除氧器水位问题

合集下载

除氧器水位测量失真的原因分析及处理

除氧器水位测量失真的原因分析及处理
2 水位测量失真原因分析
收稿日期:2017 -06 -28;修回日期:2017-11-01 基金项目: 河南省教育厅基金资助项目(WIWOOO9)
2.1 思路分析 针对给水泵气化现象,检修人 员 打 开 #2给 水 泵
•20 •
华电技术
第39卷
入 口 滤 网 检 查 ,没 有 发 现 异 物 。因 此 可 以 判 断 ,水泵 气化的原因就是除氧器水位真实降低。但无论是就 地磁翻板水位计还是DCS远方测量值和水位开关 量 测 量 都 显 示 水 位 正 常 ,因 此 需 要 对 除 氧 器 水 位 测 量失真原因进行分析检查。 2 .2 原因分析
如 图 2 所 示 ,除氧器水位测量只有一个取样管, 磁翻板水位计和DCS远方测量变送器及水位开关 都是从一个取样测量筒上接出来的。根据检修人员 对 变 送 器 的 检 查 ,确 定 变 送 器 正 常 。进 一 步 分 析 发 现 ,除氧器水位测量惯性较大,水位实时显示曲线两 个波峰间时间较长,有 时 可 达 3 h 左 右 ,而正常从凝 结水流量开始变化反映到除氧器水位的变化上应该 在 2 0 m in以内。因此,分析原因可能为除氧器水位 测 量 筒 下 部 堵 塞 ,除 氧 器 水 箱 和 水 位 测 量 筒 间 进 出 水 时 流 量 较 小 ,测 量 筒 水 位 变 化 缓 慢 ,导致除氧器水 位 测 量 不 能 同 水 箱 水 位 同 步 变 化 ,甚 至 两 者 的 变 化 方 向 可 能 反 向 ,测 量 出 来 的 水 位 变 化 幅 值 比 水 箱 实 际 变 化 幅 值 要 小 得 多 。 因 为 测 量 筒 下 部 堵 塞 ,导致 测量筒水位开始升高时,凝结水流量开始减小,大约 2 0 min,除 氧 水 箱 的 真 实 水 位 应 该 开 始 下 降 。但在 下 降 的 过 程 中 ,因 水 箱 水 位 仍 比 测 量 筒 高 ,因此测量 的水位仍处于上升过程,凝 结 水 流 量 还 是 在 减 少 。 当测量筒水位达到峰值时应和水箱真实水位一致, 此时它才会和水箱水位开始同时下降。但由于同样 原 因 ,它的变化远比不上水箱水位的真实变化,其模 拟曲线如图3 所 示 。因 此 ,在水箱真实水位达到最 低 开 始 回 头 时 ,测 量 筒 显 示 的 水 位 却 仍 在 降 低 ,直至 测量水位达到低点时两个水位才真实一致。因为凝 结 水 流 量 是 跟 随 测 量 水 位 自 动 变 化 的 ,而 测 量 筒 水 位的缓慢变化就导致了凝结水流量的大幅增加或减 少 ,增加了一个测量周期的时间,表面看起来是系统 惯 性 增 大 ,但 实 际 却 导 致 了 除 氧 器 水 箱 实 际 水 位 的 大 幅 波 动 ,导 致 水 位 过 高 或 过 低 ,最终发生了给水泵 气化。

