matlab插值(详细 全面)

合集下载

matlab插值方法

matlab插值方法

x 129 140 103.5 88 185.5 195 105
y 7.5 141.5 23 147 22.5 137.5 85.5
1.先在三维坐标画出原始数据,画出粗糙的温度分布曲图.
输入以下命令: x=1:5; y=1:3; temps=[82 81 80 82 84;79 63 61 65 81;84 84 82 85 86]; mesh(x,y,temps) 2.以平滑数据,在x、y方向上每隔0.2个单位的地方进行插值.
被插值点 的函数值
插值 节点
被插值点 插值方法
‘nearest’ 最邻近插值 ‘linear’ 双线性插值 ‘cubic’ 双三次插值 缺省时, 双线性插值
要求x0,y0单调;x,y可取为矩阵,或x取 行向量,y取为列向量,x,y的值分别不能超出 x0,y0的范围。
26
例:测得平板表面3*5网格点处的温度分别为: 82 81 80 82 84 79 63 61 65 81 84 84 82 85 86 试作出平板表面的温度分布曲面z=f(x,y)的图形。
例:在1-12的11小时内,每隔1小时测量一次温 度,测得的温度依次为:5,8,9,15,25,29,31, 30,22,25,27,24。试估计每隔1/10小时的温度 值。
hours=1:12; temps=[5 8 9 15 25 29 31 30 22 25 27 24]; h=1:0.1:12; t=interp1(hours,temps,h,'spline'); (直接输出数据将是很多的) plot(hours,temps,'+',h,t,hours,temps,'r:') %作图 xlabel('Hour'),ylabel('Degrees Celsius’)

MATLAB数值实验一(数据的插值运算及其应用完整版)

MATLAB数值实验一(数据的插值运算及其应用完整版)

佛山科学技术学院实 验 报 告课程名称 数值分析 实验项目 插值法与数据拟合 专业班级 机械工程 姓 名 余红杰 学 号 10 指导教师 陈剑 成 绩 日 期 月 日一、实验目的1、学会Lagrange 插值、牛顿插值和三次样条插值等基本插值方法;2、讨论插值的Runge 现象3、学会Matlab 提供的插值函数的使用方法,会用这些函数解决实际问题。

二、实验原理1、拉格朗日插值多项式2、牛顿插值多项式3、三次样条插值 三、实验步骤1、用MATLAB 编写独立的拉格朗日插值多项式函数2、用MATLAB 编写独立的牛顿插值多项式函数3、用MATLAB 编写独立的三次样条函数(边界条件为第一、二种情形)4、已知函数在下列各点的值为:根据步骤1,2,3编好的程序,试分别用4次拉格朗日多项式4()L x 、牛顿插值多项式4()P x 以及三次样条函数()S x (自然边界条件)对数据进行插值,并用图给出 {(,),0.20.08,0,1,2,,10i i i x y x i i =+=},4()L x 、4()P x 和()S x 。

5、在区间[-1,1]上分别取10,20n =用两组等距节点对龙格函数21(),(11)125f x x x=-≤≤+作多项式插值,对不同n 值,分别画出插值函数及()f x 的图形。

6、下列数据点的插值可以得到平方根函数的近似,在区间[0,64]上作图。

(1)用这9个点作8次多项式插值8()L x 。

(2)用三次样条(第一边界条件)程序求()S x 。

7、对于给函数21()125f x x =+在区间[-1,1]上取10.2(0,1,,10)i x i i =-+=,试求3次曲线拟合,试画出拟合曲线并打印出方程,与第5题的结果比较。

