哈密顿算子与梯度、散度、旋度

合集下载

关于梯度、散度与旋度的探讨

关于梯度、散度与旋度的探讨

关于梯度、散度与旋度的探讨中文摘要本论文主要介绍了梯度、散度与旋度的概念以及性质,研究了它们的一些应用,其中包括共轭梯度法、斯托克斯定理等等。

在此基础之上,我们又进而深入探讨了它们之间的联系,例如梯度场和旋度场的两个重要性质、亥姆霍兹定理等等,同时,麦克斯韦方程组对散度和旋度的应用有了进一步的诠释。

关键词:哈密度算子;梯度;散度;旋度;共轭梯度法Discussion On The Gradient, Divergence And CurlABSTRACTThis paper describes the gradient, divergence and curl of the concept and nature of some of their applications, including conjugate gradient method, Stokes Theorem and so on. On this basis, we also discussed in detail the links between them, such as gradient and curl field of the two important properties, the Helmholtz Theorem, and so, while Maxwell's equations for divergence and curl The application has been further interpretation.KEY WORD: Hamilton operator degree;Gradient; divergence; rotation; conjugate gradient method.第一章前言 (1)1.1 问题的提出 (1)1.2 研究现状 (1)1.3 研究思路 (2)第二章梯度、散度与旋度的概念与性质 (3)2.1 梯度的概念与性质 (3)2.1.1 梯度的概念 (3)2.1.2 梯度的性质 (4)2.2 散度的概念及性质 (6)2.2.1 散度的概念 (6)2.2.2 散度的性质 (7)2.3 旋度的概念及性质 (9)2.3.1 旋度的概念 (9)2.3.2 旋度的性质 (11)第三章梯度、散度与旋度的应用与联系 (12)3.1 梯度、散度与旋度的应用 (12)3.1.1 梯度的应用 (12)3.1.2 散度的应用 (18)3.1.3 旋度的应用 (20)3.2 梯度、散度与旋度的联系 (21)3.2.1 两个重要性质 (21)3.2.2 亥姆霍兹定理 (22)3.2.3 麦克斯韦方程组 (23)第四章结束语 ...................................................................................................... 错误!未定义书签。

梯度、散度、旋度的关系

梯度、散度、旋度的关系

梯度散度散度(divergence)的概念:在矢量场F中的任一点M处作一个包围该点的任意闭合曲面S,当S 所限定的体积ΔV以任何方式趋近于0时,则比值∮F·d S/ΔV的极限称为矢量场F在点M处的散度,并记作div F由散度的定义可知,div F表示在点M处的单位体积内散发出来的矢量F的通量,所以div F描述了通量源的密度。

div F =▽·F气象学:散度指流体运动时单位体积的改变率。

简单地说,流体在运动中集中的区域为辐合,运动中发散的区域为辐散。

用以表示的量称为散度,值为负时为辐合,此时有利于天气系统的的发展和增强,为正时表示辐散,有利于天气系统的消散。

表示辐合、辐散的物理量为散度。

微积分学→多元微积分→多元函数积分: 设某量场由 A (x,y,z) = P(x,y,z)i + Q(x.y,z)j + R(x,y,z)k 给出,其中 P 、Q 、R 具有一阶连续偏导数,Σ 是场内一有向曲面,n 是 Σ 在点 (x,y,z) 处的单位法向量,则 ∫∫A ·n dS 叫做向量场 A 通过曲面 Σ 向着指定侧的通量,而 δP/δx + δQ/δy + δR/δz 叫做向量场 A 的散度,记作 div A ,即 div A = δP/δx + δQ/δy + δR/δz 。

上述式子中的 δ 为偏微分(partial derivative )符号。

散度(divergence )的运算法则:div (α A + β B ) = α div A+ β div B (α,β为常数)div (u A ) =u div A+ A grad u (u 为数性函数)旋度设有向量场A(x,y,z)=P(x,y,z)i+Q(x,y,z)j+R(x,y,z)k在坐标轴上的投影分别为δR/δy - δQ/δz , δP/δz - δR/δx ,δQ/δx - δP/δy的向量叫做向量场A 的旋度,记作 rot A 或curl A ,即rot A=(δR/δy - δQ/δz )i+(δP/δz - δR/δx )j+(δQ/δx - δP/δy)k式中的 δ 为偏微分(partial derivative )符号。