除氧器液位波动原因分析及处理措施

除氧器液位波动原因分析及处理措施

负荷运行时 5分钟需要的水 量。不 管电厂负荷如何变化 , 除氧器水 位控制 的功能就是保证 除氧器贮水 箱 中的水 位
恒定在 3 3 8 0 mm, 确 保 除氧 器 的 水 位 控 制 正 常 对 机 组 的 安
全 运 行 有 着 重 要 的意 义 。
2 . 2 凝汽 器排水 阀异常开 启 故障现象 : 凝 汽器液位低 于排水设定值 , 但是排水 阀
三 个 位 置 “ L C V 4 2 0 7 # 1 , # 2 ; L C V 4 2 0 7 # 1 , # 3 ; L C V4 2 0 7 # 2 ,
处理措施 :操作时应及时处理低加旁路阀电动 开度 , 确认低加旁 路 阀开 ; 若低旁 通 阀不打开 电场 , 则是操作人 员手动摇动低 电阀 门旁路 。 2 . 4 5号 高加 常疏 阀异 常关 闭
摘 要: 除 氧 器 液位 是机 组 运 行 的 一 个 重 要 的 控 制 参 数 , 因为 除 氧 器 液 位 过 低 , 则 可 能 导 致 给 水 泵 汽蚀 , 并触发反应堆线性降功率 , 而 除 氧 器液 住 过 高则会 淹 没 除氧 头 , 不但 影 响 除氧 效 果 , 还 可 能使 给 水 经 抽 汽 管 线 倒 流 至 汽轮 机 , 引起 水 击 事 故 , 损 坏 汽 机 。我 厂 除 氧 器
的液 位 控 制 采 用 的 是 三 冲 量 P I D调 节. 较好 的 实现 了 除氧 器的 液 位 自动 控 制 。 关键词 : 除氧器 ; 液位波动 ; 原 因分 析 ; 处理 措 施 中 图分 类 号 : T M6 2 3 文献标志码 : A 文章 编 号 : 1 6 7 2 — 3 8 7 2 ( 2 0 1 7 ) 0 9 — 0 0 5 5 一 O 2

除氧器水位控制简介

除氧器水位控制简介

除氧器水位控制简介目前超临界压力机组运行中,除氧器水位控制是工厂自动控制中的一部分。

其特点是由于机组的热力系统及运行特性决定了除氧器水位控制在不同的工况下可以自动先择单冲量或三冲量控制。

一、除氧器水位调节工艺流程。

工艺流程如图(一)所示,单台凝结水泵出力及单台汽动给水泵出力均为50%MCR。

电动给水泵通过液力偶合器变速运行,出力为30%MCR。

除氧器水箱正常水位2875mm,水容量425T。

机组在干态下(即160MW-600MW区间)滑压运行。

正常时高压加热器疏逐级自流到除氧器水箱。

#2~4低压加热器疏水逐级自流到低加疏水箱经低加疏水泵打入#3低加水侧入口,#1低加疏水直接流凝汽器扩容器。

除氧器的水位控制是通过轴封加热器出口的除氧器水位调节阀的节流从而改变进入除氧器的凝结水流量来调节的。

FT1:#4低加出口流量变送器;FT2:锅炉给水流量变送器;LS:除氧器水位开关;LT:除氧器水位变送器;I/P:电流压力转换器;SV:电磁阀;ZT:除氧器水位调节阀位置变送器.图 (一)二、除氧器水位调节控制部分除氧器水位控制简图如图(二)所示,系统采用了三冲量串控制和单冲量控制两种方式,以适应不同工况的需要。

测量元件:a)LT:除氧器水箱的运行参数相对比较低(额定:p=0.97MPa、t=176℃),所以在水位的测量部分并没有如汽泡水位测量一样有测量误差修正。

但是为了提高系统可靠性而采用了三个水位变送器取其三者平均值为除氧器的水位反信号。

b)LS:水位开关用来检知水位低1值、水位低2值、水位高1值、水位高2值、水位高3值并触发报警或启动相关保护。

c)FT1:给水流量测量信号来自锅炉协调控制中的给水流量反馈,采用的是节流孔板流量计,三个流量变送器取平均值作为给水流量,并加给水温度的修正。

d)FT2:凝给水进入除氧器的流量测点是按装在#4低加出口。

同样是节流孔板流量计,但是三个流量变送器取中间值为凝结水进入除氧器的反馈,没有温度的修正。

除氧器水位自动调节原理

除氧器水位自动调节原理

除氧器水位调节系统简介王荣鑫一、除氧器水位调节的意义:除氧器水箱用以保证锅炉有一定的给水储备量,一般要求能满足锅炉额定负荷下连续运行15—20min的给水量。

水位太低因储备量不足而危及锅炉的安全运行,还可能使给水泵入口汽化,导致给水泵不能正常工作;水位太高,可能淹没除氧头而影响除氧效果。

一般要求水位在规定值±100mm—±200mm范围内,所以除氧器设计有水位自动控制系统,并有高、低水位异常报警和连锁保护。

将给水加热到相应除氧器内压力的饱和温度,可以保证气体从水中分离出来,很好地清除氧气。

给水在除氧器中清除氧气的主要机理是加热除氧。

除氧器除了通过用汽轮机抽汽加热给水到沸腾状态以除氧外,还担负着向给水泵不断供水的任务,为了保证给水泵安全运行,即要求避免给水泵入口发生汽化或缺水事故,一定要保证除氧器下部的给水箱保持规定的水位。

