电压基准都可以应用到这两种结构中。

串联型电压基准的优点在于,只要求输入电源提供芯片的静态电流,并在负载存在时提供负载电流;并联型电压基准则要求所设置的偏置电流大于芯片的静态电流与最大负载电流的总和,不适合低功耗应用。

并联型电压基准的优点在于,采用电流偏置,能够满足很宽的输入电压范围,而且适合做悬浮式的电压基准。

电压基准芯片参数解析安肯(北京)微电子即将推出的ICN25XX系列电压基准,是一系列高精度,低功耗的串联型电压基准,采用小尺寸的SOT23-3封装,提供1.25V、2.048V、2.5V、3.0V、3.3V、4.096V输出电压,并提供良好的温度漂移特性和噪声特性。

图1. 串联型电压基准芯片和并联型电压基准芯片示意图表1列出了电压基准芯片与精度相关的各项参数。

选择电压基准需要考虑哪些参数

选择电压基准需要考虑哪些参数

选择电压基准需要考虑哪些参数在模拟和混合信号电路中,以电压基准为标准测量其他信号。

电压基准的不准确及其变化会直接影响整个系统的准确度。

我们来看一下,选择电压基准时,准确度规格和其他标准是如何起作用的。

初始精度指的是,在给定温度(通常是25°C)时测得的输出电压的变化幅度。

尽管各个电压基准的初始输出电压可能有所不同,但是如果给定基准的初始输出电压是恒定的,就很容易校准。

温度漂移也许是评估电压基准性能时使用最为广泛的性能规格,因为温度漂移显示输出电压随温度的变化。

温度漂移由电路组件的瑕疵和非线性引起。

很多器件的温度漂移都以ppm/°C 为单位规定,是主要的误差源。

器件的温度漂移如果是一致的,就可以进行一定程度的校准。

关于温度漂移有一种常见的错误认识,那就是:它是线性的。

但是,不应该想当然地认为基准的漂移量在较小的温度范围内就会较小。

温度系数(TC)通常是用一种“箱形法”来规定,以表达整个工作温度范围内可能出现的误差情况。

它是通过划分整个温度范围内的最小-最大电压差,并除以总温度范围来计算的(图1)。

这些最小和最大电压值可能并不出现在极端温度下,因而形成了TC 远远大于针对整个规定温度范围计算之平均值的区域。

对于最谨慎调谐的基准(这通常可通过其非常低的温度漂移予以识别)而言尤其如此,在此类基准中,已经对线性漂移分量进行了补偿,留下的是一个残余非线性TC。

图1:电压基准温度特性温度漂移性能规格的最佳用途是,计算所规定温度范围内的最大总体误差。

在未规定温度范围的情况下计算误差,一般是不可取的,除非非常了解温度漂移特性。

长期稳定性衡量基准电压随时间推移的变化趋势,不受其他变量影响。

初始漂移大部分是由机械应力变化引起的,是由引线框架、芯片和模具所用化合物的膨胀率不同导致的。

这种应力效应往往产生很大的初始漂移,但漂移随时间推移很快减小。

初始漂移也和电路元。

电压基准源

电压基准源

CMOS基准源
是什么?如何构造?应用?优缺点?
01.为了解决三极管出现的问题, 提出的仅使用MOS管构建的电压基 准源。 理论基础:用MOS管的迁移率和阈值电压存在的温度特性进行 正负温度补偿。 T B μ n (T ) μ n (T0 )( ) MOS管迁移率的温度特性可描述为: T0 MOS管阈值电压的温度特性可描述为:Vthn (T ) Vthn (T0 ) BV (T T 0 ) 其中 B μ n, B Vthn 分别是迁移率和阈值电压的温度指数。
具体的应用电路
图1、电压相加形四位R-2RT型电阻网络DAC
图2、并行比较型ADC
02
电压基准源如何构造
1、齐纳击穿 2、带隙温度补偿 3、其他
齐纳管式电压基准源
是什么?如何构造?应用?优缺点?
01. 利用pn结反向击穿的稳压特性 制作的稳压管
图3、理想情况下二极管的伏安特性曲线
齐纳管式电压基准源
图9、能隙基准源典型电路3
假设n 9。 ln 9 2.197, 则k 10.5。
能隙温度补偿基准源
是什么?如何构造?应用?优缺点?
04.优缺点
优点:1、温度系数低 2、原理相对简单 3、工作电压较低 缺点:1、使用了BJT,与主流CMOS工艺不兼容。 (失调问题) 2、器件面积较大。 3、对电流增益β的要求较高。 4、VBE 线性化模型不够精确。
03. 应用电路
限流电阻的选取:
Vref Iref
(Vin(max) Vref ) 50mA I LOAD (min)
RS
(Vin(min) Vref ) 100uA I LOAD (max)
图5、MAX6330器件典型应用

