人教版九年级数学上册第21章单元检测题带答案
人教版数学九年级上册第21章 一元二次方程 单元检测(含答案)

九年级上册第21章单元检测一.选择题1.下列方程中,属于一元二次方程的是()A.3x2﹣5x=6B.﹣2=0C.x2+y2=4D.6x+1=02.已知一元二次方程的两根分别是3和﹣2,则这个方程可以是()A.(x+3)(x﹣2)=0B.x2+x+6=0C.(x﹣3)(x+2)=0D.x2﹣3x+2=03.已知一元二次方程x2﹣6x+c=0有一个根为2,则另一根及c的值分别为()A.2,8B.3,4C.4,3D.4,84.若关于x的一元二次方程x2﹣2x+m=0有两个实数根,则m的取值范围是()A.m≥B.m≤C.m≥3D.m≤35.方程9x2=8x+2化为一般式后的二次项、一次项、常数项分别是()A.9x2,8x,2B.﹣9x2,﹣8x,﹣2C.9x2,﹣8x,﹣2D.9x2,﹣8x,26.已知等腰三角形的两边长分别是一元二次方程x2﹣6x+8=0的两根,则该等腰三角形的底边长为()A.2B.4C.8D.2或47.定义新运算“a*b”:对于任意实数a,b,都有a*b=(a+b)(a﹣b)﹣1,其中等式右边是通常的加法、减法、乘法运算,例4*3=(4+3)(4﹣3)﹣1=7﹣1=6.若x*k=x (k为实数)是关于x的方程,则它的根的情况为()A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根8.用配方法解方程2x2﹣4x+1=0,则方程可变形为()A.(x﹣2)2=B.2(x﹣2)2=C.(x﹣1)2=D.(2x﹣1)2=1 9.下列用配方法解方程x2﹣x﹣2=0的四个步骤中,出现错误的是()A.①B.②C.③D.④10.若整数a既使得关于x的分式方程﹣2=有非负数解,又使得关于x的方程x2﹣x+a+6=0无解,则符合条件的所有a的个数为()A.1B.2C.3D.4二.填空题11.一元二次方程4x(x﹣2)=x﹣2的解为.12.用配方法解一元二次方程x2+6x+1=0时,配方后方程可化为:.13.某种服装原价为200元,现连续两次降价,每次降价的百分率相同.已知降价后的价格不能低于进价110元,且第一次降价后的价格比第二次降价后的价格高32元,则每次降价的百分率是.14.已知关于x的方程x2+kx﹣2=0的一个根是x=2,则另外一个根为.15.关于x的方程(m+1)x2+3x﹣1=0有两个实数根,则m的取值范围是.三.解答题16.解一元二次方程(1)(2x﹣3)2=4;(2)x2﹣6x﹣5=0.17.关于x的一元二次方程x2+(2k﹣1)x+k2=0有两个实数根x1,x2.(1)求k的取值范围;(2)是否存在实数k,使得x1+x2和x1x2互为相反数?若存在,请求出k的值;若不存在,请说明理由.18.张师傅今年初开了一家商店,二月份开始盈利,二月份的盈利是5000元,四月份的盈利达到7200元,且从今年二月到四月,每月盈利的平均增长率都相同.(1)求每月盈利的平均增长率;(2)按照这个平均增长率,预计今年五月份的盈利能达到多少元?19.已知关于x的方程x2﹣(2k+1)x+5(k﹣)=0.求证:(1)无论k取何值,该方程总有实数根;(2)若等腰△ABC的一边长a=4,另两边b、c恰好是该方程的两个根,求△ABC的周长.20.如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根比另一个根大1,那么称这样的方程为“邻根方程”.例如,一元二次方程x2+x=0的两个根是x1=0,x2=﹣1,则方程x2+x=0是“邻根方程”.(1)通过计算,判断下列方程是否是“邻根方程”;①x2﹣x﹣6=0;②2x2﹣2x+1=0.(2)已知关于x的方程x2﹣(m﹣1)x﹣m=0(m是常数)是“邻根方程”,求m的值;(3)若关于x的方程ax2+bx+1=0(a、b是常数,a>0)是“邻根方程”,令t=12a﹣b2,试求t的最大值.参考答案一.选择题1.解:3x2﹣5x=6符合一元二次方程的定义,故选项A正确;﹣2=0不是整式方程,故选项B不是一元二次方程;x2+y2=4是二元二次方程,故选项C不是一元二次方程;6x+1=0是一元一次方程,故选项D不是一元二次方程.故选:A.2.解:∵3+(﹣2)=1,3×(﹣2)=﹣6,∴以3和﹣2为根的一元二次方程可为x2﹣x﹣6=0.故选:C.3.解:设方程的另一个根为t,根据题意得t+2=6,2t=c,解得t=4,c=8.故选:D.4.解:∵关于x的一元二次方程x2﹣2x+m=0有两个实数根,∴△=12﹣4m≥0,∴m≤3.故选:D.5.解:方程整理得:9x2﹣8x﹣2=0,则二次项、一次项、常数项分别为9x2,﹣8x,﹣2.6.解:x2﹣6x+8=0(x﹣4)(x﹣2)=0解得:x=4或x=2,当等腰三角形的三边为2,2,4时,不符合三角形三边关系定理,此时不能组成三角形;当等腰三角形的三边为2,4,4时,符合三角形三边关系定理,此时能组成三角形,此时三角形的底边长为2,故选:A.7.解:∵x*k=x(k为实数)是关于x的方程,∴(x+k)(x﹣k)﹣1=x,整理得x2﹣x﹣k2﹣1=0,∵△=(﹣1)2﹣4(﹣k2﹣1)=4k2+5>0,∴方程有两个不相等的实数根.故选:C.8.解:∵2x2﹣4x+1=0,∴2x2﹣4x=﹣1,x2﹣2x=﹣,x2﹣2x+1=1﹣,∴(x﹣1)2=.9.解:解方程x2﹣x﹣2=0,去分母得:x2﹣2x﹣4=0,即x2﹣2x=4,配方得:x2﹣2x+1=5,即(x﹣1)2=5,开方得:x﹣1=±,解得:x=1±,则四个步骤中出现错误的是④.故选:D.10.解:解﹣2=得,x=﹣,∵分式方程﹣2=有非负数解,∴﹣≥0且x﹣1=﹣﹣1≠0∴a≤﹣1且a≠﹣4,∵关于x的方程x2﹣x+a+6=0无解,∴△=1﹣4(a+6)<0,解得,a>﹣5,综上,﹣5<x≤﹣1且a≠﹣4,∵a为整数,∴a=﹣5或﹣3或﹣2或﹣1,故选:D.11.解:4x(x﹣2)=x﹣24x(x﹣2)﹣(x﹣2)=0(x﹣2)(4x﹣1)=0x﹣2=0或4x﹣1=0解得x1=2,x2=.故答案为:x1=2,x2=.12.解:∵x2+6x+1=0,∴x2+6x=﹣1,∴x2+6x+9=﹣1+9,∴(x+3)2=8,故答案为:(x+3)2=8.13.解:设每次降价的百分率为x,依题意,得:200(1﹣x)﹣200(1﹣x)2=32,整理,得:25x2﹣25x+4=0,解得:x1=0.2=20%,x2=0.8=80%.当x=20%时,200(1﹣x)2=128>110,符合题意;当x=80%时,200(1﹣x)2=8<110,不符合题意,舍去.故答案为:20%.14.解:设方程的另一个根为t,根据题意得2t=﹣2,解得t=﹣1.即方程的另一个根为﹣1.故答案为﹣1.15.解:∵关于x的方程(m+1)x2+3x﹣1=0有两个实数根,∴△=9+4(m+1)≥0,且m+1≠0,解得:m≥﹣且m≠﹣1.故答案为:m≥﹣且m≠﹣1.三.解答题16.解:(1)开方得:2x﹣3=2或2x﹣3=﹣2,解得:x1=2.5,x2=0.5;(2)方程整理得:x2﹣6x=5,配方得:x2﹣6x+9=14,即(x﹣3)2=14,开方得:x﹣3=±,解得:x1=3+,x2=3﹣.17.解:(1)根据题意得△=(2k﹣1)2﹣4k2≥0,解得k≤;(2)不存在.∵x1+x2=﹣(2k﹣1),x1x2=k2,而x1+x2和x1x2互为相反数,∴﹣(2k﹣1)+k2=0,解得k1=k2=1,∵k≤,∴不存在实数k,使得x1+x2和x1x2互为相反数.18.解:(1)设每月盈利平均增长率为x,根据题意得:5000(1+x)2=7200.解得:x1=20%,x2=﹣220%(不符合题意,舍去),答:每月盈利的平均增长率为20%;(2)7200(1+20%)=8640(元),答:按照这个平均增长率,预计今年五月份这家商店的盈利将达到8640元.19.解:(1)证明:,∵4(k﹣2)2≥0,即△≥0,∴无论取任何实数值,方程总有实数根;(2)∵△ABC是等腰三角形,∴b=c或b、c中有一个为4,①当b=c时,△=4(k﹣2)2=0,则k=2,方程化为,解得,而,∴、、4能够成三角形;△ABC的周长为;②当b=a=4或c=a=4时,把x=4代入方程,得,解得,方程化为,解得,x2=4,∵4、4、能够成三角形,∴△ABC的周长为.综上所述,△ABC的周长为9或.20.解:(1)①解方程得:(x﹣3)(x+2)=0,x=3或x=﹣2,∵2≠﹣3+1,∴x2﹣x﹣6=0不是“邻根方程”;②x==,∵=+1,∴2x2﹣2x+1=0是“邻根方程”;(2)解方程得:(x﹣m)(x+1)=0,∴x=m或x=﹣1,∵方程x2﹣(m﹣1)x﹣m=0(m是常数)是“邻根方程”,∴m=﹣1+1或m=﹣1﹣1,∴m=0或﹣2;(3)解方程得x=,∵关于x的方程ax2+bx+1=0(a、b是常数,a>0)是“邻根方程”,∴﹣=1,∴b2=a2+4a,∵t=12a﹣b2,∴t=8a﹣a2=﹣(a﹣4)2+16,∵a>0,∴a=4时,t的最大值为16.。
人教版九年级数学上册第21章一元二次方程单元测试题(含答案)

人教版九年级数学上册第21章一元二次方程单元测试题(含答案)一、选择题(每小题4分,共32分)1.下列方程中,是一元二次方程的有( )①x 2=0; ②ax 2+bx +c =0; ③3x 2=x ; ④2x (x +4)-2x 2=0;⑤(x 2-1)2=9; ⑥1x 2+1x-1=0.A .2个B .3个C .4个D .5个 2.将一元二次方程x 2-4x +3=0配方可得( ) A .(x -2)2=7 B .(x -2)2=1 C .(x +2)2=1 D .(x +2)2=23.若关于x 的一元二次方程x 2-2x +m =0有一个解为x =-1,则另一个解为( ) A .1 B .-3 C .3 D .4 4.已知方程kx 2+4x +4=0有实数根,则k 的取值范围是( ) A .k ≤1 B .k ≥-1 C .k ≤1且k ≠0 D .k <-15.若一个三角形的两边长分别为3和6,第三边长是方程x 2-13x +36=0的根,则这个三角形的周长为( )A .13B .15C .18D .13或186.小红按某种规律写出4个方程:①x 2+x +2=0;②x 2+2x +3=0;③x 2+3x +4=0;④x 2+4x +5=0.按此规律,第五个方程的两个根为( )A .-2,3B .2,-3C .-2,-3D .2,37.若关于x 的一元二次方程x 2-3x +p =0(p ≠0)的两个不相等的实数根分别为a 和b ,且a 2-ab +b 2=18,则a b +ba的值是( )A .3B .-3C .5D .-58.某企业2018年初获利润300万元,到2020年初计划利润达到507万元.设这两年利润的年平均增长率为x ,则可列方程为( )A .300(1+x )=507B .300(1+x )2=507C .300(1+x )+300(1+x )2=507D .300+300(1+x )+300(1+x )2=507 二、填空题(每小题4分,共24分)9.把方程(2x +1)(x -2)=5-3x 整理成一般形式得____________,其中一次项系数为______.10.若(m +1)x |m -1|+5x -3=0是关于x 的一元二次方程,则m 的值为________. 11.关于x 的方程kx 2-4x -4=0有两个不相等的实数根,则k 的最小整数值为________. 12.关于x 的一元二次方程x 2+(a 2-2a )x +a -1=0的两个实数根互为相反数,则a 的值为________.13.为创建“国家生态园林城市”,某小区在规划设计时,在小区中央设置一块面积为1200平方米的矩形绿地,并且长比宽多40米.设绿地宽为x 米,根据题意,可列方程为________________.14.小明发明了一个魔术盒,当任意实数对(a ,b )进入其中时,会得到一个新的实数:a 2+b -1,例如把(3,-2)放入其中,就会得到32+(-2)-1=6.现将实数对(m ,-2m )放入其中,得到实数2,则m =________.