四、实验过程与结果:1、Lagrange 插值多项式源代码:function ya=lag(x,y,xa) %x 所有已知插值点 %y 插值点对应函数值 %xa 所求点,自变量 %ya 所求点插值估计量 ya=0; mu=1; %初始化%循环方式求L 系数,并求和: for i = 1:length(y) for j = 1:length(x) if i ~= jmu = mu * (xa - x(j) ) / ( x(i) - x(j) ); else continue end endya = ya + y(i) * mu ; mu = 1; end2、Newton 源代码:function ya = newton(x,y,xa) %x 所有已知插值点 %y 插值点对应函数值 %xa 所求点,自变量 %ya 所求点插值估计量 %建立系数零矩阵D 及初始化:D = zeros(length(x)-1);ya = y(1);xi = 1;%求出矩阵D,该矩阵第一行为牛顿插值多项式系数:for i=1:(length(x)-1)D(i,1) = (y(i+1) -y(i))/(x(i+1) -x(i));endfor j=2:(length(x)-1)for i=1:(length(x)-j)D(i,j) = (D(i+1,j-1) - D(i,j-1)) / (x(i+j) - x(i)); endend%xi为单个多项式(x-x(1))(x-x(2))...的值for i=1:(length(x)-1)for j=1:ixi = xi*(xa - x(j));endya = ya + D(1,i)*xi;xi = 1;end3、三次样条插值多项式(1)(第一边界条件)源代码:function y=yt1(x0,y0,f_0,f_n,x) _____________(1)%第一类边界条件下三次样条插值;%xi 所求点;%yi 所求点函数值;%x 已知插值点;%y 已知插值点函数值;%f_0左端点一次导数值;%f_n右端点一次导数值;n = length(x0);z = length(y0);h = zeros(n-1,1);k=zeros(n-2,1);l=zeros(n-2,1);S=2*eye(n);for i=1:n-1h(i)= x0(i+1)-x0(i);endfor i=1:n-2k(i)= h(i+1)/(h(i+1)+h(i));l(i)= 1-k(i);end%对于第一种边界条件:k = [1;k]; _______________________(2)l = [l;1]; _______________________(3)%构建系数矩阵S:for i = 1:n-1S(i,i+1) = k(i);S(i+1,i) = l(i);end%建立均差表:F=zeros(n-1,2);for i = 1:n-1F(i,1) = (y0(i+1)-y0(i))/(x0(i+1)-x0(i));endD = zeros(n-2,1);for i = 1:n-2F(i,2) = (F(i+1,1)-F(i,1))/(x0(i+2)-x0(i));D(i,1) = 6 * F(i,2);end%构建函数D:d0 = 6*(F(1,2)-f_0)/h(1); ___________(4)dn = 6*(f_n-F(n-1,2))/h(n-1); ___________(5)D = [d0;D;dn]; ______________(6)m= S\D;%寻找x所在位置,并求出对应插值:for i = 1:length(x)for j = 1:n-1if (x(i)<=x0(j+1))&(x(i)>=x0(j))y(i) =( m(j)*(x0(j+1)-x(i))^3)/(6*h(j))+...(m(j+1)*(x(i)-x0(j))^3)/(6*h(j))+...(y0(j)-(m(j)*h(j)^2)/6)*(x0(j+1)-x(i))/h(j)+... (y0(j+1)-(m(j+1)*h(j)^2)/6)*(x(i)-x0(j))/h(j) ; break;else continue;endendend(2)(自然边界条件)源代码:仅仅需要对上面部分标注的位置做如下修改:__(1):function y=yt2(x0,y0,x)__(2):k=[0;k]__(3):l=[l;0]__(4)+(5):删除—(6):D=[0:D:0]4、——————————————PS:另建了一个f方程文件,后面有一题也有用到。

插值MATLAB实现(牛顿差商插值误差龙格现象切比雪夫插值)

插值MATLAB实现(牛顿差商插值误差龙格现象切比雪夫插值)