精密基准电压源LM399系列

精密基准电压源LM399系列

-31-精密基准电压源L M399系列西安石油学院孟开元李绍敏摘要:精密基准电压源L M399系列是迄今为止同类产品中温度系数最低的器件,内部有恒温电路,可保证器件的长期稳定性。

本文主要介绍了该系列基准电压源的结构原理和性能特点,并简要说明了应用方法。

关键词:精密基准电压温度系数恒温电路参 数最小值典型值最大值单位反向击穿电压6.66.957.3V反向动态阻抗0.51.5Ω击穿电压温度系数0.000030.0001% ℃温度稳定器电源电压940V1、L M399系列的性能特点L M399系列器件采用标准的密封TO 246型封装,外面加有热保温罩。

L M199的工作温度范围是-55℃到+125℃,L M299的工作温度范围是-25℃到+85℃,L M399的工作温度范围是0℃到+70℃。

其中L M399的使用最广泛,价格也较便宜。

其特点如下:●电压温度系数不超过0.5PPM/℃;●动态阻抗低,典型值为0.5Ω;●击穿电压的初始容差为2%;●低噪声;●低功耗(平衡时),25℃时为300mW ;●长期稳定性好。

基准电压源最重要的技术指标是电压温度系数,它表示温度变化引起的输出电压漂移量(亦称温漂)。

可以看出,在目前生产的基准电压源中,L M199、L M299和L M399的电压温度系数最低,性能最佳。

下面就应用最多的L M399作一介绍。

L M399的电特性如下表所列。

作为高精度的基准电压源,L M399可取代普通的齐纳稳压管,用于A /D 转换器、精密稳压电源、精密恒流源、电压比较器等。

在许多情况下,只需作很小的布线变化,就可用L M399来替换仪器中的电压基准。

2、L M399的结构原理L M399的内部电路可分成两部分:基准电压源和恒温电路。

图1表示了它的管脚排列、结构框图及电路符号。

1、2脚分别是基准电压源的正负极,3、4脚之间接9~14V 的直流电压。

(b )图中的H 表示恒温器。

L M399的基准电压由隐埋齐纳管提供。

精密基准电压源LM399系列

精密基准电压源LM399系列

-31-精密基准电压源L M399系列西安石油学院孟开元李绍敏摘要:精密基准电压源L M399系列是迄今为止同类产品中温度系数最低的器件,内部有恒温电路,可保证器件的长期稳定性。

本文主要介绍了该系列基准电压源的结构原理和性能特点,并简要说明了应用方法。

关键词:精密基准电压温度系数恒温电路参 数最小值典型值最大值单位反向击穿电压6.66.957.3V反向动态阻抗0.51.5Ω击穿电压温度系数0.000030.0001% ℃温度稳定器电源电压940V1、L M399系列的性能特点L M399系列器件采用标准的密封TO 246型封装,外面加有热保温罩。

L M199的工作温度范围是-55℃到+125℃,L M299的工作温度范围是-25℃到+85℃,L M399的工作温度范围是0℃到+70℃。

其中L M399的使用最广泛,价格也较便宜。

其特点如下:●电压温度系数不超过0.5PPM/℃;●动态阻抗低,典型值为0.5Ω;●击穿电压的初始容差为2%;●低噪声;●低功耗(平衡时),25℃时为300mW ;●长期稳定性好。

