苏教版必修3高一数学7.4.1互斥事件及其发生的概率练习
2021-2022学年数学苏教版必修3:课下能力提升(十八) 互斥事件 Word版含解析

课下力量提升(十八) 互斥大事一、填空题1.从装有数十个红球和数十个白球的罐子里任取两球,下列状况中是互斥但不对立的两个大事是________.①至少有一个红球;至少有一个白球 ②恰有一个红球;都是白球 ③至少有一个红球;都是白球 ④至多有一个红球;都是红球2.口袋中装有100个大小相同的红球、白球、黑球,其中红球45个,从口袋中摸出一个球,摸出白球的概率是0.23,则摸出黑球的概率是________.3.如图所示,靶子由一个中心圆面Ⅰ和两个同心圆环Ⅱ、Ⅲ构成,射手命中Ⅰ、Ⅱ、Ⅲ的概率分别为0.15、0.20、0.45,则不中靶的概率是________.4.袋中有2个白球和3个黑球,从中任取两个球,则取得的两球中至少有1个白球的概率是________.5.大事A ,B 互斥,它们都不发生的概率为25,且P(A)=2P(B),则P(A -)=________.二、解答题6.推断下列给出的每对大事是否为互斥大事?是否为对立大事?并说明理由. 从40张扑克牌(红桃、黑桃、方块、梅花,点数从1~10各10张)中,任取一张. (1)“抽出红桃”与“抽出黑桃”; (2)“抽出红色牌”与“抽出黑色牌”;(3)“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”.7.某学校篮球队、羽毛球队、乒乓球队的某些队员不止参与了一支球队,具体状况如图所示,现从中随机抽取一名队员,求:(1)该队员只属于一支球队的概率; (2)该队员最多属于两支球队的概率.8.甲、乙两人玩一种玩耍,每次由甲、乙各出1到5根手指头,若和为偶数则算甲赢,否则算乙赢. (1)若以A 表示“和为6”的大事,求P(A);(2)现连玩三次, 以B 表示“甲至少赢一次”的大事,C 表示“乙至少赢两次”的大事,则B 与C 是否为互斥大事?试说明理由;(3)这种玩耍规章公正吗?试说明理由. 答案1.解析:对于①,“至少有一个红球”可能为一个红球、一个白球,“至少有一个白球”可能为一个白球,一个红球,故两大事可能同时发生,所以不是互斥大事;对于②,“恰有一个红球”,则另一个必是白球,与“都是白球”是互斥大事,而任取两个球还有都是红球的情形,故两大事不是对立大事;对于③,“至少有一个红球”为都是红球或一红一白,与“都是白球”明显是对立大事;对于④,“至多有一个红球”为都是白球或一红一白,与“都是红球”是对立大事.答案:②2.解析:∵摸出红球的概率P 1=45100=0.45,∴摸出黑球的概率为1-0.45-0.23=0.32. 答案:0.323.解析:设射手“命中圆面Ⅰ”为大事A ,“命中圆环Ⅱ”为大事B ,“命中圆环Ⅲ”为大事C ,“不中靶”为大事D ,则A ,B ,C ,D 彼此互斥,故射手中靶概率为P (A +B +C )=P (A )+P (B )+P (C )= 0.15+0.20+0.45=0.80.由于中靶和不中靶是对立大事,所以不中靶的概率P (D )=1-P (A +B +C )=1-0.80=0.20. 答案:0.204.解析:从5个球中任取两个球含10个基本大事,取得的两球中没有白球的含3个基本大事,且此大事 与大事A :“取得的两球中至少有一个白球”对立, 则P (A )=1-P (A -)=1-310=710.答案:7105.解析:由于大事A ,B 互斥,它们都不发生的概率为25,所以P (A )+P (B )=1-25=35.又由于P (A )=2P (B ),所以P (A )+12P (A )=35,所以P (A )=25,所以P (A -)=1-P (A )=1-25=35.答案:356.解:(1)是互斥大事,不是对立大事.从40张扑克牌中任意抽取1张,“抽出红桃”和“抽出黑桃”是不行能同时发生的,所以是互斥大事.同时,不能保证其中必有一个发生,这是由于还可能抽出“方块”或者“梅花”,因此,二者不是对立大事.(2)既是互斥大事,又是对立大事.从40张扑克牌中,任意抽取1张.“抽出红色牌”与“抽出黑色牌”,两个大事不行能同时发生,但其中必有一个发生,所以它们既是互斥大事,又是对立大事.(3)不是互斥大事,当然不行能是对立大事.从40张扑克牌中任意抽取1张.