三、解答题(共44分)15.(9分)用适当的方法解下列方程: (1)12(x +1)2-6=0;(2)x 2+25x +2=0;(3)2x (2-x )=3(x -2).16.(8分)已知关于x 的一元二次方程(x -3)(x -2)=p (p +1). (1)求证:无论p 取何值,此方程总有两个实数根;(2)若原方程的两个根分别为x 1,x 2,且满足x 12+x 22-x 1x 2=3p 2+1,求p 的值.17.(8分)如图21,在直角墙角AOB (OA ⊥OB ,且OA ,OB 长度不限)中,要砌20 m 长的墙(即AC +BC =20 m),与直角墙角AOB 围成地面为矩形的储仓,且地面矩形AOBC 的面积为96 m2.(1)求该地面矩形的长;(2)有规格为0.80×0.80和1.00×1.00(单位:m)的地板砖,单价分别为50元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),则用哪一种规格的地板砖费用较少?图2118.(8分)某批发商以每件50元的价格购进800件T恤,第一个月以单价80元/件的价格销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销量,决定降价销售,根据市场调查发现,该T恤的单价每降低1元/件,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元/件,设第二个月单价降低x元/件.(1)填表(不需要化简):(2)19.(11分)如图22所示,已知在△ABC中,∠B=90°,AB=5 cm,BC=7 cm,点Q 从点A开始沿AB边以1 cm/s的速度向点B移动,点P从点B开始沿BC边以2 cm/s的速度向点C移动,如果点Q,P分别从点A,B同时出发,当一动点运动到终点时,另一动点也随之停止运动.(1)几秒后,△PBQ的面积等于4 cm2?(2)几秒后,PQ的长度等于210 cm?(3)在(1)中,△PBQ的面积能否等于7 cm2?试说明理由.图22答案1.A 2.B3.C [解析] 设方程的另一个解为x 1.根据题意,得-1+x 1=2,解得x 1=3.4.A [解析] 当k =0时,方程为一元一次方程4x +4=0,有唯一实数根;当k ≠0时,方程是一元二次方程.∵方程有实数根,∴根的判别式b 2-4ac =16-16k ≥0,即k ≤1且k ≠0.综上所述k 的取值范围是k ≤1.5.A6.C [解析] 根据小红写出的4个方程,发现其规律是第n 个方程是x 2+nx +(n +1)=0,所以第五个方程是x 2+5x +6=0,即(x +2)(x +3)=0,则x +2=0或x +3=0,∴x 1=-2,x 2=-3.7.D [解析] ∵a ,b 为方程x 2-3x +p =0(p ≠0)的两个不相等的实数根, ∴a +b =3,ab =p .∵a 2-ab +b 2=(a +b )2-3ab =32-3p =18,∴p =-3.当p =-3时,b 2-4ac =(-3)2-4p =9+12=21>0,∴p =-3符合题意.∴a b +b a =(a +b )2-2ab ab =(a +b )2ab -2=32-3-2=-5. 故选D.8.B 9.2x 2-7=0 0 10.311.1 [解析] ∵关于x 的方程kx 2-4x -4=0有两个不相等的实数根,∴k ≠0且b 2-4ac >0,即k ≠0且16+16k >0,解得k >-1且k ≠0,∴k 的最小整数值为1.12.0 [解析] ∵方程x 2+(a 2-2a )x +a -1=0的两个实数根互为相反数, ∴a 2-2a =0,解得a =0或a =2.当a =2时,方程为x 2+1=0,该方程无实数根,舍去,∴a =0. 13.x (x +40)=120014.3或-1 [解析] 把实数对(m ,-2m )代入a 2+b -1=2中,得m 2-2m -1=2. 移项,得m 2-2m -3=0.因式分解,得(m -3)(m +1)=0. 解得m 1=3,m 2=-1.15.解:(1)整理,得(x +1)2=12,开平方,得x +1=±2 3,所以x 1=-1+2 3,x 2=-1-2 3. (2)因为a =1,b =2 5,c =2, 所以b 2-4ac =12>0,代入公式,得x =-b ±b 2-4ac 2a =-2 5±2 32=-5±3,所以原方程的解为x 1=-5+ 3,x 2=-5- 3.(3)移项,得3(x -2)+2x (x -2)=0, 即(3+2x )(x -2)=0,所以x -2=0或2x +3=0,所以x 1=2,x 2=-32.16.解:(1)证明:原方程可变形为x 2-5x +6-p 2-p =0.∵b 2-4ac =(-5)2-4(6-p 2-p )=25-24+4p 2+4p =4p 2+4p +1=(2p +1)2≥0, ∴无论p 取何值,此方程总有两个实数根. (2)∵原方程的两个根分别为x 1,x 2, ∴x 1+x 2=5,x 1x 2=6-p 2-p . 又∵x 12+x 22-x 1x 2=3p 2+1, ∴(x 1+x 2)2-3x 1x 2=3p 2+1, ∴52-3(6-p 2-p )=3p 2+1, ∴25-18+3p 2+3p =3p 2+1, ∴3p =-6,∴p =-2.17.解:(1)设AC =x m ,则BC =(20-x )m. 由题意,得x (20-x )=96, 即x 2-20x +96=0, ∴(x -12)(x -8)=0,解得x =12或x =8.当AC =12 m 时,BC =8 m ,AC 为矩形的长,此时矩形的长为12 m. 当AC =8 m 时,BC =12 m ,BC 为矩形的长,此时矩形的长为12 m. 答:该地面矩形的长为12 m.(2)①若选用规格为0.80×0.80(单位:m)的地板砖,则 120.8×80.8=15×10=150(块), 150×50=7500(元);②若选用规格为1.00×1.00(单位:m)的地板砖,则 121×81=96(块), 96×80=7680(元). ∵7500<7680,∴选用规格为0.80×0.80(单位:m)的地板砖费用较少.18.[解析] (1)第二个月的单价=第一个月的单价-降低的价格,销售量=200+10×降低的单价;清仓时的销售量=800-第一个月的销售量-第二个月的销售量.(2)等量关系为总售价-总进价=9000元.把相关数值代入计算即可. 解:(1)填表如下.即x 2-20x +100=0,解得x 1=x 2=10. 当x =10时,80-x =80-10=70.答:第二个月的单价应为70元/件.[点评] 本题考查一元二次方程的应用.用列表格的方法得到第二个月的单价和销售量以及清仓时的销售量是解决本题的突破点,得到总利润的等量关系是解决本题的关键.19.[解析] (1)设点Q ,P 分别从点A ,B 同时出发,x s 后,AQ =x cm ,QB =(5-x )cm ,BP =2x cm ,则△PBQ 的面积等于12×2x (5-x ),令该式等于4,列出方程求出符合题意的解;(2)根据勾股定理可求;(3)△PBQ 的面积能否等于7 cm 2,只需令12×2x (5-x )=7,化简该方程后,判断该方程的判别式与0的关系,若判别式大于或等于0,则能等于7 cm 2,否则不能等于7 cm 2.解:(1)设x s 后,△PBQ 的面积等于4 cm 2, 此时,AQ =x cm ,QB =(5-x )cm ,BP =2x cm.由12BP ·QB =4,得12×2x (5-x )=4, 即x 2-5x +4=0,解得x 1=1,x 2=4(不合题意,舍去). 所以1 s 后,△PBQ 的面积等于4 cm 2. (2)设y s 后,PQ 的长度等于210 cm. 此时QB =(5-y )cm ,BP =2y cm.在Rt △PBQ 中,因为PQ =210 cm ,根据勾股定理,得(5-y )2+(2y )2=(210)2, 解得y 1=3,y 2=-1(舍去).所以3 s 后,PQ 的长度等于210 cm. (3)由(1),得12×2x (5-x )=7.整理,得x 2-5x +7=0. 因为b 2-4ac =25-28<0, 所以此方程无实数解.所以△PBQ 的面积不可能等于7 cm 2.人教版九年级数学上册第21章一元二次方程单元检测题(有答案)(4)一、精心选一选1.已知x=1是一元二次方程x 2-2mx+1=0的一个解,则m 的值是( ) A .1 B .0 C .0或1 D .0或-12.已知a 、b 为一元二次方程0922=-+x x 的两个根,那么b a a -+2的值为( )(A )-7 (B )0 (C )7 (D )113.若关于x 的一元二次方程(k ﹣2)x 2﹣2kx +k =6有实数根,则k 的取值范围为( ) A .k ≥0B .k ≥0且k ≠2C .k ≥23 D .k ≥23且k ≠2 4.等腰三角形的底和腰是方程x 2-6x+8=0的两根,则这个三角形的周长为( ) A.8 B.10 C.8或10 D.不能确定5.现定义某种运算()a b a a b ⊗=>,若2(2)2x x x +⊗=+,那么x 的取值范围是( )(A )12x -<<(B )2x >或1x <-(C )2x >(D )1x <-6.已知a b ,是关于x 的一元二次方程210x nx +-=的两实数根,则式子b aa b+的值是( ) A .22n +B .22n -+C .22n -D .22n --7.关于x 的一元二次方程222310x x a --+=的一个根为2,则a 的值是( )A .1B C .D .8. 国家实施”精准扶贫“政策以来,很多贫困人口走向了致富的道路.某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为x ,根据题意列方程得( )A .9(1﹣2x )=1B .9(1﹣x )2=1C .9(1+2x )=1D .9(1+x )2=1 二、耐心填一填9.已知一元二次方程有一个根是2,那么这个方程可以是 (填上你认为正确的一个方程即可).10.如果αβ、是一元二次方程23 1 0x x +-=的两个根,那么2+2ααβ-的值是___________11.已知2是一元二次方程240x x c -+=的一个根,则方程的另一个根是 .12.已知01a a b x ≠≠=,,是方程2100ax bx +-=的一个解,则2222a b a b--的值是 .13.在实数范围内定义一种运算“*”,其规则为22b a b a -=*,根据这个规则,方程05)2(=+*x 的解为14、已知三个连续奇数,其中较大的两个数的平方和比最小数的平方的3倍还小25,则这三个数分别为_________15、甲、乙两同学解方程x 2+px+q=0,甲看错了一次项系数,得根为2和7;乙看错了常数项,得根为1和-10,则原方程为16、如图,张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15米3的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已知购买这种铁皮每平方米需20元钱,问张大叔购回这张矩形铁皮共花了 元钱?三、专心解一解 17、我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请从以下一元二次方程中任选一个..,并选择你认为适当的方法解这个方程. ①2310x x -+=;②2(1)3x -=;③230x x -=;④224x x -=.18、关x 的一元二次方程(x-2)(x-3)=m 有两个不相等的实数根x 1、x 2,则m 的取值范围是 ;若x 1、x 2满足等式x 1x 2-x 1-x 2+1=0,求m 的值.19、数学课上,李老师布置的作业是图2中小黑板所示的内容,楚楚同学看错了第(2)题※中的数,求得(1)的一个解x=2;翔翔同学由于看错了第(1)题※中的数,求得(2)的一个解是x=3;你知道今天李老师布置作业的正确答案吗?请你解出来20.