(完整版)梯度、散度、旋度的关系

(完整版)梯度、散度、旋度的关系

梯度散度散度(divergence)的概念:在矢量场F中的任一点M处作一个包围该点的任意闭合曲面S,当S 所限定的体积ΔV以任何方式趋近于0时,则比值∮F·d S/ΔV的极限称为矢量场F在点M处的散度,并记作div F由散度的定义可知,div F表示在点M处的单位体积内散发出来的矢量F的通量,所以div F描述了通量源的密度。

div F =▽·F气象学:散度指流体运动时单位体积的改变率。

简单地说,流体在运动中集中的区域为辐合,运动中发散的区域为辐散。

用以表示的量称为散度,值为负时为辐合,此时有利于天气系统的的发展和增强,为正时表示辐散,有利于天气系统的消散。

表示辐合、辐散的物理量为散度。

微积分学→多元微积分→多元函数积分: 设某量场由 A (x,y,z) = P(x,y,z)i + Q(x.y,z)j + R(x,y,z)k 给出,其中 P 、Q 、R 具有一阶连续偏导数,Σ 是场内一有向曲面,n 是 Σ 在点 (x,y,z) 处的单位法向量,则 ∫∫A ·n dS 叫做向量场 A 通过曲面 Σ 向着指定侧的通量,而 δP/δx + δQ/δy + δR/δz 叫做向量场 A 的散度,记作 div A ,即 div A = δP/δx + δQ/δy + δR/δz 。

上述式子中的 δ 为偏微分(partial derivative )符号。

散度(divergence )的运算法则:div (α A + β B ) = α div A+ β div B (α,β为常数)div (u A ) =u div A+ A grad u (u 为数性函数)旋度设有向量场A(x,y,z)=P(x,y,z)i+Q(x,y,z)j+R(x,y,z)k在坐标轴上的投影分别为δR/δy - δQ/δz , δP/δz - δR/δx ,δQ/δx - δP/δy的向量叫做向量场A 的旋度,记作 rot A 或curl A ,即rot A=(δR/δy - δQ/δz )i+(δP/δz - δR/δx )j+(δQ/δx - δP/δy)k式中的 δ 为偏微分(partial derivative )符号。

梯度,散度,旋度以及几个常用的PDE方程

梯度,散度,旋度以及几个常用的PDE方程

梯度,散度,旋度以及几个常用的PDE 方程——蒋小敏2012-05-07在最近的学习过程中,经常碰到梯度、散度、旋度等数学概念。

惭愧的是以前学的不够认真,到了现在,忘记的也差不多了,趁这个机会把这些知识捡回来,做一个总结,以后可以作为一个参考,是为记。

本文按知识点进行小节划分,提到的问题都是我自己经常忘记和搞混的知识点。

先定义一下本文的一些符号表达:矢量:大写黑体斜体字母A ,大写斜体字母加表示矢量的符号 标量:小写斜体字母u单位矢量:小写上加倒勾e x一、矢量(1)矢量的定义若一个矢量在三个相互垂直的坐标轴上的分量已知, 这个矢量就确定了。

例如在直角坐标系中, 矢量A 的三个分量模值分别是Ax ,Ay ,Az ,则矢量A ,z y x A z A y A xA ˆˆˆ++=(2)矢量的模222z y x A A A A ++=(3)矢量的乘积标量积,Dot production 点乘,这是一个标量AB a B A B A cos =⋅2222AA A A A AB A B A B A B A zyxz z y y x x =++=⋅++=⋅A xe矢量积,Cross production 叉乘,这是一个矢量AB a B A nB A sin ˆ=⨯ 其中 为A , B 所在平面的右手法向。

zy x z y x B B B A A A zy x B A ˆˆˆ=⨯ 二、通量(1)通量的定义若矢量场A 分布于空间中,在空间中存在任意曲面S ,则⎰⋅=ψSd SA为矢量A 沿有向曲面S 的通量。

(2)通量的物理含义表示穿入和穿出闭合面S 的矢量通量的代数和。

若0>ψ穿出闭合曲面的通量多于穿入的通量,闭合面内有产生矢量线的正源;例如,静电场中的正电荷就是发出电力线的正源;若0<ψ,穿出闭合曲面的通量少于穿入的通量,闭合面内有吸收矢量线的负源;静电场中的负电荷就是接受电力线的负源;若0=ψ,闭合面无源。