除氧器水位过低,除了影响给水泵安全运行之外,甚至会威胁锅炉上水,造成停炉事故;除氧器给水箱水位过高,汽轮机汽封将上水,抽汽管将发生水击,威胁汽轮机的安全运行;因此要设计可靠的除氧器水位自动调节系统。

二、除氧器水位自动调节原理:除氧器水位自动调节系统根据热力系统设计的不同有不同的设计思路。

中小型机组有的采用单冲量单回路调节系统,通过控制化学水补给水门或者低压加热器至除氧器的调节阀来实现,也有采用三冲量控制系统。

大型机都采用全程控制系统,当给水流量从零到一定值(如10%额定负荷)时,系统单冲量水位控制系统,当给水流量大于一定值(如10%额定负荷)时,系统为三冲量水位控制系统,即水位控制器接受三个输入信号:水位信号、化学水流量、给水流量。

两种方式的切换通过逻辑切换实现,控制主凝结水到除氧器的进水阀。

大型机组的除氧器水位为全程控制系统,当给水流量小时,采用单冲量水位控制系统,当给水流量大时切换至三冲量水位控制系统。

三冲量分别为除氧器水位、给水流量、凝结水流量。

下图中为除氧器水位全程控制图。

除氧器液位波动原因分析及处理措施

除氧器液位波动原因分析及处理措施

除氧器液位波动原因分析及处理措施摘要:除氧器正常运行时给蒸汽发生器提供水源,除氧器液位的稳定对保证堆芯的冷却具有重要的意义。

除氧器液位是机组运行的一个重要的控制参数,因为除氧器液位过低,则可能导致给水泵汽蚀,并触发反应堆线性降功率,而除氧器液住过高则会淹没除氧头,不但影响除氧效果,还可能使给水经抽汽管线倒流至汽轮机,引起水击事故,损坏汽机。

关键词:除氧器;液位波动;原因分析;处理措施不论在常规火电厂还是在核电厂中,除氧器液位都是机组运行的一个重要控制参数。

但是由于其存在着较大的延迟特性,除氧器进口存在较多的进水流量来源以及除氧器出口给水流量随着功率的变化而变化等特性,单纯依靠除氧器液位信号对除氧器液位进行控制,已不能满足系统对稳定性、快速性和准确性的要求,往往会引起超调量过大,甚至振荡的情况。

1除氧器液位控制1.1除氧器液位控制模式除氧器水位控制系统的目的是保持除氧器储水箱的水位恒定。

系统包括三个水位控制阀和三个水位控制器,每一个控制阀和控制器都有各自的水位变送器监测除氧器储水箱的水位。

手动开关64321一HS4410A有三个位置“LT4410A,LT4410B,LT4410C”,用来选择三个水位控制器的主、从位置。

当选定一个位置时,两个控制器投入运行:一个控制器在AUTO位置,一个控制器在STANDBY位置。

在AUTO位置的水位控制器用于调节两个由控制开关64321-HS4410C选定在AUTO位置的水位控制阀,在STANDBY位置的水位控制器控制剩下的一个在STANDBY位置的水位控制阀。

STANDBY通道(LT/LC)在除氧器低水位时投入运行。

手动开关64321一HS4410C有三个位置“LCV4207#1,#2;LCV4207#1,#3;LCV4207#2,#3”,用来选择将AUTO/STANDBY水位控制器的控制信号送至相应的水位控制阀。