已知下列n (n 为正整数)个关于x 的一元二次方程:()x x x x x x n x n n 2222101202230310-=<>+-=<>+-=<>+--=<>……(1)请解上述一元二次方程<1>、<2>、<3>、<n>;(2)请你指出这n 个方程的根具有什么共同特点,写出一条即可 21.广东将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm 2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm 2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.22.某商场在“五一节”的假日里实行让利销售,全部商品一律按九销售,这样每天所获得的利润恰是销售收入的20%,如果第一天的销售收入4万元,且每天的销售收入都有增长,第三天的利润是1.25万元,(1)求第三天的销售收入是多少万元?(2)第二天和第三天销售收入平均每天的增长率是多少?23.学校为了美化校园环境,在一块长40米,宽20米的长方形空地上计划新建一块长9米,宽7米的长方形花圃.(1)若请你在这块空地上设计一个长方形花圃,使它的面积比学校计划新建的长方形花圃的面积多1平方米,请你给出你认为合适的三种不同的方案;(2)在学校计划新建的长方形花圃周长不变的情况下,长方形花圃的面积能否增加2平方米?如果能,请求出长方形花圃的长和宽;如果不能,请说明理由.24、已知:△ABC 的两边AB 、AC 的长是关于x 的一元二次方程023)32(22=++++-k k x k x 的两个实数根,第三边BC 的长为5.(1)k 为何值时,△ABC 是以BC 为斜边的直角三角形?(2)k 为何值时,△ABC 是等腰三角形?并求△ABC 的周长. 25、阅读材料:各类方程的解法 求解一元一次方程,根据等式的基本性质,把方程转化为x=a 的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x 3+x 2﹣2x=0,可以通过因式分解把它转化为x (x 2+x ﹣2)=0,解方程x=0和x 2+x ﹣2=0,可得方程x 3+x 2﹣2x=0的解.(1)问题:方程x 3+x 2﹣2x=0的解是x 1=0,x 2= ,x 3= ; (2)拓展:用“转化”思想求方程x x =+32的解;(3)应用:如图,已知矩形草坪ABCD 的长AD=8m ,宽AB=3m ,小华把一根长为10m 的绳子的一端固定在点B ,沿草坪边沿BA ,AD 走到点P 处,把长绳PB 段拉直并固定在点P ,然后沿草坪边沿PD 、DC 走到点C 处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C .求AP 的长.参考答案:一、1~5.ADDBB ;6~8.DDB ;二、9、x 2-2x=0; 10、4;11、2+;12、5;13、3,-7; 14、-3,-1,1或15,17,19;15、x 2+9x+14=0;16、700;三、17、①1232x ±=,;②121x =,10x =,23x =;④121x =,18、m >-1/4 ,m=2;19、方程(1)的解是x 1=2,x 2=0;方程(2)的解是x 1=3,x 2=4 20、解:(1)<1>()()x x +-=110,所以x x 1211=-=, <2>()()x x +-=210,所以x x 1221=-=, <3>()()x x +-=310,所以x x 1231=-=,……<n>()()x n x +-=10,所以x n x 121=-=,(2)比如:共同特点是:都有一个根为1;都有一个根为负整数;两个根都是整数根等 21、(1)解:设剪成两段后其中一段为xcm ,则另一段为(20-x )cm 由题意得:2220()()1744xx -+=,解得:116x =,24x = 当116x =时,20-x=4,当24x =时,20-x=16(2)不能。
2024-2025学年人教版九年级数学上册第二十一章 一元二次方程单元测试卷(含答案)

第二十一章一元二次方程一、选择题1.下列方程中,是一元二次方程的是( )A.x−1=0B.x2−x−1=0C.x2−y=0D.1x+x−1=02.一元二次方程x2−4x+1=0配方后,可化为( )A.(x−2)2=3B.(x+2)2=3C.(x−2)2=4D.(x+2)2=43.若x=1是方程x2+mx+1=0的一个解,则m的值为( )A.1B.2C.−1D.−24.方程x(x−2)=0的解是( )A.0B.2C.−2D.0或25.如果关于x的一元二次方程k x2−4x+2=0有实数根,则k的取值范围是( )A.k≤2B.k≤2且k≠0C.k<2且k≠0D.k≥2且k≠06.若x1+x2=3,x1x2=2,则以x1,x2为根的一元二次方程是( )A.x2−3x+2=0B.x2+3x−2=0C.x2+3x+2=0D.x2−3x−2=07.学校要组织一场篮球联赛,赛制为单循环形式,即每两队之间比赛一场,计划安排15场比赛,应邀请多少个队参加比赛?设应邀请x个球队参加比赛,下列算式正确的是( )A.x(x+1)=15B.x(x−1)=15C.12x(x+1)=15D.12x(x−1)=158.若m,n是关于x的一元二次方程x2+2x−5=0的两个根,则m2+mn−2n的值为( )A.−6B.6C.−4D.4二、填空题9.若关于x的方程(m+1)x2﹣3x+2=0是一元二次方程,则m的取值范围是 .10.将关于x的一元二次方程x2−6x−5=0化成(x+a)2=b的形式,则b= .11.方程3x2−6x=0的解是 12.已知关于x的方程(a−2)x2−2x+1=0有实数根,则a的取值范围是 13.若x1,x2是一元二次方程x2−x−6=0的两个实数根,则1x1+1x2的值为 .三、计算题14.解方程:(1)3x2−10x+6=0;(2)5(x+3)2=2(x+3).15.已知关于x的一元二次方程x2−(2k+1)x+k2+k=0 .(1)求证:方程有两个不相等的实数根.(2)若 Rt△ABC的两边AB,AC的长分别是这个方程的两个实数根,第三边BC的长为5,求 k 的值.16.已知关于x的一元二次方程x2+(2m+1)x+m2−1=0有两个不相等的实数根.(1)求m的取值范围.(2)设x1,x2分别是方程的两个根,且x21+x22+x1x2−17=0,求m的值.17.交警部门提醒市民,骑车出行必须严格遵守“一盔一带”的规定,某头盔经销商统计了某品牌头盔4月份到6月份的销量,该品牌头盔4月份销售150个,6月份销售216个,且从4月份到6月份销售量的月增长率相同.(1)求该品牌头盔销售量的月增长率.(2)若此种头盔的进价为30元/个,经测算,此种头盔在市场中,当售价为40元/个时,月销售量为600个,在此基础上售价每上涨1元/个,则月销售量将减少10个.现希望该头盔每月销售利润为10 000元,而且尽可能让顾客得到实惠,则该品牌头盔的实际售价应定为多少?18.某超市销售一种衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该超市准备适当降价,经过一段时间测算,发现每件衬衫每降价1元,平均每天可多售出2件.(1)若每件衬衫降价4元,平均每天可售出多少件衬衫? 此时每天销售获利多少元?(2)在每件盈利不少于 25元的前提下,要使该衬衫每天销售获利为1 200元,问每件衬衫应降价多少元?(3)该衬衫每天的销售获利能达到 1 300 元吗?如果能,请写出降价方案;如果不能,请说明理由.1.B 2.A 3.D 4.D 5.B 6.A 7.D 8.D 9.m≠-1 10.1411.x1=0,x2=212.a≤313.−1614.(1)解:3x2−10x+6=0,∵a=3,b=−10,c=6,∴b2−4ac=(−10)2−4×3×6=28>0,∴x=−b±b2−4ac2a =10±286=5±73,∴x1=5+73,x2=5−73;(2)解:5(x+3)2=2(x+3),5(x+3)2−2(x+3)=0,(x+3)(5x+13)=0,x+3=0或5x+13=0,解得x1=−3,x2=−135.15.(1)证明:∵关于x的一元二次方程为x2−(2k+1)x+k2+k=0,∴Δ=[−(2k+1)]2−4(k2+k)=4k2+4k+1−4k2−4k=1>0,∴关于x的一元二次方程x2−(2k+1)x+k2+k=0有两个不相等的实数根;(2)解:∵关于x的一元二次方程为x2−(2k+1)x+k2+k=0,∴(x−k)[x−(k+1)]=0,解得:x1=k,x2=k+1.∵ Rt△ABC的两边AB,AC的长分别是这个方程的两个实数根,分两种情况讨论如下:当BC=5为直角边时,k2+52=(k+1)2,解得:k=12;当BC=5为斜边时,k2+(k+1)2=52,解得:k1=3,k2=−4(根据边长为正判断不合题意,舍去),∴k=12或k=3.16.(1)解:∵一元二次方程有两个不相等的实根∴(2m+1)2−4×1×(m2−1)=4m2+4m+1−4m2+4=4m+5>0,解得m>−54;(2)解:∵ x1,x2分别是方程的两个根∴x1+x2=−(2m+1)=−2m−1,x1·x2=m2−1;∵x12+x22+x1x2−17=0,配方后可得(x1+x2)2−x1x2−17=0;将x1+x2=−(2m+1)=−2m−1和x1·x2=m2−1代入,可得:(−2m−1)2−(m2−1)−17=0,化简可得3m2+4m−15=0;解得m=53或-3(舍去);∴m的值为53.17.(1)设该品牌头盔销售量的月增长率为x,依题意,得:150(1+x)2=216,解得:x1=0.2=20%,x2=−2.2(不合题意,舍去).答:该品牌头盔销售量的月增长率为20%;(2)设该品牌头盔的实际售价为y元,依题意,得:(y−30)(600−y−400.5×5)=10000,整理,得:y2−130y+4000=0,解得:y1=80(不合题意,舍去),y2=50,∵尽可能让顾客得到实惠,∴该品牌头盔的实际售价应定为50元,答:该品牌头盔的实际售价应定为50元.18.(1)解:由题意可得,每件衬衫降价4元,平均每天可售出衬衫的数量为:20+4×2=28(件);此时每天获取的利润为(40-4)×28=1008(元);(2)解:设每件衬衫降价x元(0≤x≤15),由题意可得(20+2x)×(40-x)=1200,整理得x2-30x+200=0,解得x1=10,x2=20(舍),答:在每件盈利不少于25元的前提下,要使该衬衫每天销售获利为1200元,每件衬衫应降价10元;(3)解:该衬衫每天的销售获利不能达到1300元,理由如下:设每件衬衫降价y元,由题意可得(20+2y)×(40-y)=1300,整理得y2-30y+250=0,∵b2-4ac=302-4×1×250=-100<0,∴此方程没有实数根,即该衬衫每天的销售获利不能达到1300元.。
人教版九年级上册数学第二十一章测试题及答案