插值MATLAB实现(牛顿差商插值误差龙格现象切比雪夫插值)插值是数值分析中的一种方法,通过已知数据点的函数值来估计函数在其他点的值。

MATLAB提供了多种方法来实现插值,包括牛顿差商插值、插值误差分析、龙格现象和切比雪夫插值。

下面将详细介绍这些方法的实现原理和MATLAB代码示例。

1.牛顿差商插值:牛顿差商插值是一种基于多项式插值的方法,其中差商是一个连续性的差分商。

该方法的优势在于可以快速计算多项式的系数。

以下是MATLAB代码示例:```matlabfunction [coeff] = newton_interpolation(x, y)n = length(x);F = zeros(n, n);F(:,1)=y';for j = 2:nfor i = j:nF(i,j)=(F(i,j-1)-F(i-1,j-1))/(x(i)-x(i-j+1));endendcoeff = F(n, :);end```该代码中,输入参数x和y分别表示已知数据点的x坐标和y坐标,返回值coeff表示插值多项式的系数。

2.插值误差分析:插值误差是指插值函数与原始函数之间的差异。

一般来说,通过增加插值节点的数量或使用更高次的插值多项式可以减小插值误差。

以下是MATLAB代码示例:```matlabfunction [error] = interpolation_error(x, y, x_eval)n = length(x);p = polyfit(x, y, n-1);y_eval = polyval(p, x_eval);f_eval = sin(pi*x_eval);error = abs(f_eval - y_eval);end```该代码中,输入参数x和y分别表示已知数据点的x坐标和y坐标,x_eval表示插值节点的x坐标,error表示插值误差。

3.龙格现象:龙格现象是插值多项式在等距插值节点上错误增长的现象。

matlab曲线插值方法

matlab曲线插值方法

matlab曲线插值方法摘要:一、引言1.MATLAB曲线插值方法背景介绍2.文章目的与意义二、MATLAB曲线插值方法分类1.线性插值2.二次多项式插值3.三次样条插值4.三次贝塞尔插值5.三次Hermite插值三、线性插值1.原理介绍2.示例代码及结果四、二次多项式插值1.原理介绍2.示例代码及结果五、三次样条插值1.原理介绍2.示例代码及结果六、三次贝塞尔插值1.原理介绍2.示例代码及结果七、三次Hermite插值1.原理介绍2.示例代码及结果八、比较与选择1.各种插值方法优缺点分析2.应用场景选择建议九、结论1.文章总结2.对未来研究的展望正文:matlab曲线插值方法在MATLAB中,曲线插值是一种常见的数据处理和可视化方法。