散度、旋度、梯度释义

散度、旋度、梯度释义

散度、旋度、梯度释义散度、旋度、梯度是矢量分析中的重要概念,通常用于描述矢量场的特性。

1. 散度(Divergence)散度是指矢量场在某一点上的流出量与流入量之差,也就是说,它描述了矢量场的源和汇在该点的情况。

如果某一点的散度为正,表示该点是矢量场的源,矢量场从该点向外扩散;如果散度为负,表示该点是矢量场的汇,矢量场汇聚于该点;如果散度为零,则表示该点是矢量场的旋转中心。

数学上,散度用向量微积分的形式来表示,它是矢量场的散度算子作用于该点处的矢量的结果。

散度算子用符号“∇·”表示,因此,该点的散度可以用以下公式来计算:div F = ∇·F其中,F表示矢量场,div F表示该点的散度。

2. 旋度(Curl)旋度是指矢量场在某一点上的旋转程度,也就是说,它描述了矢量场在该点处的旋转方向和强度。

如果某一点的旋度为正,表示该点周围的矢量场是顺时针旋转的;如果旋度为负,表示该点周围的矢量场是逆时针旋转的;如果旋度为零,则表示该点周围的矢量场没有旋转。

数学上,旋度用向量微积分的形式来表示,它是矢量场的旋度算子作用于该点处的矢量的结果。

旋度算子用符号“∇×”表示,因此,该点的旋度可以用以下公式来计算:curl F = ∇×F其中,F表示矢量场,curl F表示该点的旋度。

3. 梯度(Gradient)梯度是指矢量场在某一点上的变化率,也就是说,它描述了矢量场在该点处的变化方向和强度。

如果某一点的梯度为正,表示该点处的矢量场在该方向上增强;如果梯度为负,表示该点处的矢量场在该方向上减弱;如果梯度为零,则表示该点处的矢量场没有变化。

数学上,梯度用向量微积分的形式来表示,它是矢量场的梯度算子作用于该点处的标量函数的结果。

梯度算子用符号“∇”表示,因此,该点的梯度可以用以下公式来计算:grad f = ∇f其中,f表示标量函数,grad f表示该点的梯度。

哈密顿算子与梯度、散度、旋度资料

哈密顿算子与梯度、散度、旋度资料

u x
i
u y
j
u z
k
grad u
(2) A P(x, y, z)i Q(x, y, z) j R(x, y, z) k, 则
A
P x
Q y
R z
div A
i jk
A
x
y
z
rot A
P QR
➢对矢量场,在笛卡尔坐标系下其旋度定
义为: r i
r
r
jk
r
V
x y z
Vx Vy Vz
Vz
y
Vy
z
r i
Vx z
Vz x
r Vy
j
x
Vx
r k
y
➢对速度矢量场,流体微团运动分析证明 速度旋度等于旋转角速度的两倍。
哈密顿算子小结
(1) 设u u(x, y, z), 则
u
• 矢量性
• 微分算子
• 只对于算子▽ 右边的量发生 微分作用
例如 麦克斯韦方程组的微分形式为
Dx Dy Dz
x y z Bx By BZ 0 x y z
H z y
H y z
x
Dx t
H x z
H z x
y
Dy t
Ez Ey Bx y z t Ex Ez By z x t Ey Ex Bz x y t
哈密顿算子与梯度、散度、旋度
• 英汉对对碰
• Operator▽ • Gradient • Divergence • Curl
• 哈密顿算子 • 梯度(grad) • 散度(div) • 旋度(rot)
哈密顿算子的定义与性质
• 定义向量微分算子
x

如何推导梯度,散度,旋度,拉普拉斯算子的傅里叶对应

如何推导梯度,散度,旋度,拉普拉斯算子的傅里叶对应

如何推导梯度、散度、旋度、拉普拉斯算子的傅里叶对应梯度、散度、旋度、拉普拉斯算子是数学和物理学中常见的概念,它们在向量分析、场论、泛函分析等领域中具有重要的地位和作用。