人教版九年级上册数学第二十一章测试卷一、单选题1.关于x 的一元二次方程2(3)0x k x k -++=的根的情况是( )A .有两不相等实数根B .有两相等实数根C .无实数根D .不能确定2.下列方程中,是关于x 的一元二次方程的是( )A .ax 2+bx+c =0(a ,b ,c 为常数)B .x 2﹣x ﹣2=0C .211x x +﹣2=0D .x 2+2x =x 2﹣13.若关于x 的一元二次方程(k -1)x 2+4x +1=0有两个不相等的实数根,则k 的取值范围是( )A .k<5B .k<5,且k≠1C .k≤5,且k≠1D .k>54.一元二次方程y 2﹣4y ﹣3=0配方后可化为( )A .(y ﹣2)2=7B .(y+2)2=7C .(y ﹣2)2=3D .(y+2)2=3 5.用配方法解一元二次方程245x x -=时,此方程可变形为( )A .()221x +=B .()221x -=C .()229x +=D .()229x -= 6.关于x 的一元二次方程x 2-2x -(m -1)=0有两个不相等的实数根,则实数m 的取值范围是( )A .0m >且1m ≠B .0m >C .0m ≥且1m ≠D .0m ≥7.一元二次方程2810x x --=配方后可变形为( )A .2(4)17x +=B .2(4)15x +=C .2(4)17x -=D .2(4)15x -= 8.若关于x 的方程260x mx +-=有一个根为2.则另一个根为( )A .2-B .2C .4D .3-9.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x ,则由题意列方程应为( )A .200(1+x )2=1000B .200+200×2x =1000C .200+200×3x =1000D .200[1+(1+x )+(1+x )2]=100010.如果关于x 的一元二次方程(m ﹣3)x 2+3x +m 2﹣9=0有一个解是0,那么m 的值是( ) A .﹣3 B .3 C .±3 D .0或﹣3 11.一元二次方程x 2+x ﹣2=0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根12.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 2.若设道路的宽为xm ,则下面所列方程正确的是( )A .(32﹣2x )(20﹣x )=570B .32x+2×20x=32×20﹣570C .(32﹣x )(20﹣x )=32×20﹣570 D .32x+2×20x ﹣2x 2=570二、填空题 13.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x 个球队参赛,根据题意,可列方程为_____.14.方程22310x x +-=的两个根为1x 、2x ,则1211+x x 的值等于______. 15.若实数a ,b 满足(4a +4b)(4a +4b -2)-8=0,则a +b =_____.16.设m 、n 是一元二次方程x 2+3x -7=0的两个根,则m 2+4m +n =_____. 17.三角形的每条边的长都是方程2680x x -+=的根,则三角形的周长是________.三、解答题18.用适当的方法解下列方程:(1)2162250x -= (2)2(21)21x x +=+(3)21x x -= (4)2231y y =+19.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.20.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB ,BC 各为多少米?21.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?22.阅读下面的材料:解方程2||20x x --=.解:当0x >时,原方程化为220x x --=,解得122,1x x ==-(不合题意,舍去);当0x =时,20-=,矛盾,舍去;当0x <时,原方程化为220x x +-=解得122,1x x =-=(不合题意,舍去).综上所述,原方程的根是122,2x x ==-.请参照上面材料解方程.(1)2|1|10x x ---=;(2)2|21|4x x =-+.23.已知关于x 的两个一元二次方程:方程①:2(1)(2)102kx k x +++-= ;方程②:x 2+(2k+1)x ﹣2k ﹣3=0.(1)若方程①有两个相等的实数根,求:k 的值(2)若方程①和②只有一个方程有实数根,请说明此时哪个方程没有实数根.(3)若方程①和②有一个公共根a ,求代数式(a 2+4a ﹣2)k+3a 2+5a 的值.参考答案1.A【详解】【分析】根据一元二次方程的根的判别式进行判断即可.【详解】()2x k 3x k 0-++=,△=[-(k+3)]2-4k=k 2+6k+9-4k=(k+1)2+8,∵(k+1)2≥0,∴(k+1)2+8>0,即△>0,∴方程有两个不相等实数根,故选A.【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0,a ,b ,c 为常数)的根的判别式△=b 2-4ac .当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.2.B【分析】根据一元二次方程的定义逐一进行分析即可求得答案.【详解】A .若a =0,则该方程不是一元二次方程,故A 选项错误,B .符合一元二次方程的定义,故B 选项正确,C .属于分式方程,不符合一元二次方程的定义,故C 选项错误,D .整理后方程为:2x+1=0,不符合一元二次方程的定义,故D 选项错误,故选B .【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.3.B【详解】试题解析:∵关于x 的一元二次方程方程()21410k x x -++=有两个不相等的实数根,∴100k -≠⎧⎨∆>⎩,即()2104410k k -≠⎧⎨-->⎩,解得:k <5且k ≠1.故选B . 4.A【分析】先表示得到243y y -=,再把方程两边加上 4 ,然后把方程左边配成完全平方形式即可 .解:243y y -=,2447y y -+=,()227y -=.故选A .【点睛】本题考查解一元二次方程配方法:将一元二次方程配成()2x m n +=的形式, 再利用直接开平方法求解, 这种解一元二次方程的方法叫配方法 .5.D【详解】试题解析:245,x x -=24454,x x -+=+ 2(2)9.x -=故选D.6.A【解析】【分析】根据一元二次方程的系数结合根的判别式△>0,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.【详解】∵关于x 的一元二次方程x 2﹣2x ﹣(m ﹣1)=0有两个不相等的实数根,∴△=(﹣2)2﹣4×1×[﹣(m ﹣1)]=4m >0,∴m >0.故选B .【点睛】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键. 7.C先移项,再方程两边同加上16,即可得到答案.【详解】2810--=,x x281-=,x x28+161+16x x-=,2x-=,(4)17故选C.【点睛】本题主要考查一元二次方程的配方,熟练掌握配方法是解题的关键.8.D【分析】将x=2代入方程求出参数m,再重新解方程即可.【详解】∵方程x2+mx﹣6=0有一个根为2.将x=2代入方程得,m=1,∴原方程为x2+x﹣6=0解得:x1=-3,x2=2∴方程另一个根是-3,故选D,【点睛】本题考查了一元二次方程的求解,属于简单题,代入求m的值是解题关键.9.D【分析】根据增长率问题公式即可解决此题,二月为200(1+x),三月为200(1+x)2,三个月相加即得第一季度的营业额.【详解】解:∵一月份的营业额为200万元,平均每月增长率为x,∴二月份的营业额为200×(1+x),∴三月份的营业额为200×(1+x)×(1+x)=200×(1+x)2,∴可列方程为200+200×(1+x)+200×(1+x)2=1000,即200[1+(1+x)+(1+x)2]=1000.故选D.【点睛】此题考察增长率问题类一元二次方程的应用,注意:第一季度指一、二、三月的总和. 10.A【分析】把X=0代入方程(m-3)x2+3x+m2-9=0中,解关于m的一元二次方程,注意m的取值不能使原方程对二次项系数为0【详解】把x=0代入方程(m-3)x2+3X+m2-9=0中得:m2-9=0解得m=-3或3当m=3时,原方程二次项系数m-3=0,舍去,故选A【点睛】此题主要考查一元二次方程的定义,难度不大11.A【详解】∵∆=12-4×1×(-2)=9>0,∴方程有两个不相等的实数根.故选A.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.12.A【详解】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m2,即可列出方程:(32−2x)(20−x)=570,故选A.13.12x (x ﹣1)=21 【详解】【分析】赛制为单循环形式(每两队之间都赛一场),x 个球队比赛总场数为12x (x ﹣1),即可列方程.【详解】有x 个队,每个队都要赛(x ﹣1)场,但两队之间只有一场比赛,由题意得: 12x (x ﹣1)=21, 故答案为12x (x ﹣1)=21.【点睛】本题考查了一元二次方程的应用,弄清题意,找准等量关系列出方程是解题的关键. 14.3.【分析】根据一元二次方程根与系数的关系求解即可.【详解】 解:根据题意得1232x x +=-,1212x x =-, 所以1211+x x =1212x x x x +=3212--=3. 故答案为3.【点睛】本题考查了根与系数的关系:若1x 、2x 是一元二次方程20ax bx c ++=(a ≠0)的两根时,12b x x a +=-,12c x x a =. 15.-12或1【详解】试题分析:设a+b=x ,则由原方程,得4x (4x ﹣2)﹣8=0,整理,得16x 2﹣8x ﹣8=0,即2x 2﹣x ﹣1=0,分解得:(2x+1)(x ﹣1)=0,解得:x 1=﹣12,x 2=1.则a+b 的值是﹣12或1.考点:换元法解一元二次方程.16.4.【分析】求代数式的值,一元二次方程的解,一元二次方程根与系数的关系.【详解】解:∵m 、n 是一元二次方程x 2+3x -7=0的两个根,∴m 2+3 m -7=0,即m 2+3 m =7;m +n =-3.∴m 2+4m +n =(m 2+3 m )+(m +n )=7-3=4.故答案为:417.6或10或12【分析】首先用因式分解法求得方程的根,再根据三角形的每条边的长都是方程2680x x -+=的根,进行分情况计算.【详解】由方程2680x x -+=,得x =2或4.当三角形的三边是2,2,2时,则周长是6;当三角形的三边是4,4,4时,则周长是12;当三角形的三边长是2,2,4时,2+2=4,不符合三角形的三边关系,应舍去; 当三角形的三边是4,4,2时,则三角形的周长是4+4+2=10.综上所述此三角形的周长是6或12或10.18.(1)121515,44x x ==-;(2)1210,2x x ==-;(3)1x =,2x =;(4)12y y == 【分析】(1)根据方程的形式,用直接开平方法;(2)两个式子都有因式()21x +,用因式分解法;(3)既可以用公式法也可以用配方法;(4)既可以用公式法也可以用配方法.【详解】(1)将方程变形得216225x =,二次项系数化为1,得222516x =,解得121515,44x x ==-. (2)2(21)(21)0x x +-+=,(21)(211)0x x ∴++-=,即2(21)0x x +=,则20x =或210x +=,解得1210,2x x ==-. (3)方程整理得210x x +-=,方程中1,1,1a b c ===-.145∆=+=,x ∴=1x ∴=2x =. (4)将方程变形得23122y y -=,配方,得2391721616y y -+=,即2317416y ⎛⎫-= ⎪⎝⎭,开平方,得34y -=12y y ∴==. 【点睛】本题考查一元二次方程的解法,需要注意根据题意利用适当的方法进行求解,尤其是当式子里面有公因式的时候要能够想到利用因式分解法.19.(1)证明见解析(2)1或2【详解】试题分析:(1)要证明方程有两个不相等的实数根,只要证明原来的一元二次方程的△的值大于0即可;(2)根据根与系数的关系可以得到关于m 的方程,从而可以求得m 的值.试题解析:(1)证明:∵()230x m x m ---=,∴△=[﹣(m ﹣3)]2﹣4×1×(﹣m )=m 2﹣2m +9=(m ﹣1)2+8>0,∴方程有两个不相等的实数根;(2)∵()230x m x m ---=,方程的两实根为1x ,2x ,且2212127x x x x +-=,∴123x x m +=- ,12x x m =- ,∴()2121237x x x x +-=,∴(m ﹣3)2﹣3×(﹣m )=7,解得,m 1=1,m 2=2,即m 的值是1或2.20.