它可以将离散的数据点连接成平滑的曲线,以便于分析和理解数据。

本文将介绍MATLAB中几种常见的曲线插值方法,包括线性插值、二次多项式插值、三次样条插值、三次贝塞尔插值和三次Hermite插值。

同时,我们将通过示例代码和结果展示这些插值方法的实现过程,并对各种插值方法进行比较和选择,以提供实际应用中的指导。

一、引言MATLAB作为一种广泛应用于科学计算和工程领域的编程语言,其强大的绘图功能为研究人员提供了便利。

在许多应用场景中,需要将离散的数据点连接成平滑的曲线,以直观地表现数据的变化规律。

曲线插值方法正是为了解决这一问题而提出的。

接下来,我们将介绍MATLAB中几种常见的曲线插值方法。

二、MATLAB曲线插值方法分类1.线性插值线性插值是一种简单的插值方法,它通过连接数据点形成一条直线。

在MATLAB中,可以使用`polyfit`函数进行线性插值。

```matlabx = [1, 2, 3, 4];y = [2, 4, 6, 8];p = polyfit(x, y, 1);```2.二次多项式插值二次多项式插值使用一个二次方程来拟合数据点。

在MATLAB中,可以使用`polyfit`函数进行二次多项式插值。

matlab中插值函数

matlab中插值函数

matlab中插值函数MATLAB 中提供了许多插值函数,这些函数可以用来生成曲线和曲面上丢失的值,或者将方法升级到高精度,使其在小区域内变得更加平稳。

这篇文章介绍了一些常见的MATLAB 插值函数及其用法。

1. interp1 函数interp1 函数是 MATLAB 中最常用的插值函数,可以用于一维向量的插值。

interp1 函数有五个输入参数,第一个是插值点的位置,第二个是原始数据的位置,第三个是原始数据的值,第四个是插值方法,第五个是插值结果的返回类型。

下面的代码演示了如何使用 interp1 对数据进行线性插值:```matlab% 原始数据的位置和值x = [0, 1, 2, 3, 4];y = sin(x);% 插值点的位置xx = 0:0.1:4;% 线性插值yy = interp1(x, y, xx, 'linear');这个代码将生成一条正弦曲线的插值曲线。

interp2 函数是 MATLAB 针对二维数据点的插值函数。

interp2 函数有六个输入参数:x 和 y 是原始数据点的 x 和 y 坐标,z 是原始数据点,xi 和 yi 是要插值的 x 和 y 坐标,method 是插值方法。

这个函数可以执行线性插值、三次插值和紧凑的差值。

% 创建一个有噪声的原始数据点Z = sinc(sqrt(X.^2 + Y.^2)) + 0.1*randn(size(X));% 定义插值点的位置xi = -3:0.05:3;yi = -3:0.05:3;% 绘制原始和插值曲线mesh(X, Y, Z);hold on;mesh(xi, yi, Zi);```3. griddedInterpolant 函数griddedInterpolant 函数可以生成二维、三维和多维插值函数,其中包括线性插值函数、三次插值函数和拟和插值函数。

该函数可以在网格点和非网格点之间进行插值。

(完整版)Matlab学习系列13.数据插值与拟合

(完整版)Matlab学习系列13.数据插值与拟合

13. 数据插值与拟合实际中,通常需要处理实验或测量得到的离散数据(点)。

插值与拟合方法就是要通过离散数据去确定一个近似函数(曲线或曲面),使其与已知数据有较高的拟合精度。

1.如果要求近似函数经过所已知的所有数据点,此时称为插值问题(不需要函数表达式)。

2.如果不要求近似函数经过所有数据点,而是要求它能较好地反映数据变化规律,称为数据拟合(必须有函数表达式)。

插值与拟合都是根据实际中一组已知数据来构造一个能够反映数据变化规律的近似函数。

区别是:【插值】不一定得到近似函数的表达形式,仅通过插值方法找到未知点对应的值。

【拟合】要求得到一个具体的近似函数的表达式。

因此,当数据量不够,但已知已有数据可信,需要补充数据,此时用【插值】。

当数据基本够用,需要寻找因果变量之间的数量关系(推断出表达式),进而对未知的情形作预测,此时用【拟合】。

一、数据插值根据选用不同类型的插值函数,逼近的效果就不同,一般有:(1)拉格朗日插值(lagrange插值)(2)分段线性插值(3)Hermite(4)三次样条插值Matlab 插值函数实现:(1)interp1( ) 一维插值(2)intep2( ) 二维插值(3)interp3( ) 三维插值(4)intern( ) n维插值1.一维插值(自变量是1维数据)语法:yi = interp1(x0, y0, xi, ‘method’)其中,x0, y0为原离散数据(x0为自变量,y0为因变量);xi为需要插值的节点,method为插值方法。