“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”这两个大事可能同时发生,如抽得10,因此,二者不是互斥大事,当然不行能是对立大事.7.解:(1)设“该队员中属于一支球队”为大事A ,则大事A 的概率为P (A )=5+4+320=35.(2)设“该队员最多属于两支球队”为大事B ,则大事B 的概率为P (B )=1-220=910.8.解:(1)令x 、y 分别表示甲、乙出的手指数,则基本大事可表示为坐标中的数表示甲、乙伸出的手指数的和. 由于S 中点的总数为5×5=25, 所以基本大事总数n =25.大事A 包含的基本大事为(1,5),(2,4),(3,3),(4,2),(5,1),共5个, 所以P (A )=525=15.(2)B 与C 不是互斥大事,如“甲赢一次,乙赢两次”的大事中,大事B 与C 是同时发生的.(3)由(1)知,和为偶数的基本大事数为13个,即甲赢的概率为1325,乙赢的概率为1225,所以这种玩耍规章不公正.。
2020-2021学年苏教版高中数学必修三《互斥事件》课时同步练习及解析

(新课标)2018-2019学年苏教版高中数学必修三3.4 互斥事件课时目标1.了解事件间的相互关系.2.理解互斥事件、对立事件的概念.3.会用概率的加法公式求某些事件的概率.1.__________________称为互斥事件.2.如果事件A,B互斥,那么事件A+B发生的概率,等于___,即______________________.3.____________________,则称这两个事件为对立事件,事件A的对立事件记为A,P(A)=________.一、填空题1.从1,2,3,…,9这9个数中任取两个数.其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个奇数和至少有一个偶数.是对立事件的有________.(把正确命题的序号填上) 2.甲、乙、丙、丁争夺第1,2,3,4四个名次,假定无并列名次,记事件A为“甲得第1”,事件B 为“乙得第1”,则事件A 、B 的关系是______________事件.3.某家庭电话,打进电话响第一声时被接的概率是0.1,响第2声时被接的概率为0.2,响第3声时被接的概率是0.3,响第4声时被接的概率为0.3,则电话在响第5声前被接的概率为________.4.已知直线Ax +By +1=0.若A ,B 是从-3,-1,0,2,7这5个数中选取的不同的两个数,则直线的斜率小于0的概率为________.5.一个箱子内有9张票,其票号分别为1,2,3,…,9,从中任取2张,其号数至少有一个为奇数的概率为________. 6.下列四种说法:①对立事件一定是互斥事件;②若A ,B 为两个事件,则P(A +B)=P(A)+P(B); ③若事件A ,B ,C 彼此互斥,则P(A)+P(B)+P(C)=1; ④若事件A ,B 满足P(A)+P(B)=1,则A ,B 是对立事件. 其中错误的个数是________.7.随机地掷一颗骰子,事件A 表示“小于5的偶数点出现”,事件B 表示“小于5的点数出现”,则事件A +B 发生的概率为________.8.甲、乙两队进行足球比赛,若两队战平的概率是14,乙队胜的概率是13,则甲队胜的概率是________.9.某射击运动员在一次射击训练中,命中10环、9环、8环、7环的概率分别为0.21,0.23,0.25,0.28.则这名运动员在一次射击中:命中10环或9环的概率是________,少于7环的概率是________. 二、解答题10.(1)抛掷一枚均匀的骰子,事件A 表示“向上一面的点数是奇数”,事件B 表示“向上一面的点数不超过3”,求P(A +B);(2)一批产品,有8个正品和2个次品,任意不放回地抽取两次,每次抽1个,求第二次抽出次品的概率.11.某地区的年降水量在下列范围内的概率如下表所示.(1)求年降水量在[100,200) (mm)范围内的概率;(2)求年降水量在[150,300) (mm)范围内的概率.能力提升12.设A,B是两个互斥事件,它们都不发生的概率为25,且P(A)=2P(B),则P(A)=________.13.(1)在一个袋子中放入3个白球,1个红球,摇匀后随机摸球,摸出的球不放回袋中,求第1次或第2次摸出红球的概率.