羊圈的边长AB ,BC 分别是20米、20米.【详解】试题分析:设AB 的长度为x 米,则BC 的长度为(100﹣4x )米;然后根据矩形的面积公式列出方程.试题解析:设AB 的长度为x 米,则BC 的长度为(100﹣4x )米. 根据题意得 (100﹣4x )x=400,解得 x 1=20,x 2=5. 则100﹣4x=20或100﹣4x=80. ∵80>25, ∴x 2=5舍去. 即AB=20,BC=20考点:一元二次方程的应用.21.(1)4元或6元;(2)九折.【详解】解:(1)设每千克核桃应降价x 元.根据题意,得(60﹣x ﹣40)(100+x2×20)=2240,化简,得 x 2﹣10x+24=0,解得x 1=4,x 2=6.答:每千克核桃应降价4元或6元.(2)由(1)可知每千克核桃可降价4元或6元.∵要尽可能让利于顾客,∴每千克核桃应降价6元.此时,售价为:60﹣6=54(元),54100%=90%60⨯.答:该店应按原售价的九折出售.22.(1)121,2x x ==-;(2)123,1x x ==-.【分析】(1)分三种情况去掉绝对值,化成一元二次方程,解一元二次方程即可.(2)分三种情况去掉绝对值,化成一元二次方程,解一元二次方程即可.【详解】(1)2|1|10x x ---=,当1x >时,原方程化为20x x -=,解得1210x x ==(舍去),(不合题意,舍去);当1x =时,原方程化为1010--=,∴1x =是原方程的解;当1x <时,原方程化为220x x +-=,解得1221x x =-=,(不合题意,舍去).综上所述,原方程的根是1212x x ==-,;(2)2|21|4x x =-+, 当12x >时,原方程化为2230x x --=, 解得1231x x ==-,(不合题意,舍去); 当12x =时,144=,矛盾,舍去; 当12x <时,原方程化为2250x x +-=,解得11x =-21x =-(不合题意,舍去).综上所述,原方程的根是1231x x ==-,【点睛】本题考查了解一元二次方程的应用,解此题的关键是能把含绝对值的一元二次方程转化成一元一次方程.23.(1)k=﹣4;(2)证明见解析;(3)5;【解析】【分析】(1)根据一元二次方程的定义和判别式的意义得到1+2k ≠0且△1=0,即(k+2)2-4(1+2k )×(-1)=0,求出k 的值即可.(2)计算第2个方程的判别式得△2=(2k+3)2+4>0,利用判别式的意义可判断方程②总有实数根,于是可判断此时方程①没有实数根,(3)设a 是方程①和②的公共根,利用方程解的定义得到(1+2k )a 2+(k+2)a-1=0 ③,a 2+(2k+1)a-2k-3=0④,利用③×2(2+k )a 2+(2k+4)a ﹣2=0⑤,由⑤+④得(3+k )a 2+(4k+5)a ﹣2k=5,然后利用整体代入的方法计算代数式的值.【详解】(1)∵方程①有两个相等的实数根, ∴102k +≠ ,Δ1=0, 则k≠﹣2,△1=b 2﹣4ac=(k+2)2﹣4(1+2k )×(﹣1)=k 2+4k+4+4+2k=k 2+6k+8, 则(k+2)(k+4)=0,∴k=﹣2,k=﹣4,∵k≠﹣2,∴k=﹣4;(2)∵△2=(2k+1)2﹣4×1×(﹣2k ﹣3)=4k 2+4k+1+8k+12=4k 2+12k+13=(2k+3)2+4>0,∴无论k 为何值时,方程②总有实数根,∵方程①、②只有一个方程有实数根,∴此时方程①没有实数根.(3)根据a 是方程①和②的公共根, ∴2(1)(2)102k a k a +++-=③, a 2+(2k+1)a ﹣2k ﹣3=0④, ∴③×2得:(2+k )a 2+(2k+4)a ﹣2=0⑤,⑤+④得:(3+k )a 2+(4k+5)a ﹣2k=5,代数式=(a 2+4a ﹣2)k+3a 2+5a=(3+k )a 2+(4k+5)a ﹣2k=5.故代数式的值为5.【点睛】本题考查了根的判别式:利用一元二次方程根的判别式(△=b 2-4ac )判断方程的根的情况.一元二次方程ax 2+bx+c=0(a≠0)的根与△=b2-4ac 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.。
人教版九年级数学上册第21章《一元二次方程》章节质量监测试卷【含答案】

人教版九年级数学上册第21章《一元二次方程》章节质量监测试卷一、选择题1.下列方程中,一元二次方程共有( )①3x 2+x =20②2x 2﹣3xy +4=0 ③x 3﹣x =1 ④x 2=1A .1个B .2个C .3个D .4个2.将方程化成一元二次方程的一般形式,正确的是().24581x x +=A .B .C .D .245810x x ++=245810x x +-=245810x x -+=245810x x --=3.对于方程,下列判断正确的是( )2320x x --=A .一次项系数为1B .常数项是2C .二次项系数是3x 2D .一次项是-x 4.方程x (x ﹣5)=x ﹣5的根是( )A .x =5B .x =0C .x 1=5,x 2=0D .x 1=5,x 2=15.解方程2(x -1) 2=3(1-x)最合适的方法是 ()A .配方法B .公式法C .因式分解法D .无法确定6.一元二次方程的解的情况是()2310x x +-=A .无解B .有两个不相等的实数根C .有两个相等的实数根D .只有一个解7.某商品的进价为每件40元,当售价为每件80元时,每星期可卖出200件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出8件,店里每周利润要达到8450元.若设店主把该商品每件售价降低x 元,则可列方程为( )A .B .()()8020088450x x -+=()()4020088450x x -+=C .D .()()40200408450x x -+=()()402008450x x -+=8.已知a 、b 是一元二次方程x 2-3x-1=0的两实数根,则=( )11a b +A .3B .-3C .D .-1313二、填空题9.方程x 2-2x-1=0的判别式____________.∆=10.若关于x 的一元二次方程x 2+mx +2n =0有一个根是2,则m +n =_____.11.如果两个数的差为3,并且它们的积为88,那么其中较大的一个数为_____.12..六一儿童节当天,某班同学每人向本班其他每个同学送一份小礼品,全班共互送306份小礼品,则该班有______名同学.13.三角形的每条边的长都是方程的根,则三角形的周长是________.2680x x -+=14.若关于x 的一元二次方程有两个不相等的实数根,则点在第____象限.210(0)4ax x a --=≠(1, 3 )P a a +--三、解答题15.用适当方法解下列方程:(1)(x ﹣3)2﹣9=0; (2)(x +1)(2﹣x )=1.16.随着国家“惠民政策”的陆续出台,为了切实让老百姓得到实惠,国家卫计委通过严打药品销售环节中的不正当行为,某种药品原价200元/瓶,经过连续两次降价后,现仅卖98元/瓶,现假定两次降价的百分率相同,求该种药品平均每次降价的百分率.17.已知关于x 的一元二次方程 x 2-6x +m +4=0有两个实数根 x 1,x 2.(1)求m 的取值范围;(2)若 x 1,x 2满足x 2-2x 1=-3 ,求m 的值.18.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?19.阅读下面的材料:解方程.2||20x x --=解:当时,原方程化为,0x >220x x --=解得(不合题意,舍去);122,1x x ==-当时,,矛盾,舍去;0x =20-=当时,原方程化为0x <220x x +-=解得(不合题意,舍去).122,1x x =-=综上所述,原方程的根是.122,2x x ==-请参照上面材料解方程.(1);2|1|10x x ---=(2).2|21|4x x =-+20.如图,在长方形中,,,动点、分别从点、同时出发,点以2厘米/秒ABCD 6AB cm =AD 2cm =P Q A C P 的速度向终点移动,点以1厘米/秒的速度向移动,当有一点到达终点时,另一点也停止运动.设运动的时间B Q D 为,问:t(1)当秒时,四边形面积是多少?1t =BCQP (2)当为何值时,点和点距离是?t P Q 3cm (3)当_________时,以点、、为顶点的三角形是等腰三角形.(直接写出答案)t =P Q D答案1.B【分析】根据一元二次方程的定义逐一分析即可.【详解】解:一元二次方程有:3x2+x=20,x2=1,共2个,故选:B.本题考查一元二次方程的定义,掌握一元二次方程定义的三个条件是解题的关键:(1)只含有一个未知数;(2)未知数最高次数为2次;(3)是整式方程.2.B【分析】通过移项把方程4x2+5x=81化成一元二次方程的一般形式.【详解】方程4x2+5x=81化成一元二次方程的一般形式是4x2+5x-81=0.故选B.此题主要考查了一元二次方程的一般形式,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项.3.D【分析】根据一元二次方程项与系数的概念进行判断.【详解】一元二次方程的一般形式是ax2+bx+c=0.其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c 是常数项.A、一次项系数为﹣1.B、常数项为﹣2.C.、次项系数为3.D、一次项是﹣x.故选D.4.D【分析】利用因式分解法求解可得.【详解】解:∵x (x ﹣5)﹣(x ﹣5)=0,∴(x ﹣5)(x ﹣1)=0,则x ﹣5=0或x ﹣1=0,解得x =5或x =1,故选:D .本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.5.C【详解】首先观察方程,左右两边都含有相同的因式x -1,所以解方程时首先移项,得2(x -1) 2-3(1-x )=0,即2(x -1) 2+3(x -1)=0,然后将等号左边因式分解即提取公因式x -1得(x -1)[2(x -1)+3]=0,分别令等号左边两个因式为0,即可解出x .故选C.点睛:解一元二次方程时首先观察方程的特点,然后选择最合适的方法解方程.6.B【分析】求出判别式的值即可得到答案.【详解】∵2-4ac=9-(-4)=13,b = 0>∴方程有两个不相等的实数根,故选:B.此题考查一元二次方程的根的判别式,熟记判别式的计算方法及结果的三种情况是解题的关键.7.B利润=售价﹣进价,由每降价1元,每星期可多卖出8件,可知每件售价降低x 元,每星期可多卖出8x 件,从而列出方程即可.解:原来售价为每件80元,进价为每件40元,利润为每件40元,所以每件售价降价x 元后,利润为每件(40﹣x )元.每降价1元,每星期可多卖出8件,因为每件售价降低x 元,每星期可多卖出8x 件,现在的销量为(200+8x ).根据题意得:(40﹣x )×(200+8x ) =8450.故选B .点睛:本题主要考查列一元二次方程解决实际问题.解题的关键在于要理解题意,并根据题中的数量关系建立方程.8.B【分析】先求出a+b 和ab 的值,然后把通分后代入计算即可.11a b +【详解】解:∵a 、b 是一元二次方程x 2-3x-1=0的两实数根,∴a+b=3,ab=-1,∴=.11a b +331a b ab +==--故选B .本题考查了分式的通分,以及一元二次方程ax 2+bx +c =0(a ≠0)根与系数的关系,若x 1,x 2为方程的两个根,则x 1,x 2与系数的关系式:,.12b x x a +=-12c x x a ⋅=9.8【详解】Δ=b 2-4ac =(-2)2-4×1×(-1)=8.故答案为8.点睛:Δ=b 2-4ac .10.﹣2【分析】根据一元二次方程的解的定义把x =2代入x 2+mx +2n =0得到4+2m +2n =0得n +m =−2,然后利用整体代入的方法进行计算.