注:(1)要求x0是单调的,xi不超过x0的范围;(2)插值方法有‘nearest’——最邻近插值;‘linear’——线性插值;‘spline’——三次样条插值;‘cubic’——三次插值;默认为分段线性插值。

例1 从1点12点的11小时内,每隔1小时测量一次温度,测得的温度的数值依次为:5,8,9,15,25,29,31,30,22,25,27,24.试估计每隔1/10小时的温度值。

matlab插值(详细 全面)范文

matlab插值(详细 全面)范文

Matlab中插值函数汇总和使用说明MATLAB中的插值函数为interp1,其调用格式为:yi= interp1(x,y,xi,'method')其中x,y为插值点,yi为在被插值点xi处的插值结果;x,y为向量, 'method'表示采用的插值方法,MATLAB提供的插值方法有几种: 'method'是最邻近插值, 'linear'线性插值; 'spline'三次样条插值; 'cubic'立方插值.缺省时表示线性插值注意:所有的插值方法都要求x是单调的,并且xi不能够超过x的范围。

例如:在一天24小时内,从零点开始每间隔2小时测得的环境温度数据分别为12,9,9,10,18 ,24,28,27,25,20,18,15,13,推测中午12点(即13点)时的温度.x=0:2:24;y=[12 9 9 10 18 24 28 27 25 20 18 15 13];a=13;y1=interp1(x,y,a,'spline')结果为: 27.8725若要得到一天24小时的温度曲线,则:xi=0:1/3600:24;yi=interp1(x,y,xi, 'spline');plot(x,y,'o' ,xi,yi)命令1 interp1功能一维数据插值(表格查找)。

该命令对数据点之间计算内插值。

它找出一元函数f(x)在中间点的数值。

其中函数f(x)由所给数据决定。

x:原始数据点Y:原始数据点xi:插值点Yi:插值点格式(1)yi = interp1(x,Y,xi)返回插值向量yi,每一元素对应于参量xi,同时由向量x 与Y 的内插值决定。

参量x 指定数据Y 的点。

若Y 为一矩阵,则按Y 的每列计算。

yi 是阶数为length(xi)*size(Y,2)的输出矩阵。

matlab 插值法

matlab 插值法

matlab 插值法
Matlab插值法是一种将已知数据点推广到未知数据点的方法。

插值法通常用于将连续函数的数据点表示为离散数据点,以便进行计算和分析。

Matlab提供了多种插值方法,包括线性插值、多项式插值、三次样条插值等。

其中,线性插值是最简单和最常用的插值方法。

线性插值是一种简单的插值方法,通过连接相邻数据点的线段来估计未知数据点的值。

对于一组已知数据点,给定一个未知数据点x,可以使用以下公式计算其估计值y:
y = y1 + (y2 - y1) * (x - x1) / (x2 - x1)
其中,(x1,y1)和(x2,y2)分别是最近的两个已知数据点。

多项式插值是一种通过连接数据点的高阶多项式来估计未知数
据点的值的方法。

给定一组已知数据点,可以使用以下公式计算未知数据点x的估计值y:
y = a0 + a1 * x + a2 * x^2 + ... + an * x^n
其中,a0,a1,a2等是待定系数,可以通过解一个线性方程组
来确定。

三次样条插值是一种通过连接三个相邻数据点的三次多项式来
估计未知数据点的值的方法。

三次样条插值具有较高的精度和平滑性,通常用于曲线拟合和数据平滑。

给定一组已知数据点,可以使用Matlab的spline函数来计算未知数据点的估计值。

插值方法的选择取决于数据的性质和应用的需要。

在使用插值法时,应注意数据点的密度、采样间隔和插值误差等因素,以避免过度
拟合和欠拟合的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Matlab中插值函数汇总和使用说明MATLAB中的插值函数为interp1,其调用格式为: yi= interp1(x,y,xi,'method')其中x,y为插值点,yi为在被插值点xi处的插值结果;x,y为向量, 'method'表示采用的插值方法,MATLAB提供的插值方法有几种: 'method'是最邻近插值, 'linear'线性插值; 'spline'三次样条插值; 'cubic'立方插值.缺省时表示线性插值注意:所有的插值方法都要求x是单调的,并且xi不能够超过x的范围。