基准电压源最重要的技术指标是电压温度系数,它表示温度变化引起的输出电压漂移量(亦称温漂)。

可以看出,在目前生产的基准电压源中,L M199、L M299和L M399的电压温度系数最低,性能最佳。

下面就应用最多的L M399作一介绍。

L M399的电特性如下表所列。

作为高精度的基准电压源,L M399可取代普通的齐纳稳压管,用于A /D 转换器、精密稳压电源、精密恒流源、电压比较器等。

在许多情况下,只需作很小的布线变化,就可用L M399来替换仪器中的电压基准。

2、L M399的结构原理L M399的内部电路可分成两部分:基准电压源和恒温电路。

图1表示了它的管脚排列、结构框图及电路符号。

1、2脚分别是基准电压源的正负极,3、4脚之间接9~14V 的直流电压。

(b )图中的H 表示恒温器。

L M399的基准电压由隐埋齐纳管提供。

几种电压基准源的比较分析

几种电压基准源的比较分析

几种电压基准源的比较分析罗先才无锡华润矽科微电子有限公司摘要:电压基准根据参考源的不同可分为对正电源基准源、对负电源基准源、对地基准源和浮动基准源四种;根据电压的不同可分为1V低电源基准、1.25V基准、2.5V基准、高压基准和任意电压基准;根据使用的核心补偿器件不同又可分为传统带隙基准、耗尽增强型基准、齐纳二极管基准等几种结构。

在电路设计过程中,如何根据工艺条件和电路需要自由地选择合适的基准源电路,是电路得以快速设计成功的基石。

本文通过分析比较各种结构的实现原理、优缺点以及改进措施,使这一选择变得更加的清晰和简明。

关键词:带隙基准,齐纳二极管,耗尽型MOS场效应管,低电源带隙基准,浮动基准1引言在模拟或数模混合集成电路设计领域中,高性能电压基准源设计是关键技术之一,电压基准源为电路提供高精度基准电压或由其转化为高精度电流,为电路提供稳定而又精确的偏置。

由于工艺离散性的存在,如何选择合适的基准源结构,降低温度漂移,提高电路精度、保证批量制造IC时带隙基准电压源精度的一致性,是进一步改进基准电压源设计的重要课题。

因此需要在工艺条件有限的情况下,更多地从电路设计结构选择上着手,并在所选结构上加以改进以设计出满足要求的基准源电路。

2传统带隙基准2.1经典带隙结构及其改进传统带隙基准源是用一个正温漂得UT 和一个负温漂的UBE求和得到的一个零温漂的参考电压。

其基本原理如下左图所示,三极管发射结压降UBE在室温下的温度系数为-2.2mv/.C,而热电压UT(k.T/q)的温度系数为0.085mV/.C,如图中,将这两个参数求和得:UREF =KUT+UBE在室温条件下上式对温度T求微分,并使这一微分结果为零,即可解出K得理论设计值,最后使得输出电压UREF理论上在室温附件基本零温漂。

其图中的PNP通常是Nwell工艺中的寄生P+/NW/Psub三极管,设计出来的基准通常是相对GND的稳定电压。

在Pwell工艺中寄生三极管则是N+/PW/Nsub,下面的示意图正好上下颠倒过来即可,这样设计出来的基准也正好是相对电源的稳定电压。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电压基准的特性及选用
摘要从实际应用角度,介绍了电压基准的种类及特点,主要技术参数,选用电压基准的方法和注意事项。

关键词齐纳基准带隙基准 XFET基准初始精度温度系数
一、电压基准及其应用领域
电压基准可提供一个精度远比电压稳压器高的多的精确输出电压,作为某个电路系统中的参考比较电压,因而称其为基准。

电压基准在某些方面与电压稳压器类似,但二者的用途绝然不同。

电压稳压器除了向负载输出一个稳定电压外还要供给功率。

电压基准的主要用途是为系统或负载提供一个精确的参考电压,而其输出电流通常在几至几十个毫安。

电压基准的用途十分广泛,典型的应用常见于数据采集系统,用于为模数变换器或数模变换器提供一个基准参考电压。

另外,它还可用于各类开关或线性电压变换电路、仪器仪表电路和电池充电器中。

二、电压基准的主要参数
1. 初始精度(Initial Accuracy)
初始精度用于衡量一个电压基准输出电压的精确度或容限,即电压基准工作时,其输出电压偏离其正常值的大小。