(2)在一个袋子中放入3个白球,1个红球,摇匀后随机摸球,摸出的球放回袋中连续摸2次,求第1次或第2次摸出的球都是红球的概率.1.互斥事件与对立事件的判定(1)利用基本概念:①互斥事件不可能同时发生;②对立事件首先是互斥事件,且必须有一个要发生.(2)利用集合的观点来判断:设事件A与B所含的结果组成的集合分别是A、B.①事件A 与B互斥,即集合A∩B=∅;②事件A与B对立,即集合A∩B=∅,且A∪B=I,也即A=∁I B或B=∁I A;③对互斥事件A与B的和A+B,可理解为集合A∪B.2.运用互斥事件的概率加法公式解题时,首先要分清事件之间是否互斥,同时要学会把一个事件分拆为几个互斥事件,做到不重不漏,分别求出各个事件的概率然后用加法公式求出结果.3.求复杂事件的概率通常有两种方法:一是将所求事件转化成彼此互斥的事件的和;二是先求其对立事件的概率,然后再运用公式求解.如果采用方法一,一定要将事件分拆成若干互斥的事件,不能重复和遗漏;如果采用方法二,一定要找准其对立事件,否则容易出现错误.3.4 互斥事件知识梳理1.不能同时发生的两个事件 2.事件A ,B 分别发生的概率的和 P(A +B)=P(A)+P(B) 3.两个互斥事件必有一个发生 1-P(A) 作业设计 1.③ 2.互斥解析 A 、B 不能同时发生,所以是互斥事件,但二者可能都不发生,所以不是对立事件. 3.0.9解析 P =0.1+0.2+0.3+0.3=0.9. 4.15解析 k =-A B 为小于0的数,则AB >0且B ≠0.若“A ,B 同正”为事件M 1,“A ,B 同负”为事件M 2,则P(M 1)=25×4=110,P(M 2)=25×4=110.故所求概率P =P(M 1)+P(M 2)=15.5.56解析 P(A)=1-4×39×8=56.6.3解析 对立事件一定是互斥事件,故①对;只有A 、B 为互斥事件时才有P(A +B)=P(A)+P(B),故②错; 因A ,B ,C 并不是随机试验中的全部基本事件, 故P(A)+P(B)+P(C)并不一定等于1,故③错; 若A 、B 不互斥,尽管P(A)+P(B)=1, 但A ,B 不是对立事件,故④错. 7.23解析 事件A +B 发生表示“小于5的偶数点出现”或“不小于5的点数出现”,所以P(A +B )=46=23.8.512解析 设甲队胜为事件A , 则P(A)=1-14-13=512.9.0.44 0.03解析 记“命中10环”、“命中9环”、“命中8环”、“命中7环”分别为事件A ,B ,C ,D ,则“命中10环或9环”的事件为A +B ,故 P(A +B)=P(A)+P(B)=0.21+0.23=0.44. “少于7环”为事件E , 则E =A +B +C +D.∴P(E )=0.21+0.23+0.25+0.28=0.97. ∴P(E)=1-P(E )=0.03.10.解 (1)∵A +B 这一事件包含4种结果:即朝上一面的点数是1,2,3,5,∴P(A +B)=46=23. (2)“第一次抽出正品,第二次抽出次品”为事件A ,“第一次,第二次都抽出次品”为事件B.则“第二次抽出次品”为事件A +B ,且A ,B 彼此互斥. P(A)=8×210×9=845,P(B)=2×110×9=145,∴P(A +B)=P(A)+P(B)=15.答 第二次抽出次品的概率是15.11.解 记这个地区的年降水量在[100,150),[150,200),[200,250),[250,300) (mm)范围内分别为事件A ,B ,C ,D.这4个事件彼此互斥,根据互斥事件的概率加法公式: (1)年降水量在[100,200) (mm)范围内的概率是 P(A +B)=P(A)+P(B)=0.12+0.25=0.37. (2)年降水量在[150,300) (mm)范围内的概率是P(B +C +D)=P(B)+P(C)+P(D) =0.25+0.16+0.14=0.55.所以年降水量在[100,200) (mm)范围内的概率是0.37,年降水量在[150,300) (mm)范围内的概率是0.55. 12.35解析 ∵P(A +B )=25,∴P(A +B)=35,P(A)+P(B)=35,又∵P(A)=2P(B),∴P(B)=15,P(A)=25,∴P(A )=35.13.解 (1)记第1次摸到红球为事件A ,第2次摸到红球为事件B.显然A 、B 为互斥事件,易知P(A)=14.现在我们计算P(B).