1.2除氧器液位控制器除氧器液位控制采用的是三冲量、内部串级加前馈的控制方式,三台控制器内部参数设定完全一致。

300MW机组除氧器水位控制系统改进

300MW机组除氧器水位控制系统改进

( ) 改除 氧器水位 调节 阀控制逻 辑 。 2修
正比, 利用这一 变频 调速节 能原理 , 降低转速 可 以大
收 稿 日期 :0 0— 3—1 21 0 1
3 除氧器水位控制 系统的改造
在 单 冲量 阶段 , 氧器水 位 调节 仍 然维 持 原有 除
第 7期
龚咏梅 :0 w 机 组除氧 器水位控 制 系统 改进 3 0M
1 除 氧器 水 位 控 制 系统 缺 陷分 析
1 1 设备 概况 .
湖北 西塞 山发 电有 限公 司一 期 2×3 0M 机 3 W 组为北重 生产 的 N 3 3 0—1 .5 5 0 5 0型 中间再热 77/4/4 凝汽式 汽 轮 发 电机 组 , 用 9 D N 采 L T B一5型 凝 结 水 泵, 湘潭 电机厂生 产 的 Y S 5 0— K L 0 4型 电动 机 , 定 额 功率 1 0 W , 0 0 k 电压 6 V, 转速 1 8 m n k 4 7 / i。机组 正 r 常运行 时 , 2台凝 结水 泵 1台运行 , 1台备 用 。凝 结 水 经凝结水 泵 、 氧器入 口水位调 节 阀 、 压加 热器 除 低 流人除氧 器进行热 力除氧 。 1 2 除氧 器水位控 制 系统 缺 陷分 析 . 传统 除氧器水 位控制 系统有 2个缺 陷 :
至变频器 , 变频 器 控制 除 氧器 水 位 。在机 组停 机 或 减负荷过 程 中 , 调节 阀 又接 过 除氧 器 水位 调 节 的任 务, 变频 器无扰 切换 为控 制凝结 水母管 压力 , 这就是 除氧器水 位控制 系 统采 用新 方 法 之后 的精 妙之 处 ,
既 可使 除氧器人 口水位 调节 阀随着机组 负荷变 化实 现全程调 节 ( 除了 以前 调节 阀 固定 在 5 % 位 置附 消 0 近调节 的弊端 ) 又 可降低 凝结 水母 管 压 力 , 正 实 , 真

除氧器原理及水位控制

除氧器原理及水位控制

一、除氧器的作用和工作原理简介除氧器的主要作用是除去给水中的氧气,保证给水的品质。

水中溶解的氧气,会使与水接触的金属腐蚀,温度越高腐蚀就越明显;在热交换器中若有气体聚集就会妨碍传热过程的进行,降低设备的传热效果。

因此水中溶解有任何气体都是不利的,尤其是氧气,它将直接威胁设备的安全运行。

除氧器本省又是给水回热系统中的一个混合式加热器,同时高压加热器的疏水、化学补水及全厂各处水质合格的疏水、排气等均可通入除氧器汇总并加以利用,减少发电厂的汽水损失。