通常,初始精度采用百分数表示,它并非是一个电压单位,故需换算才能获得电压偏离值的大小。

例如,一个标称电压为2.5V的基准,初始精度为±1%,则其电压精度范围为:
5.2~
5.2
=
1
×
±
=
±
%
.2
5.2
V
475
V525
.0
025
.2
在厂商的数据手册中,初始电压精度通常是在不加载或在特定的负载电流条件下测量的。

对于电压基准而言,初始精度是一个最为重要的性能指标之一。

2. 温度系数(Temperature Coefficient)
温度系数(简称TC)用于衡量一个电压基准,其输出电压因受环境温度变化而偏离正常值的改变程度,它也是基准电压最重要的性能指标之一,通常用ppm/℃表示(ppm是英文part per million的缩写,1ppm表示百万分之一)。

例如,一个基准标称电压为10V,温度系数为10ppm/℃,则环境温度每变化1℃,其输出电压改变10V×10×10-6=100μV。

需注意的是,温度系数可能是正向的,即基准的输出电压随温度的升高而变大,也可能是负向的,即基准的输出电压随温度的升高而变小,具体可查看厂商数据手册中的温度曲线图表。

3. 热迟滞(Temperature Hysteresis)
当电压基准的温度从某一点开始经受变化,然后再次返回该温度点,前后二次在同一温度点测得的电压值之差即为热迟滞。

该参数虽不如温度系数重要,但对于温度同期性变化超过25℃的情况仍是需引起重视的一个误差源。

4. 长期漂移(Long-term Drift)
在数日、数月或更长持续的工作期间,电压基准输出电压的慢变化称为长期漂移或稳定性,通常用ppm/1000h表示。

当我们选用一个电压基准,要求它在持续数日、数周、数月基至数年的工作条件下保持输出电压精度,那么长期漂移便是一个必须考虑的性能参数。

5. 噪声(Noise)
Rs
并联基准
I Q
I F
R S
串联基准
I Q
图3 系统精度与基准温度系数TC 的关系
大多数电压基准的噪声电压相对其它误差而言绝对值较小,故对于精度不高的系统其影响并不突出,但对于高精度系统,需引起高度重视。

对于宽带噪声,通过在输出端增加一个低ESR (等效串联电阻)电容或一个RC 滤波器就可有效加以抑制,但要注意所加电容的容量要按数据手册推荐的值选取,如果选得太大,可能引起振荡而破坏输出电压的稳定性,另一个后果是会使导通建立时间变长。

至于0.1~10Hz 范围内的窄带1/5噪声,是基准中固有的且不能有效滤掉,故要仔细评估选择。

某些系统需长期工作,同时要求具有保持重复测量的一致性和稳定性,这时,基准的长期漂移性能指标就显得很重要。

XFET 基准具有十分优良的长期漂移特性,故是最佳选择。

对于便携式系统,都要求低电压、低功耗,以便延长电池的使用时间。

对于这类系统,选用XFET 基准是十分理想的,它们不仅能在低电压小电流下工作,同时还能保持很好的性能。

ADI 公司的某些带隙基准如REF19X 和AD158X 系列也具备低电压、小静态电流的特性,因而也可用于便携式系统。

但这些带隙基准的长期漂移、噪声以及温度系数指标不如XFET 基准。

参考文献:
1. Roya Nasraty XFET TM References
Analog Dialogue 1998 Analog Devices,Inc.
2. Perry Miller Texas Instruments, Doug Moore Thater Corp.
Precision voltage references
3. Roger kenyon A quik guide to voltage reference
Maxim Integrated Products
4. Analog Devices Inc, AD780 2.5V/3.0V High Precision Reference Datasheet T C (p p m /℃)
△T (基于25℃的变化)。

相关文档
最新文档