摸两次球可能出现的结果为(白1,白2)、(白1,白3)、(白1,红)、(白2,白1)、(白2,白3)、(白2,红)、(白3,白1)、(白3,白2)、(白3,红)、(红,白1)、(红,白2)、(红,白3),在这12种情况中,第二次摸到红球有3种情况,所以P(B)=14,故第1次或第2次摸到红球的概率为P(A +B)=P(A)+P(B)=14+14=12.(2)把第1次、第2次摸球的结果列举出来,除了上题中列举的12种以外,由于放回,又会增加4种即(白1,白1),(白2,白2),(白3,白3),(红,红).这样共有16种摸法.其中第1次摸出红球,第2次摸出不是红球的概率为P 1=316.第1次摸出不是红球,第2次摸出是红球的概率为P 2=316.两次都是红球的概率为P 3=116. 所以第1次或第2次摸出红球的概率为P =P 1+P 2+P 3=716.。
高一数学必修3概率部分知识点总结及习题训练教师版

概率部分知识点总结事件:____________,确定性事件: _____________和____________随机事件的概率(统计定义):一般的,如果随机事件A 在n 次实验中发生了m 次,当实验的次数n 很大时,我们称事件A 发生的概率为____P A概率是频率的__________,频率是概率的_________概率必须满足三个基本要求:① 对任意的一个随机事件A ,有_________ ② ,__,__P P 用和分别表示必然事件和不可能事件则有③如果事件,:________A B P A B和互斥则有古典概率:① ___________ ② _______________满足这两个条件的概率模型成为古典概型 如果一次试验的等可能的基本事件的个数为个n ,则每一个基本事件发生的概率都是__,如果某个事件A 包含了其中的m 个等可能的基本事件,则事件A 发生的概率为___P A求古典概型概率的方法:___________、___________、___________、___________几何概型:一般地,一个几何区域D 中随机地取一点,记事件“改点落在其内部的一个区域d 内”为事件A ,则事件A 发生的概率为P A__________(一般地,线段的测度为该线段的长度;平面多变形的测度为该图形的面积;立体图像的测度为其体积 )几何概型的基本特点:① ____________ ② _______________ 互斥事件:___________________________称为互斥事件对立事件:____________________________,则称两个事件为对立事件,事件A 的对立事件 记为:A注意:① 若, B , , B , 中最多有一个发生则为互斥事件A A 可能都不发生,但不可能同时发生 ,从集合的关来看两个事件互斥,即指两个事件的集合的交集是空集 ② 对立事件是指的两个事件,而且必须有一个发生,而互斥事件可能指的很多事件,但最多只有一个发生,可能都不发生 ③ 对立事件一定是互斥事件 ④ 从集合论来看:表示互斥事件和对立事件的集合的交集都是空集,但两个对立事件的并集是全集 ,而两个互斥事件的并集不一定是全集 ⑤ 两个对立事件的概率之和一定是1 ,而两个互斥事件的概率之和小于或者等于1 ⑥ 若事件B A ,是互斥事件,则有()()()B P A P B A P +=+ ⑦ 一般地,如果n A A A ,...,,21 两两互斥,则有()()()()n n A P A P A P A A A P +++=+++......2121 ⑧ ()()A P A P -=1 ⑨ 在本教材中n A A A +++...21 指的是n A A A ,...,,21 中至少发生一个⑩在具体做题中,希望大家一定要注意书写过程,设处事件来,利用哪种概型解题,就按照那种概型的书写格式,最重要的是要设出所求的事件事件A 和事件B 的和:_______________________________________________________事件A 和事件B 的积:_______________________________________________________例题选讲:例1. 在大小相同的6个球中,4个是红球,若从中任意选2个,求所选的2个球至少有一个是红球的概率?