在实际应用中,这些概念通常与傅里叶变换相结合,为问题的分析和求解提供了便利。

本文将重点探讨梯度、散度、旋度、拉普拉斯算子的傅里叶对应关系,并介绍如何推导这些对应关系。

1. 梯度的傅里叶对应梯度是一个向量算子,用来描述标量函数在空间中变化最快的方向和变化率。

对于二维空间中的标量函数f(x, y),其梯度可以表示为:∇f = ( ∂f/∂x, ∂f/∂y )其中,∂f/∂x和∂f/∂y分别表示f对x和y的偏导数。

现在我们来推导梯度的傅里叶对应关系。

根据傅里叶变换的定义,二维空间中的函数f(x, y)的傅里叶变换可以表示为:F(kx, ky) = ∬ f(x, y) * exp(-i(kx*x + ky*y)) dx dy其中,exp(-i(kx*x + ky*y))是傅里叶核,kx和ky分别表示频域中的横向和纵向频率。

我们对上式进行偏导数运算:∂F(kx, ky)/∂kx = -i ∬ x * f(x, y) * exp(-i(kx*x + ky*y)) dx dy∂F(kx, ky)/∂ky = -i ∬ y * f(x, y) * exp(-i(kx*x + ky*y)) dx dy这样,我们得到了梯度的傅里叶对应关系:∇f = (i∂/∂kx, i∂/∂ky) F(kx, ky)也就是说,原函数f(x, y)的梯度与其在频域中的傅里叶变换的偏导数存在对应关系,这为在频域中对梯度的分析提供了便利。

2. 散度的傅里叶对应散度是一个向量算子,描述了向量场在某一点的流出量与流入量的差异。

对于二维空间中的向量场V(x, y) = (u(x, y), v(x, y)),其散度可以表示为:div(V) = ∂u/∂x + ∂v/∂y现在我们来推导散度的傅里叶对应关系。

梯度、散度、旋度的关系

梯度、散度、旋度的关系

梯度散度散度(divergence)的概念:在矢量场F中的任一点M处作一个包围该点的任意闭合曲面S,当S 所限定的体积ΔV以任何方式趋近于0时,则比值∮F·d S/ΔV的极限称为矢量场F在点M处的散度,并记作div F由散度的定义可知,div F表示在点M处的单位体积内散发出来的矢量F的通量,所以div F描述了通量源的密度。

div F =▽·F气象学:散度指流体运动时单位体积的改变率。

简单地说,流体在运动中集中的区域为辐合,运动中发散的区域为辐散。

用以表示的量称为散度,值为负时为辐合,此时有利于天气系统的的发展和增强,为正时表示辐散,有利于天气系统的消散。

表示辐合、辐散的物理量为散度。

微积分学→多元微积分→多元函数积分: 设某量场由 A (x,y,z) = P(x,y,z)i + Q(x.y,z)j + R(x,y,z)k 给出,其中 P 、Q 、R 具有一阶连续偏导数,Σ 是场内一有向曲面,n 是 Σ 在点 (x,y,z) 处的单位法向量,则 ∫∫A ·n dS 叫做向量场 A 通过曲面 Σ 向着指定侧的通量,而 δP/δx + δQ/δy + δR/δz 叫做向量场 A 的散度,记作 div A ,即 div A = δP/δx + δQ/δy + δR/δz 。