【详解】∵2(n≠0)是关于x 的一元二次方程x 2+mx +2n =0的一个根,∴4+2m +2n =0,∴n +m =−2,故答案为−2.本题考查了一元二次方程的解(根):能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.11.11或﹣8【分析】根据题意设较小的数为x ,表示出较大的数,列出方程求出解即可.【详解】解:设较小的数为x ,则较大的数为x+3,根据题意得:x (x+3)=88,即x 2+3x﹣88=0,分解因式得:(x﹣8)(x+11)=0,解得:x =8或x =﹣11,∴x+3=11或﹣8,则较大的数为11或﹣8,故11或﹣8.本题主要考查一元二次方程的应用,弄清题意并根据题意列出方程求出解是解答本题的关键.12.18【详解】试题解析:设该班有名x 学生,则有x (x-1)=306,解之,得 :x 1=18,x 2=-17(舍去).故该班有18名学生.点睛:每位同学向本班的其他同学赠送自己制作的小礼物1件,则x 位同学时,每位同学赠送(x-1)件.13.6或10或12【分析】首先用因式分解法求得方程的根,再根据三角形的每条边的长都是方程的根,进行分情况计算.2680x x -+=【详解】由方程,得=2或4.2680x x -+=x 当三角形的三边是2,2,2时,则周长是6;当三角形的三边是4,4,4时,则周长是12;当三角形的三边长是2,2,4时,2+2=4,不符合三角形的三边关系,应舍去;当三角形的三边是4,4,2时,则三角形的周长是4+4+2=10.综上所述此三角形的周长是6或12或10.14.四.【分析】由二次项系数非零及根的判别式△>0,即可得出关于a 的一元一次不等式组,解之即可得出a 的取值范围,由a 的取值范围可得出a+1>0,-a-3<0,进而可得出点P 在第四象限,此题得解.【详解】∵关于x 的一元二次方程有两个不相等的实数根,210(0)4ax x a --=≠∴,201(1)4-04a a ≠⎧⎪⎨⎛⎫∆=--⨯⨯> ⎪⎪⎝⎭⎩解得:且.1a >-0a ≠∴,,10a +>30a --<∴点在第四象限.(1,3)P a a +--故答案为四.本题考查了根的判别式、一元二次方程的定义以及点的坐标,利用二次项系数非零及根的判别式△>0,找出关于a 的一元一次不等式组是解题的关键.15.(1)x 1=0,x 2=6;(2)12x x ==【分析】(1)利用直接开平方法解出方程;(2)把原方程化为一般形式,利用公式法解出方程.【详解】(1)(x ﹣3)2﹣9=0,(x ﹣3)2=9,x ﹣3=±3,x 1=0,x 2=6;(2)(x +1)(2﹣x )=1,2x ﹣x 2+2﹣x ﹣1=0x 2﹣x ﹣1=0△=(﹣1)2﹣4×1×(﹣1)=5>0,xx 1,x 2本题考查的是一元二次方程的解法,掌握直接开平方法和公式法解一元二次方程的一般步骤是解题的关键.16.该种药品平均每次降价的百分率是30%.【详解】试题分析:设该种药品平均每场降价的百分率是x ,则两个次降价以后的价格是,据此列出方程求解即2200(1)x -可.试题解析:设该种药品平均每场降价的百分率是x ,由题意得:2200(1)98x -=解得:(不合题意舍去),=30%.1 1.7x =20.3x =答:该种药品平均每场降价的百分率是30%.考点:一元二次方程的应用;增长率问题.17.(1)m≤5;(2)m=5.试题分析:(1)由原方程有两个实数根可知:根的判别式△,由此列出关于“m”的表达式,解不等式即可求得m 的取值范0≥围;(2)由方程 x 2-6x+m+4=0有两个实数根 x 1,x 2可得:x 1+x 2=6,x 1·x 2=m+4,结合x 2-2x 1=-3即可解得m 的值.试题解析:(1)∵关于x 的一元二次方程x 2-6x+m+4 有实数根,∴△ ≥0,即:△=(-6)2-4×1×(m+4)≥0 ,∴36-4m-16≥0,解得:m≤5;(2)∵方程 x 2-6x+m+4=0有两个实数根 x 1,x 2,∴ x 1+x 2=6,x 1·x 2=m+4,又∵ x 2-2x 1=-3,∴由此可解得x 1=x 2=3,∴m+4=x 1·x 2=9,∴m=5.18.(1)26;(2)每件商品降价10元时,该商店每天销售利润为1200元.【详解】分析:(1)根据销售单价每降低1元,平均每天可多售出2件,可得若降价3元,则平均每天可多售出2×3=6件,即平均每天销售数量为20+6=26件;(2)利用商品平均每天售出的件数×每件盈利=每天销售这种商品利润列出方程解答即可.详解:(1)若降价3元,则平均每天销售数量为20+2×3=26件.(2)设每件商品应降价x 元时,该商店每天销售利润为1200元.根据题意,得 (40-x )(20+2x )=1200,整理,得x 2-30x+200=0,解得:x 1=10,x 2=20.∵要求每件盈利不少于25元,∴x 2=20应舍去,∴x=10.答:每件商品应降价10元时,该商店每天销售利润为1200元.点睛:此题主要考查了一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润是解题关键.19.(1);(2).121,2x x ==-123,1x x ==-【分析】(1)分三种情况去掉绝对值,化成一元二次方程,解一元二次方程即可.(2)分三种情况去掉绝对值,化成一元二次方程,解一元二次方程即可.【详解】(1),2|1|10x x ---=当时,原方程化为,1x >20x x -=解得(不合题意,舍去);1210x x ==(舍去),当时,原方程化为,1x =1010--=∴是原方程的解;1x =当时,原方程化为,1x <220x x +-=解得(不合题意,舍去).1221x x =-=,综上所述,原方程的根是;1212x x ==-,(2),2|21|4x x =-+当时,原方程化为,12x >2230x x --=解得(不合题意,舍去);1231x x ==-,当时,,矛盾,舍去;12x =144=当时,原方程化为,12x <2250x x +-=解得(不合题意,舍去).11x =-21x =-综上所述,原方程的根是1231x x ==-,本题考查了解一元二次方程的应用,解此题的关键是能把含绝对值的一元二次方程转化成一元一次方程.20.(1)5厘米2;(2秒;(3秒或秒.1.2【分析】(1)求出BP ,CQ 的长,即可求得四边形BCQP 面积.(2)过Q 点作QH ⊥AB 于点H ,应用勾股定理列方程求解即可.(3)分PD=DQ ,PD=PQ ,DQ=PQ 三种情况讨论即可.【详解】(1)当t=1秒时,BP=6-2t=4,CQ=t=1,∴四边形BCQP 面积=厘米2.()141252+⨯=(2)如图,过Q 点作QH ⊥AB 于点H ,则PH=BP-CQ=6-3t ,HQ=2,根据勾股定理,得, 解得()2223263t =+-t =∴当P 和点Q 距离是3cm.t =t =(3)∵,()()222222222244,6,26393640PD t t DQ t PQ t t t =+=+=-=+-=-+当PD=DQ 时,,解得(舍去);()22446t t +=-t =t =当PD=PQ 时,,解得或(舍去);224493640t t t +=-+ 1.2t =6t =当DQ=PQ 时,,解得()22693640t t t -=-+t =t =综上所述,当秒或 以点P 、Q 、D 为顶点的三角形是等腰t = 1.2t =t =t =三角形.。
人教版数学九年级上册第21章《一元二次方程》单元检测题含答案解析

九年级数学第21章《一元二次方程》单元检测题分值:120分时间:90分钟一、选择题(本大题共12道小题,共36分)1.关于x的方程是一元二次方程的条件是A. B. C. D. a为任意实数2.把一元二次方程化成一般形式,其中a,b,c分别为A. 2,3,B. 2,,C. 2,,1D. 2,3,13.已知是关于x的一元二次方程的一个根,则m的值是A. 1B.C. 0D. 无法确定4.若方程中,a,b,c满足和,则方程的根是A. 1,0B. ,0C. 1,D. 无法确定5.用配方法解一元二次方程,配方正确的是A. B. C. D.6.一元二次方程的根的情况为A. 有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 没有实数根7.已知,是关于x的一元二次方程的两个实数根,且,,则a,b的值分别是A. ,1B. 3,1C. ,D. ,18.关于x的方程的两个根是和1,则的值为A. B. 8 C. 16 D.9.王叔叔从市场上买了一块长80cm,宽70cm的矩形铁皮,准备制作一个工具箱.如图,他将矩形铁皮的四个角各剪掉一个边长xcm的正方形后,剩余的部分刚好能围成一个底面积为的无盖长方形工具箱,根据题意列方程为A. B.C. D.11.某县以“重点整治环境卫生”为抓手,加强对各乡镇环保建设的投入,计划从2019年起到2021年累计投入4250万元,已知2019年投入1500万元,设投入经费的年平均增长率为x,根据题意,下列所列方程正确的是A.B.C.D.12.关于x的一元二次方程有两个整数根且乘积为正,关于y的一元二次方程同样也有两个整数根且乘积为正.给出三个结论:这两个方程的根都是负根;;其中正确结论的个数是A. 0个B. 1个C. 2个D. 3个二、填空题(本大题共6小题,共18分)13.已知关于x的方程没有实数根,则m的取值范围是______.14.已知方程的一根为,则方程的另一根为______.15.已知,是一元二次方程的两实数根,则的值是______.16.在中,,,,且关于x的方程有两个相等的实数根,则AC边上的中线长为.17.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元假设该公司2、3月每个月生产成本的下降率都相同,则每个月生产成本的下降率是.18.定义符号的含义为:当时,当时,,如:,,则方程的解是______.三、解答题(本大题共7小题,共66分)19.解下列方程:.20.已知关于x的一元二次方程,求证:无论实数m取得何值,方程总有两个实数根;若方程有一个根的平方等于1,求m的值.21.若要建一个矩形养鸡场,养鸡场的一面靠墙,如图所示,墙长18 m,墙对面有一个2 m宽的门,另三边用竹篱笆围成,篱笆总长33 m,且围成的养鸡场的面积为,则鸡场的长和宽各为多少米.22.已知实数a,b,c满足:,,又,为方程的两个实根,试求的值.23.某生物实验室需培育一群有益菌现有60个活体样本,经过两轮培植后,有益菌总和达24000个,其中每个有益菌每一轮可分裂出若干个相同数目的有益菌.每轮分裂中每个有益菌可分裂出多少个有益菌按照这样的分裂速度,经过三轮培植后共有多少个有益菌24.某菜市场有平方米和4平方米两种摊位,平方米的摊位数是4平方米摊位数的2倍.管理单位每月底按每平方米20元收取当月管理费,该菜市场全部摊位都有商户经营且各摊位均按时全额缴纳管理费.菜市场毎月可收取管理费4500元,求该菜市场共有多少个4平方米的摊位?为推进环保袋的使用,管理单位在5月份推出活动一:“使用环保袋送礼物”,平方米和4平方米两种摊位的商户分别有和参加了此项活动.为提高大家使用环保袋的积极性,6月份准备把活动一升级为活动二:“使用环保袋抵扣管理费”,同时终止活动一.经调査与测算,参加活动一的商户会全部参加活动二,参加活动二的商户会显著增加,这样,6月份参加活动二的平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加,毎个摊位的管理费将会减少;6月份参加活动二的4平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加,每个摊位的管理费将会减少这样,参加活动二的这部分商户6月份总共缴纳的管理费比他们按原方式共缴纳的管理费将减少,求a的值.25.己知的一条边BC的长为5,另两边AB、AC的长是关于x的一元二次方程的两个实数根,求证:无论k为何值时,方程总有两个不相等的实数根:为何值时,是以BC为斜边的直角三角形;为何值时,是等腰三角形,并求的周长.参考答案一、选择题(本大题共12道小题,共36分)1-5 CBBCA 6-10 BDCCC 11-12 DD二、填空题(本大题共6小题,共18分)13、14、15、616、217、18、或三、解答题(本大题共7小题,共66分)19、解:因式分解,得.或.,;移项,得.提公因式,得.解得,;将看作一个整体,分解因式,得,即.解得.20、证明:,,所以无论实数m取得何值,方程总有两个实数根;解:方程有一个根的平方等于1,此根是,当根是1时,代入得:,即,此时m为任何数;当根是时,,解得:.21、解:设养鸡场的宽为xm,根据题意得:,解得:,,当时,,当时,舍去,答:养鸡场的宽是10m,长为15m.22、解:,即,,2 ab为方程的两根,,由得,或即,由根与系数的关系得:23、设每轮分裂中每个有益菌可分裂出x个有益菌,根据题意,得.解得,不合题意,舍去.答:每轮分裂中每个有益菌可分裂出19个有益菌.个.答:经过三轮培植后共有480000个有益菌.24、解:设该菜市场共有x个4平方米的摊位,则有2x个平方米的摊位,依题意,得:,解得:.答:该菜市场共有25个4平方米的摊位.由可知:5月份参加活动一的平方米摊位的个数为个,5月份参加活动一的4平方米摊位的个数为个.依题意,得:整理,得:,解得:舍去,.答:a的值为50.25、解:因为,所以方程总有两个不相等的实数根.根据根与系数的关系:,,则,即,解得或.根据三角形的边长必须是正数,因而两根的和且两根的积,解得,.若时,5是方程的实数根,根据一元二次方程根与系数的关系可得:,当时,,则周长是;当时,则周长是.。