当水和某种气体混合物接触时,就会有一部分气体融解到水中去。

气体的溶解度就是表示气体溶解于水中的数量,以毫克/升计值,它和气体的种类以及它在水面的分压力、和水的温度有关。

在一定的压力下,水的温度越高,气体的溶解度就越小;反之,气体的溶解度就越大。

同时气体在水面的分压力越高,其溶解度就越大;反之,其溶解度也越低。

天然水中常含有大量溶解的氧气,可达10毫克/升。

汽轮机的凝结水可能融有大量氧气,因为空气能通过处于真空状态下的设备不严密部分渗入进去。

此外,补充水中也含有氧气及二氧化碳等其他气体。

液面上气体混合物的全压力中,包括有液体蒸汽的分压力。

将水加热时,液面附近水蒸气的分压力就会增加,相应的液面附近其他气体的分压力就会降低。

当水加热到沸点时,蒸汽的分压力就会接近液面上的全压力,此时液面上其他气体的分压力几乎接近于零,于是这些气体将完全自水中清除出去。

要达到这一点,不仅要将水加热到沸点,还要使液面上没有这些气体存在,即将逸出的气体随时排走。

除氧器的工作原理即利用蒸汽对水进行加热,使水达到一定压力下的饱和温度,即沸点。

这时除氧器的空间充满着水蒸汽,而氧气的分压力逐渐降低接近为零,溶解于水的氧气将全部逸出,以保证给水含氧量合格。

在高参数的电厂,一般采用0.59兆帕的除氧器。

这样可以减少价格昂贵而运行不十分可靠的高压加热器的数目。

高参数的锅炉给水温度一般为230~250摄氏度。

除氧器液位波动原因分析及处理措施

除氧器液位波动原因分析及处理措施

输 入二为给水流量 .输入二三为除氧器液位 所谓 内部串级 .控制器内部 MANUAL,手动控制除氧器液位控制器的输 出,确认 除氧器液位 、除氧
控制器 控制剩下 的一个 在 STANDBY位置的水位控 制阀 STANDBY
故障现象 :凝泵出 口压力 下降 、除氧器上水流量下降 、主凝泵 出口
通道 (LT/LC)在除氧器低水位时投入运行
流量下降 、现场确认滤网压差 高。
手动开关 6432l-HS4410C有三个位置‘'LCV4207#1,样2;LCV4207#1,
秦山核电三厂除氧器 正常运行时储存 338m3的水 .相当于电站满负荷 器液位 、主凝结水泵 出口压力 、除氧器上水流量 和主凝结水 泵出 El流
运行时 5分钟需要 的水量 。不管 电厂负荷如何变化 ,除氧器水位控制 量逐步恢复正常
的功能就是保证除氧器贮水箱 中的水位 恒定在 3380mm.确保 除氧器 2-3 一列低加 隔离 而低加旁路 电动阀没有 自动开启
手动开关64321-HS4410A有三个位置‘'LT4410A,LT4410B.LT4410C’. 高加急疏 阀开启 .主控室检查 5A或 5B高加 至除氧器疏水流量显示 为
用来选择 三个水位控制器的主 、从位置 。当选定 一个位置时 .两个控制 0 ks/s.没有 出现除 氧器液位高 一高液 位报警 .5A或 5B高加壳侧液位
处理措施 :出现这种情况 ,主要是发生机组刚投入运行的前期。而
#3;LCV4207#2.#3”.用来选择将 AUTO/STANDBY水位控制器的控制 目前 由于 系统 已运行较 长时间 .系统 杂质相对已较少 .出前这种事故
信号送至相应的水位控制阀 每一个水位控制阀都有 各 自本 身的手动 的可能性就非常小 .一旦出现 .应尽快 做进行主凝泵切换 并进行入 口
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

除氧器水位急剧下降的事故处理预案
一、事故前工况:
凝泵单台工作,除氧器水位自动调节正常,两台电泵工作,汽包水位自动调节正常,机组运行正常。

二、除氧器水位急剧下降事故现象:
1、除氧器OS画面水位、电接点水位、就地水位计水位一个或全部指示降低。

2、凝汽器水位可能升高,汽包水位可能升高。

3、水位降到OS画面水位低报警发出。

4、水位降到水位低II值时,将使给水泵掉闸。

5、凝泵电流、出口压力、流量、给水泵转速、给水流量可能发生大幅变化。

三、除氧器水位急剧下降事故原因:
(一)、凝水系统有故障,包括:
1、主凝水调门机构故障使调门关闭。

2、除氧器水位自动调节系统失灵。

3、A凝泵跳闸(或变频器故障跳闸)备用B泵未及时联起。

4、加热器跳闸后水侧阀门动作不正常使凝水中断。

5、凝水启动再循环门、凝水再循环门误开,自动调整跟踪不及时或除氧器水位设定块误设定时。

(二)、给水系统扰动,包括:
1、给水泵故障,转速飞升,除氧器水位跟踪不及时。

2、其他故障使锅炉需水量急剧增加,除氧器水位跟踪不及时。

(三)、除氧器系统有故障,包括:
1、除氧器溢流阀、事故放水阀误开不关或联开后不关。

2、水位测量部分故障,发水位假信号。

3、机组启动过程中,操作不当使除氧器与凝汽器连通。

4、高负荷时高加事故疏水开启,凝水补充不及时。

四、除氧器水位急剧下降事故处理:
1、发现除氧器水位急剧下降,应首先根据两个OS画面水位和一个电接点水位的变化情况进行故障确认,如为控制用变送器故障,应退出除氧器水位自动调节改为手动调整,如为指示用变送器故障应加强监视通知热工,如为电接点故障,应联系热工短接闭锁电泵启动接点并及时处理。