例如:在一天24小时内,从零点开始每间隔2小时测得的环境温度数据分别为12,9,9,10,18 ,24,28,27,25,20,18,15,13,推测中午12点(即13点)时的温度.x=0:2:24;y=[12 9 9 10 18 24 28 27 25 20 18 15 13];a=13;y1=interp1(x,y,a,'spline')结果为: 27.8725若要得到一天24小时的温度曲线,则:xi=0:1/3600:24;yi=interp1(x,y,xi, 'spline');plot(x,y,'o' ,xi,yi)命令1 interp1功能一维数据插值(表格查找)。

该命令对数据点之间计算内插值。

它找出一元函数f(x)在中间点的数值。

其中函数f(x)由所给数据决定。

x:原始数据点Y:原始数据点xi:插值点Yi:插值点格式(1)yi = interp1(x,Y,xi)返回插值向量yi,每一元素对应于参量xi,同时由向量x 与Y 的内插值决定。

参量x 指定数据Y 的点。

若Y 为一矩阵,则按Y 的每列计算。

yi是阶数为length(xi)*size(Y,2)的输出矩阵。

(2)yi = interp1(Y,xi)假定x=1:N,其中N 为向量Y 的长度,或者为矩阵Y 的行数。

(3)yi = interp1(x,Y,xi,method)用指定的算法计算插值:’nearest’:最近邻点插值,直接完成计算;’linear’:线性插值(缺省方式),直接完成计算;’spline’:三次样条函数插值。

对于该方法,命令interp1 调用函数spline、ppval、mkpp、umkpp。

这些命令生成一系列用于分段多项式操作的函数。

命令spline 用它们执行三次样条函数插值;’pchip’:分段三次Hermite 插值。

对于该方法,命令interp1 调用函数pchip,用于对向量x 与y 执行分段三次内插值。

该方法保留单调性与数据的外形;’cubic’:与’pchip’操作相同;’v5cubic’:在MATLAB 5.0 中的三次插值。

对于超出x 范围的xi 的分量,使用方法’nearest’、’linear’、’v5cubic’的插值算法,相应地将返回NaN。

对其他的方法,interp1 将对超出的分量执行外插值算法。

(4)yi = interp1(x,Y,xi,method,'extrap')对于超出x 范围的xi 中的分量将执行特殊的外插值法extrap。

(5)yi = interp1(x,Y,xi,method,extrapval)确定超出x 范围的xi 中的分量的外插值extrapval,其值通常取NaN 或0。

例11.2.>>x = 0:10; y = x.*sin(x);3.>>xx = 0:.25:10; yy = interp1(x,y,xx);4.>>plot(x,y,'kd',xx,yy)复制代码例21.2.>> year = 1900:10:2010;3.>> product = [75.995 91.972 105.711 123.203 131.669 150.697 179.323 203.212226.5054.249.633 256.344 267.893 ];5.>>p1995 = interp1(year,product,1995)6.>>x = 1900:1:2010;7.>>y = interp1(year,product,x,'pchip');8.>>plot(year,product,'o',x,y)复制代码插值结果为:1.2.p1995 =3.252.9885复制代码命令2 interp2功能二维数据内插值(表格查找)格式(1)ZI = interp2(X,Y,Z,XI,YI)返回矩阵ZI,其元素包含对应于参量XI 与YI(可以是向量、或同型矩阵)的元素,即Zi(i,j) ←[Xi(i,j),yi(i,j)]。

用户可以输入行向量和列向量Xi 与Yi,此时,输出向量Zi 与矩阵meshgrid(xi,yi)是同型的。

同时取决于由输入矩阵X、Y 与Z 确定的二维函数Z=f(X,Y)。

参量X 与Y 必须是单调的,且相同的划分格式,就像由命令meshgrid 生成的一样。

若Xi与Yi 中有在X 与Y范围之外的点,则相应地返回nan(Not a Number)。

(2)ZI = interp2(Z,XI,YI)缺省地,X=1:n、Y=1:m,其中[m,n]=size(Z)。

再按第一种情形进行计算。

(3)ZI = interp2(Z,n)作n 次递归计算,在Z 的每两个元素之间插入它们的二维插值,这样,Z 的阶数将不断增加。

interp2(Z)等价于interp2(z,1)。