九年级数学上册《第二十一章一元二次方程》单元测试卷-带答案(人教版)

九年级数学上册《第二十一章一元二次方程》单元测试卷-带答案(人教版)一、选择题1.方程x 2=4的解是( ) A .x=2 B .x=-2 C .x 1=1,x 2=4 D .x 1=2,x 2=-22.用配方法解方程2250x x +-=时,原方程应变形为( )A .()216x +=B .()216x -=C .()229x +=D .()229x -= 3.关于x 的方程3x 2﹣2x+1=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .不能确定4.方程x 2=x 的根是( ) A .x=1B .x=0C .x 1=1,x 2=0D .x 1=1,x 2=-15.若1x =是方程230x mx ++=的一个根,则方程的另一个根是( )A .3B .4C .﹣3D .-4 6.若关于x 的方程()22310m x x +-+=是一元二次方程,则m 的取值范围是( )A .0m ≠B .2m >-C .2m ≠-D .0m > 7.若关于x 的一元二次方程()22210k x x -+-=有实数根,则k 的取值范围是( )A .1k ≤B .1k ≤且2k ≠C .1k ≥且2k ≠D .2k ≥8.菱形的一条对角线长为8,其边长是方程29200x x -+=的一个根,则该菱形的周长为( )A .40B .16C .16或20D .209.设 a b ,是方程220200x x +-=的两个实数根,则(1)(1)a b --的值为( )A .2022-B .2018C .2018-D .202210.要组织一次排球邀请赛,参赛的每两个各队之间都要比赛一场,根据场地和时间等条件,赛程计划安排共计28场比赛,比赛组织者应邀请多少个队参赛?若设应邀请x 个队参赛,可列出的方程为( )A .(1)28x x +=B .(1)28x x -=C .1(1)282x x += D .1(1)282x x -=11.若()22250a a x ---=是一元二次方程,则a = .12.小华在解方程28x x =时,只得出一个根是8x =,则被他漏掉的一个根是x = .13.若1x ,2x 是关于x 的方程2250x x --=的两个实数根,则代数式211234x x x --+的值是 .14.某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有 个飞机场三、解答题15.若关于x 的一元二次方程(m-1) 2x +2x+2m -1=0的常数项为0,求m 的值是多少?16.用配方法解一元二次方程: 210x x +-= .17.解方程:()222y y y +-=.18.已知关于x 的一元二次方程210x mx m -+-=.求证:方程总有两个实数根.19.已知关于x 的一元二次方程2210x kx --=有一个根是-3,求另一个根及k 值.四、综合题20.已知关于x 的一元二次方程x 2−(m+1)x+m+6=0的其中一个根为3.(1)求m 的值及方程的另一个根;(2)若该方程的两根的值为一直角三角形的两边长,求此直角三角形的第三边长.21.已知关于x 的方程23360x ax a ---=(1)求证:方程恒有两不等实根;(2)若x 1,x 2是该方程的两个实数根,且12(1)(1)1x x --=,求a 的值.22.如图,Rt ABC 中是方程()()2140x m x m --++=的两根.(2)P ,Q 两点分别从A ,C 出发,分别以每秒2个单位,1个单位的速度沿边AC ,BC 向终点C ,B 运动,(有一个点达到终点则停止运动),求经过多长时间后2PQ =?参考答案与解析1.【答案】D【解析】【解答】x 2=4x 1=2,x 2=-2故答案为:D【分析】正数的平方根有两个2.【答案】A【解析】【解答】解:移项,得225x x +=配方,得22151x x ++=+即()216x +=故答案为:A【分析】根据配方法的步骤“把常数项移到等号的右边,在方程两边同时加上一次项系数一半的平方,左边配成完全平方式,再两边开平方”即可求解.3.【答案】C【解析】【解答】解:∵a=3,b=﹣2,c=1 ∴△=b 2﹣4ac=4﹣12=﹣8<0∴关于x 的方程3x 2﹣2x+1=0没有实数根.故答案为:C.【分析】先计算根的判别式△=b 2-4ac 的值,当△>0时,方程由有个不相等的实数根,当△=0时,方程有两个相等的实数根,当△<0时,方程无实数根,据此判断即可.4.【答案】C【解析】【解答】∵x 2=x ∴x 2﹣x =0则x (x ﹣1)=0解得x 1=0,x 2=1故答案为:C.【分析】先移项,把原方程化为一元二次方程的一般式,再利用因式分解法解一元二次方程即可.5.【答案】A【解析】【解答】解: 1x =是方程230x mx ++=的一个根,设另一根为1x ,113x ∴⨯=,13x ∴=,即方程的另一个根是 3.x =故答案为:A【分析】根据根与系数的关系进行解答即可.6.【答案】C【解析】【解答】解:∵方程()22310m x x +-+=是关于x 的一元二次方程 ∴20m +≠.∴2m ≠-.故答案为:C .【分析】利用一元二次方程的定义可得20m +≠,再求出m 的取值范围即可。
人教版九年级上册数学第21章《一元二次方程》 单元测试(含答案)

试卷第1页,总3页 第二十一章《一元二次方程》 测试题一、单选题(共12小题,每小题3分,共36分)1.下列方程为一元二次方程的是 ( )A .ax 2+bx+c=0B .x 2-2x -3C .2x 2=0D .xy +1=02.把方程x (3-2x )+5=1化成一般式后二次项系数与常数项的积是( )A .3B .-8C .-10D .153.若关于x 的一元二次方程(a +1)x 2+x +a 2-1=0的一个解是x =0,则a 的值为( )A .1B .-1C .±1D .04.若a-b+c=0,则方程ax 2+bx+c=0(a 0≠)必有一个根是( )A .0 B .1C .-1 D .b a -5.用配方法解一元二次方程2x 2﹣4x+1=0,变形正确的是( )A .(x ﹣12)2=0 B .(x ﹣12)2=12 C .(x ﹣1)2=12 D .(x ﹣1)2=06.已知直角三角形的两边长是方程x 2﹣7x+12=0的两根,则第三边长为( ) A .7 B .5C 7D .577.若关于 x 的一元二次方程x 2﹣x ﹣3m =0有两个不相等的实数根,则 m 的取值范围是()A .m 12>B .m 112<C .m >﹣112D .m 112< 8.若方程x 2-3x -1=0的两根为x 1、x 2,则11x +21x 的值为( ) A .3 B .-3 C .13 D .-139.已知关于x 的一元二次方程(2a -1)x 2+(a +1)x +1=0的两个根相等,则a 的值等于( )A .-1或-5B .-1或5C .1或-5D .1或510.如图,在长为33米宽为20米的矩形空地上修建同样宽的道路(阴影部分),余下的部分为草坪,要使草坪的面积为510平方米,则道路的宽为( )A .1米B .2米C .3米D .4米11.是下列哪个一元二次方程的根( ) A .3x 2+5x+1=0、 B .3x 2﹣5x+1=0、 C .3x 2﹣5x ﹣1=0、 D .3x 2+5x ﹣1=012.已知m ,n 是方程x 2﹣2018x +2019=0的两个根,则(m 2﹣2019m +2018)(n 2﹣2019n +2018)的值是( )A .1B .2C .4037D .4038二、填空题(共4小题,每小题5分,共20分)13.一元二次方程4x 2= 3x 的解是_____________.14.圣诞节时,某班一个小组有x 人,他们每两人之间互送贺卡一张,已知全组共送贺卡110张,则可列方程为_____.15.关于a 的方程2420a a ++=的两个解为1a 、2a ,则2212a a +=_____. 16.已知两数的积是12,这两数的平方和是25, 以这两数为根的一元二次方程是___________.三、解答题(共6小题,第17题8分,第18题12分,第19题6分,第20题6分,第21题8分,第22题12分,共52分)17、解下列方程 (1) x 2-2x-5=0 (用配方法) (2)2x 2+3x=4(公式法)18、已知关于x 的方程||(2)210m m x x ++-=.(1)当m 为何值时是一元一次方程?(2)当m 为何值时是一元二次方程?19、 已知两个方程20x px q ++=和20x qx p ++=仅有一个相同的根,求p q +的值.20、小刚在做作业时,不小心将方程2350x bx --=的一次项系数用墨水覆盖住了,但从题目的答案中,他知道方程的一个解为5x =,请你帮助小刚求出被覆盖住的数试卷第3页,总3页 21、已知关于x 的一元二次方程22(51)40x m x m m -+++=. 求证:无论m 取任何实数时,原方程总有两个实数根;22、现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?参考答案1.考点:一元二次方程试题解析:解析:A 选二次项系数为字母,要强调不为0;B 选项不是等式;D 选项有两个未知数,故选C .答案:C2..考点:一元二次方程的一般形式试题解析:解析:x (3-2x )+5=1 -2x 2+3x+4=0 -2×4=-8 故选B .答案:B3.考点:一元二次方程的解试题解析:解析:将x =0代入原方程得a 2-1=0且a +1≠0所以a=1故选A .答案:A4.考点:一元二次方程试题解析:解析:A 选二次项系数为字母,要强调不为0;B 选项不是等式;D 选项有两个未知数,故选C .答案:C5.考点:配方法答案第4页,总3页试题解析:解析x 2﹣2x+12=0 x 2﹣2x+1=12(x ﹣1)2=12故选C .答案:C6.考点:解一元二次方程和勾股定理试题解析:解析:解方程得x 1 =3, x 2=4.当3和4为直角边时,第三边为5,当4为斜边故选D .答案:D7.考点:一元二次方程根的判别式和一元一次不等式的解法试题解析:解析:∆= b ²-4ac >0即1+12m >0 m >﹣112故选C . 答案:C8.考点:一元二次方程根与系数的关系 试题解析:解析:11x +21x =(x ₁+x ₂)/(x ₁x ₂)=﹣3 故选B . 答案:B9.考点:一元二次方程根的判别式和解一元二次方程试题解析:解析:(a +1)²- 4(2a -1)=0解得a ₁=1a ₂=5故选D .