2、如所有水位计指示均急剧下降,应根据凝水主调门开度(变频器控制块开度)、凝泵电流、出口压力、凝水流量进行判断,迅速查明原因,进行相应处理。

如为主调门故障关闭,表现为凝泵电流减小,出口压力升高,流量下降等,此时应立即开启主调门旁路电动门补水,观察凝水流量,使用凝水再循环辅助调整流量,必要时手动调整旁路电动门;如为加热器故障跳闸,水侧阀门切换不正常引起断水,则故障阀门闪黄,凝泵电流减小,出口压力升高,流量下降,此时应就地手动开启故障电动门维持上水;如为除氧器水位自动调节失灵,应立即改为手动调节;如变频器跳闸或A凝泵电机跳闸备用泵未及时联起,应手起备用泵;如为系统阀门误开应检查关闭,设定操作失误应汇报机长立即恢复;如为炉侧扰动,应以炉侧为主,必要时启动备用泵上水,防止事故扩大;除氧器系统阀门误开等原因引起的水位下降,应及时关闭,如为溢流阀故障应关闭手动门;启动过程中应认真检查除氧循环泵系统阀门及凝水启动循环门位置,防止除氧水箱的水窜到凝汽器,一旦发生水位下降现象应立即进行系统隔离;高负荷时高加事故疏水开启应根据情况适当减负荷使事故疏水关闭,否则通知热工关闭。

3、处理除氧器水位急降事故过程中,炉侧应进行减负荷操作以减缓水位下降速度,同时可以暂时减小锅炉上水量。

如果处理不及时水位下降到保护值应按炉灭火处理,以防止损坏设备。

一、事件经过
×年×月×日,××发电有限责任公司,夜班时,某值运行值班员在设定除氧气水位时,本想设定为2260mm,却误设定为2600mm,当时并没有发现。

运行工况:负荷指令450MW,四台磨煤机运行,两台汽泵运行,电泵处于热备用,除氧器供汽由四抽带,除氧器压力0.51Mpa,温度154℃,滑压运行。

误设定值后水位上升,发了除氧器水位高Ⅰ值报警(大于2530mm),检查除氧器水位已经达到2540mm,除氧器溢流阀没有开。

除氧器上水调门开度52%比正常是大(正常是约为40%),除氧器上水流量增大,除氧器水温下降,低加水位开关发高Ⅰ报警,凝结水泵出口压力降低为2.9MPa,凝汽器水位降低到650mm,凝汽器补水调门已经全开。

经检查除氧器水位设定值位2600mm,且除氧器水位有升高的趋势,立刻解除水位设定自动,关小。

处理如下:
1. 除氧器水位高Ⅰ值(大于2530mm),发报警,联开溢流阀。

高Ⅱ值(大于2640mm)联开危机疏水门,除氧器事故疏水门开启后,要注意放水管路的振动情况。

高Ⅲ值(大于2900mm)会引起保护关四段抽汽逆止门,由于小机也由四抽供汽。

因此若除氧器水位高Ⅲ值,注意给水泵汽源由四抽供汽自动切为冷再供汽,由于冷再压力较高,此时小机有可能发生转速上升甚至超速,引起汽包水位过高,应对汽包水位及时调整,做好小机超速引起RB、汽包水位高MFT、甚至汽机进水的预想;
2. 若四抽跳,除氧器的汽源要倒为高辅带,由于这时辅汽用量增大,要注意辅汽压力的稳定和流量的稳定。

冷再到高辅调门可能会开的比较大,要注意调门不要有大的摆动;
3. 凝结水上水流量增大时,注意各个低加水位的变化情况,凝结水流量大幅变化,及时手动开启低加事故疏水来进行调整。

若低加因为水位高而跳闸,要注意相应的旁路门联开,避免凝结水断水。

同时低加跳闸,会影响到给水温度,注意调整锅炉的燃烧;
4. 当除氧器上水调门开度大造成凝泵出口压力低而可能联起备用泵,应及时解连锁,将备用凝泵停用。

当除氧器上水调门开度关小时,凝结水流量变低,可以适当开启凝结水再循环,增加流量,避免流量低跳凝结水泵。

二、原因分析
1. 工作态度不认真,操作前不思考,操作后不审查;
2. 相互监护提醒不够;
3. 发现操作出错,要寻求挽救的最佳途径,避免盲目
4. 不知道所操作对象的危险点。

5. 技术水平有待提高。

三、预防措施
1. 设定时做到仔细,谨慎,防止误操作;
2. 熟悉各设备的运行参数,掌握所设参数对系统的影响;
3. 做到勤翻画面,及时发现异常工况并及时正确处理;
4. 重要操作一定要有人监护;
5. 上班前要保证良好的休息,避免疲劳上班。

操作前思考三秒,避免误操作。

相关文档
最新文档