上述式子中的 δ 为偏微分(partial derivative )符号。

散度(divergence )的运算法则:div (α A + β B ) = α div A+ β div B (α,β为常数)div (u A ) =u div A+ A grad u (u 为数性函数)旋度设有向量场A(x,y,z)=P(x,y,z)i+Q(x,y,z)j+R(x,y,z)k在坐标轴上的投影分别为δR/δy - δQ/δz , δP/δz - δR/δx ,δQ/δx - δP/δy的向量叫做向量场A 的旋度,记作 rot A 或curl A ,即rot A=(δR/δy - δQ/δz )i+(δP/δz - δR/δx )j+(δQ/δx - δP/δy)k式中的 δ 为偏微分(partial derivative )符号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
哈密顿算子与梯度、散度、 哈密顿算子与梯度、散度、旋度
• 哈密顿算子是一种重要的微分算子 • 由它作为工具,可导出一系列美妙的结论, 它把数量场的梯度与矢量场的散度和旋度 简洁地呈现出来 • 麦克斯韦的电磁学方程组微分形式就是用 哈密顿算子表示起来极其简洁、明了 • 可以说,算子简化了复杂的理论,且通过 它可把远离的理论巧妙地联系起来
引进哈密顿算符: 引进哈密顿算符:
∂r ∂ r ∂ r ∇= i + j + k ∂x ∂y ∂z
r ∇⋅ D = ρ r ∇⋅ B = 0 r r r ∂D ∇× H = δ + r ∂t r ∂B ∇× E = − ∂t
标量场的梯度(gradient) 标量场的梯度(gradient)
考虑压强标量场,空间某点的梯度,记 考虑压强标量场,空间某点的梯度, p 定义为如下矢量: 为 ∇ ,定义为如下矢量: 1.大小等于压强在空间给定点单位长度上 1.大小等于压强在空间给定点单位长度上 的最大变化率。 的最大变化率。 2.方向为给定点压强变化率最大的方向 方向为给定点压强变化率最大的方向。 2.方向为给定点压强变化率最大的方向。 笛卡尔坐标系下梯度表达式: 笛卡尔坐标系下梯度表达式:
哈密顿算子与梯度、散度、 哈密顿算子与梯度、散度、旋度
• 英汉对对碰 • • • • Operator▽ Operator▽ Gradient Divergence Curl • • • • 哈密顿算子 梯度(grad) 梯度(grad) 散度(div) 散度(div) 旋度(rot) 旋度(rot)
∂u ∂u ∇u = ∂x i + ∂ y ∂u j + ∂z k
= gradu
(2) A = P(x, y, z)i + Q(x, y, z) j + R(x, y, z) k, 则
ቤተ መጻሕፍቲ ባይዱ
∇⋅ A
∂P ∂Q ∂R = ∂x + ∂ y + ∂z = div A
i
∂ = ∂x ∇× A P
j
∂ ∂y
k
∂ ∂z
哈密顿算子的定义与性质
• 定义向量微分算子
∂ ∂ ∇ = ∂x i + ∂∂y j + ∂z k
• 称为▽( Nabla ,奈 称为▽ 布拉)算子, 布拉)算子, 或哈密 顿( Hamilton ) 算子
• • •
矢量性 微分算子 只对于算子▽ 只对于算子▽ 右边的量发生 右边的量发生 微分作用
∂Dx ∂Dy ∂Dz + + =ρ ∂x ∂y ∂z ∂Bx ∂By ∂BZ + + =0 ∂x ∂y ∂z
=

∂Vz ∂y
∂V y ∂z


∂Vx ∂z

∂Vz ∂x

r j +

∂V y ∂x

∂Vx ∂y

r k
对速度矢量场, 对速度矢量场 , 流体微团运动分析证明 速度旋度等于旋转角速度的两倍。 速度旋度等于旋转角速度的两倍。
哈密顿算子小结
(1) 设u = u(x, y, z), 则
= rot A
Q
R
对速度矢量场, 对速度矢量场 , 流体微团运动分析证明 速度散度的物理意义是标定流体微团运 动过程中相对体积的时间变化率。 动过程中相对体积的时间变化率。
矢量场的旋度(curl) 矢量场的旋度(curl)
对矢量场, 对矢量场 , 在笛卡尔坐标系下其旋度定 义为: 义为: ir rj kr
r ∇ × V = ∂ ∂x Vx − ∂ ∂y Vy ∂ ∂z Vz r i +
∇ p = ∂ p ∂ p i+ ∂ x ∂ y j+ ∂ p k ∂ z
梯度和方向导数的关系: 梯度和方向导数的关系:
r dp =∇ p•n ds
矢量场的散度(divergence) 矢量场的散度(divergence)
对矢量场, 对矢量场 , 在笛卡尔坐标系下其散度定 义为: 义为:
r ∂V x ∂V y ∂V z ∇ •V = + + ∂x ∂y ∂z
例如 麦克斯韦方程组的微分形式为
∂Hz ∂Hy ∂Dx − = δx + ∂t ∂y ∂z ∂Dy ∂Hx ∂Hz =δy + − ∂z ∂x ∂t ∂Hy ∂Hx ∂DZ − = δz + ∂x ∂y ∂t
∂Ez ∂Ey ∂Bx − =− ∂t ∂y ∂z ∂By ∂Ex ∂Ez − =− ∂z ∂x ∂t ∂Ey ∂Ex ∂Bz − =− ∂x ∂y ∂t
相关文档
最新文档