答案:D10.考点:一元二次方程的应用试题解析:解析:设路宽为x,依题可得:(20-x )(33-x)=510解得x 1 =3, x 2=50(舍去)故选C .答案:C11.考点:一元二次方程求根公式试题解析:解析:由一元二次方程求根公式与方程给出的根可找出a=3 b=5 c = - 1 故选D .答案:D12.考点:一元二次方程的解和根与系数的关系试题解析:解析:将m 和n 分别代入方程变形得m 2﹣2018m =-2019n 2﹣2018n =-2019将原式变形后整体代入(-2019-m+2018(-2019-n+2018)=(-1-m)(-1-n)=1+m+n+mn∵m+n=2018 mn=2019∴原式=1+2018+2019=4038故选D .答案:D13.考点:解一元二次方程(因式分解法)试题解析:解析:4x 2 -3x= 0 x(4x-3)=0 x 1 =0, x 2=34答案:x 1 =0, x 2=3414.考点:一元二次方程的应用试题解析:答案:x (x ﹣1)=11015.考点:一元二次方程根与系数的关系和完全平方公式试题解析:解析:2212a a +=(a ₁+a ₂)²-2a ₁a ₂答案:1216.考点:一元二次方程解法和根与系数的关系试题解析:解析:∵ x₁x₂=12 x₁²+x₂²=25∴x ₁+x ₂=7或-7答案:x 2-7x+12=0或x 2+7x+12=017.考点:一元二次方程解法答案:(1)11x =21x =;(2)134x -=,234x -= 18.考点:一元一次方程和一元二次方程的概念试题解析:解析:(1)注意分三种情况讨论(2)注意指数和系数答案:(1)-2或±1或0 (2)2 19.考点:一元二次方程根和方程组试题解析:解析:x ²+px+q= x ²+qx+p (p-q)x=p-q x=1代入原方程1+p+q=0 ∴p+q=-1答案:-1;.20.考点:一元二次方程解试题解析:解析:答案:1421.考点:一元二次方程根的判别式和完全平方公式试题解析:解析:答案:∵∆= b ²-4ac =(5m+1)²-4(4m ²+m )=9m ²+6m+1=(3m+1)²≥0∴不论m 取任何实数,原方程总有两个实数根22.考点:一元二次方程的应用和一元一次不等式试题解析:解析:(1)设增长率为x ,依题可得10(1+x )²=12.1解得x 1 =0.1, x 2=-2.1(舍去)故增长率为10%;(2)6月总数12.1×(1+10%)=13.31>21×0.6所以不能完成任务。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学人教版上册第21章检测题4带答案一、填空题(每小题2分,共20分)1.一元二次方程2632x x =+的二次项系数____a =,一次项系数____b =,常数项_____c =。
2. 写出一个二次项系数为1,且有一个根为2 的一元二次方程:。
3. 方程0)5(2=-x 的根是。
4. 已知1=x 是方程260x ax -+=的一个根,则a =。
5. 如果0=++c b a ,那么方程)0(02≠=++a c bx ax 的一个根一定是6. 若关于x 的一元二次方程2(3)0x k x k +++=的一个根是2-,则另一个根是______.7. 若关于x 的一元二次方程02=++n mx x 有两个相等的实数根,则符合条件的一组m ,n 的实数值可以是m =,n =。
8. 某兴趣小组的每位同学,将自己收集的植物标本向本组其他成员各赠送1件,全组互赠标本共182件,若全组有x 名学生,则根据题意可列方程9. 已知236x x ++的值为9,则代数式2392x x +-的值为10. 三角形两边的长分别是8和6,第三边的长是一元二次方程060162=+-x x 的一个实数根,则该三角形的面积是。
二、选择题(每小题3分,共24分)11. 下列关于x 的方程:①20ax bx c ++=;②2430x x+-=;③2540x x -+=;④23x x =中,一元二次方程的个数是( )A .1个B .2个C .3个D .4个 12.关于x 的方程2320ax x -+=是一元二次方程,则( )A .0a >;B .0a ≠;C .1a =;D .a ≥013.方程2x x =的解是()A .1x =B .0x =C .1210x x ==,D .1210x x =-=,14. 方程21504x x ++=的左边配成一个完全平方式后,所得的方程为( ) A .251()22x += B .2523()416x += C .2524()24x += D .2537()24x += 15. 若12x x ,是一元二次方程2560x x -+=的两个根,则12x x +的值是( )线 封A .1B .5C .5-D .616. 如果关于x 的一元二次方程01)12(22=++-x k x k 有两个不相等的实数根,那么k 的取值范围是( )A .41->kB .41->k 且0≠kC .41-<kD .41-≥k 且0≠k 17.将进货单价为40元的商品按50元出售时,售出500个,经市场调查发现:该商品每涨价1元,其销量减少10个,为了赚8000元,则售价应定为( )A .60元B .70元C .80元D .60元或80元18. 为了美化环境,市加大对绿化的投资.20XX 年用于绿化投资20万元,20XX 年用于绿化投资25万元,求这两年绿化投资的年平均增长率.设这两年绿化投资的年平均增长率为x ,根据题意所列方程为( )A .22025x =B .20(1)25x +=C .220(1)25x +=D .220(1)20(1)25x x +++=三、解答题(76分)19. 用指定的方法解方程(每小题3分,共12分) (1)02522=-+)(x (直接开平方法) (2)0542=-+x x (配方法)(3)025)2(10)2(2=++-+x x (因式分解法) (4) 03722=+-x x (公式法)20.(8分)党的十六大提出全面建设小康社会,加快推进社会主义现代化,力争国民生产总值到2020年比2000年翻两番。
在本世纪的头二十年(20XX 年~2020年),要实现这一目标,以十年为单位计算,求每个十年的国民生产总值的平均增长率。
21. (8分)已知:关于x 的一元二次方程2(1)60x k x -+-=,(1)求证:对于任意实数 k ,方程有两个不相等的实数根.(2)若方程的一个根是2,求k 的值及方程的另一个根.22.(8分)如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD .求该矩形草坪BC 边的长.23. (8分)阅读材料:如果1x ,2x 是一元二次方程02=++c bx ax 的两根,那么有ab x x -=+21,ac x x =21.这是一元二次方程根与系数的关系,我们利用它可以用来解题,例1x ,2x 是方程0362=-+x x 的两根,求2221x x +的值.解法可以这样: ∵621-=+x x ,321-=x x 则42)3(2)6(2)(2212212221=-⨯--=-+=+x x x x x x . 请你根据以上解法解答下题: 已知1x ,2x 是方程0242=+-x x 的两根,求:(1)2111x x +的值;(2)221)(x x -的值.24.(10分)市某楼盘准备以每平方米5000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的房子.开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费.物业管理费是每平方米每月1.5元.请问哪种方案更优惠?25.(10分)随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入普通家庭,成为居民消费新的增长点.据某市交通部门统计,20XX年底全市汽车拥有量为180万辆,而截止到20XX年底,全市的汽车拥有量已达216万辆.(1)求20XX年底至20XX年底该市汽车拥有量的年平均增长率;(2)为保护城市环境,缓解汽车拥堵状况,该市交通部门拟控制汽车总量,要求到20XX 年底全市汽车拥有量不超过231.96万辆;另据估计,从20XX年初起,该市此后每年报废的汽车数量是上年底汽车拥有量的10%.假定每年新增汽车数量相同,请你计算出该市每年新增汽车数量最多不能超过多少万辆.26.(12分)20XX 年4月7日,国务院公布了《医药卫生体制改革近期重点实施方案(2009~20XX 年)》,某市政府决定20XX 年投入6000万元用于改善医疗卫生服务,比20XX 年增加了1250万元.投入资金的服务对象包括“需方”(患者等)和“供方”(医疗卫生机构等),预计20XX 年投入“需方”的资金将比20XX 年提高30%,投入“供方”的资金将比20XX 年提高20%.(1)该市政府20XX 年投入改善医疗卫生服务的资金是多少万元?(2)该市政府20XX 年投入“需方”和“供方”的资金各多少万元?(3)该市政府预计20XX 年将有7260万元投入改善医疗卫生服务,若从2009~20XX 年每年的资金投入按相同的增长率递增,求2009~20XX 年的年增长率.参考答案一、填空题1.6,-3,-2 2.022=-x x 3.521==x x 4.-7 5.3,321-==x x 6. 17.2 ,1 8.182)1(=-x x 9. 7 10。
24或58二、选择题11.A 12.B 13. C 14.C 15.B 16.B 17.D 18.C三、解答题19.(1)7,321-==x x ; (2)1,521=-=x x ;(3)321==x x ; (4)3,2121==x x ;20.解:设每个十年的国民生产总值的平均增长率为x ,根据题意得:4)1(2=+x ∴21±=+x∴21±-=x∴321%,1002121-=--==+-=x x (不符题意,舍去)答:略21.(1)略(2)k=-2, -322..解:设BC 边的长为x 米,根据题意得 321202xx -=,解得:121220x x ==,,∵20>16,∴220x =不合题意,舍去,答:该矩形草坪BC 边的长为12米.23.(1)1 (2)824. 解:(1)设平均每次降价的百分率是x ,依题意得5000(1-x )2= 4050解得:x 1=10% x 2=1910(不合题意,舍去) 答:平均每次降价的百分率为10%.(2)方案①的房款是:4050×100×0.98=396900(元)方案②的房款是:4050×100-1.5×100×12×2=401400(元)∵396900<401400∴选方案①更优惠.25. 解:(1)设该市汽车拥有量的年平均增长率为x 。
根据题意,得2150(1)216x +=解得10.220%x ==,2 2.2x =-(不合题意,舍去)。
答:该市汽车拥有量的年平均增长率为20%。
(2)设全市每年新增汽车数量为y 万辆,则20XX 年底全市的汽车拥有量为21690%y ⨯+万辆,20XX 年底全市的汽车拥有量为(21690%)90%y y ⨯+⨯+万辆。
根据题意得(21690%)90%231.96y y ⨯+⨯+≤解得30y ≤答:该市每年新增汽车数量最多不能超过30万辆。
26.解:(1)该市政府20XX 年投入改善医疗服务的资金是:600012504750-=(万元)(2)设市政府20XX 年投入“需方”x 万元,投入“供方”y 万元,由题意得4750(130%)(120%)6000.x y x y +=⎧⎨+++=⎩, 解得30001750.x y =⎧⎨=⎩, ∴20XX 年投入“需方”资金为(130%) 1.330003900x +=⨯=(万元), 20XX 年投入“供方”资金为(120%) 1.217502100y +=⨯=(万元).答:该市政府20XX 年投入“需方”3900万元,投入“供方”2100万元.(3)设年增长率为x ,由题意得26000(1)7260x +=,解得10.1x =,2 1.1x =-(不合实际,舍去)答:从2009~20XX 年的年增长率是10%.。