(4)ZI = interp2(X,Y,Z,XI,YI,method)用指定的算法method 计算二维插值:’linear’:双线性插值算法(缺省算法);’nearest’:最临近插值;’spline’:三次样条插值;’cubic’:双三次插值。

例3:1.2.>>[X,Y] = meshgrid(-3:.25:3);3.>>Z = peaks(X,Y);4.>>[XI,YI] = meshgrid(-3:.125:3);5.>>ZZ = interp2(X,Y,Z,XI,YI);6.>>surfl(X,Y,Z);hold on;7.>>surfl(XI,YI,ZZ+15)8.>>axis([-3 3 -3 3 -5 20]);shading flat9.>>hold off复制代码例4:1.2.>>years = 1950:10:1990;3.>>service = 10:10:30;4.>>wage = [150.697 199.592 187.6255.179.323 195.072 250.2876.203.212 179.092 322.7677.226.505 153.706 426.7308.249.633 120.281 598.243];9.>>w = interp2(service,years,wage,15,1975)复制代码插值结果为:1.2.w =3.190.6288复制代码命令3 interp3功能三维数据插值(查表)格式(1)VI = interp3(X,Y,Z,V,XI,YI,ZI)找出由参量X,Y,Z决定的三元函数V=V(X,Y,Z)在点(XI,YI,ZI)的值。

参量XI,YI,ZI 是同型阵列或向量。

若向量参量XI,YI,ZI 是不同长度,不同方向(行或列)的向量,这时输出参量VI 与Y1,Y2,Y3 为同型矩阵。

其中Y1,Y2,Y3 为用命令meshgrid(XI,YI,ZI)生成的同型阵列。

若插值点(XI,YI,ZI)中有位于点(X,Y,Z)之外的点,则相应地返回特殊变量值NaN。

(2)VI = interp3(V,XI,YI,ZI)缺省地, X=1:N ,Y=1:M, Z=1:P ,其中,[M,N,P]=size(V),再按上面的情形计算。

(3)VI = interp3(V,n)作n 次递归计算,在V 的每两个元素之间插入它们的三维插值。

这样,V 的阶数将不断增加。

interp3(V)等价于interp3(V,1)。

(4)VI = interp3(......,method) %用指定的算法method 作插值计算:‘linear’:线性插值(缺省算法);‘cubic’:三次插值;‘spline’:三次样条插值;‘nearest’:最邻近插值。

说明在所有的算法中,都要求X,Y,Z 是单调且有相同的格点形式。

当X,Y,Z 是等距且单调时,用算法’*linear’,’*cubic’,’*nearest’,可得到快速插值。

例51.2.>>[x,y,z,v] = flow(20);3.>>[xx,yy,zz] = meshgrid(.1:.25:10, -3:.25:3, -3:.25:3);4.>>vv = interp3(x,y,z,v,xx,yy,zz);5.>>slice(xx,yy,zz,vv,[6 9.5],[1 2],[-2 .2]); shading interp;colormap cool复制代码命令4 interpft功能用快速Fourier 算法作一维插值格式(1)y = interpft(x,n)返回包含周期函数x 在重采样的n 个等距的点的插值y。

若length(x)=m,且x 有采样间隔dx,则新的y 的采样间隔dy=dx*m/n。

注意的是必须n≥m。

若x 为一矩阵,则按x 的列进行计算。

返回的矩阵y 有与x 相同的列数,但有n 行。

(2)y = interpft(x,n,dim)沿着指定的方向dim 进行计算命令5 griddata功能数据格点格式(1)ZI = griddata(x,y,z,XI,YI)用二元函数z=f(x,y)的曲面拟合有不规则的数据向量x,y,z。

griddata 将返回曲面z 在点(XI,YI)处的插值。

曲面总是经过这些数据点(x,y,z)的。

输入参量(XI,YI)通常是规则的格点(像用命令meshgrid 生成的一样)。

XI 可以是一行向量,这时XI 指定一有常数列向量的矩阵。

类似地,YI 可以是一列向量,它指定一有常数行向量的矩阵。

(2)[XI,YI,ZI] = griddata(x,y,z,xi,yi)返回的矩阵ZI 含义同上,同时,返回的矩阵XI,YI 是由行向量xi 与列向量yi 用命令meshgrid 生成的。

相关文档
最新文档