【分析】题目所给的6个球中有4个红球,2个其它颜色的球,我们可以根据不同的思路有不同的解法解法1:(互斥事件)设事件 A 为“选取2个球至少有1个是红球” ,则其互斥事件为A 意义为“选取2个球都是其它颜色球”()()()1514151 - 1A P - 1 A P 151 2)56(1A P ===∴=⨯=答:所选的2个球至少有一个是红球的概率为 1514.解法2:(古典概型)由题意知,所有的基本事件有15256=⨯种情况,设事件 A 为“选取2个球至少有1个是红球” ,而事件A 所含有的基本事件数有1423424=⨯+⨯所以()1514=A P 答:所选的2个球至少有一个是红球的概率为 1514.变式训练1: 在大小相同的6个球中,2个是红球,4 个是白球,若从中任意选取3个,求至少有1个是红球的概率?解法1:(互斥事件)设事件 A 为“选取3个球至少有1个是红球”,则其互斥事件为A , 意义为“选取3个球都是白球”()()()54 51 - 1A P - 1 A P 51425364 123)456(123234A P 3634===∴=⨯⨯=⨯⨯⨯⨯⨯⨯⨯⨯==C C 答:所选的3个球至少有一个是红球的概率为54 . 解法2:(古典概型)由题意知,所有的基本事件有2012345636=⨯⨯⨯⨯=C 种情况,设事件 A为“选取3个球至少有1个是红球” ,而事件A 所含有的基本事件数有16234241224=⨯⨯=⨯+⨯C , 所以 ()542016==A P答:所选的3个球至少有一个是红球的概率为 54.变式训练2:盒中有6只灯泡,其中2只次品,4只正品,有放回的从中任抽2次,每次抽取1只,试求下列事件的概率: (1)第1次抽到的是次品(2)抽到的2次中,正品、次品各一次解:设事件A 为“第1次抽到的是次品”, 事件B 为“抽到的2次中,正品、次品各一次”则 ()3162==A P ,()94664224=⨯⨯+⨯=B P (或者()9462646462=⨯+⨯=B P ) 答:第1次抽到的是次品的概率为31 ,抽到的2次中,正品、次品各一次的概率为94变式训练3:甲乙两人参加一次考试共有3道选择题,3道填空题,每人抽一道题,抽到后不放回,求(1)甲抽到选择题而乙抽到填空题的概率?(2)求至少1人抽到选择题的概率? 【分析】(1)由于是不放回的抽,且只抽两道题,甲抽到选择题而乙抽到填空题是独立的,所以可以用独立事件的概率(2)事件“至少1人抽到选择题”和事件“两人都抽到填空题”时互斥事件,所以可以用互斥事件的概率来解:设事件A 为“甲抽到选择题而乙抽到填空题”,事件B 为“至少1人抽到选择题”,则B 为“两人都抽到填空题”(1)()()⎪⎪⎭⎫ ⎝⎛=⨯⨯===⨯=1035633 1035363261313P P P A P A P 或者 (2)()()⎪⎪⎭⎫ ⎝⎛===⨯=51 5152632623P P B P B P 或者 则 ()()545111=-=-=B P B P 答:甲抽到选择题而乙抽到填空题的概率为103,少1人抽到选择题的概率为 54. 例2.将一颗骰子向上抛掷两次,所得点数分别为a 和b ,则函数()221y x a b x =-++在[]5,7上不是单调函数的概率是( )A.14B.16C.536D.12C.因为函数()221y x a b x =-++在[]5,7上不是单调函数,所以对称轴落在区间内,则有57a b <+<,而*a b N +∈,得6a b +=,这时(),a b 的取值有()()()()()5,1,4,2,3,3,2,4,1,5共5种,总数有36种,故所求的概率为536. 变式训练1:设关于x 的一元二次方程022=++b ax x ,若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.设事件A 为“方程022=++b ax x 有实根”。
高中数学互斥事件及其发生的概率 同步练习2 苏教版必修三

互斥事件及其发生的概率同步练习2一、看一看,选一选(每小题5分,共30分)1.把红、黑、白、蓝四张牌随机地分给了甲、乙、丙、丁四个人,每人分得一张,“甲分得红牌”和事件”乙分得红牌是 ( )A对立事件 B.不可能事件 C.互斥但非对立事件 D,必然事件2..一个均匀的正方体玩具的各个面上分别标以数1,2,3,4,5,6(俗称骰子),将这个玩具向上抛掷一次,设事件A表示向上的一面出现奇数点(指向上一面的点数是奇数),事件B 表示向上的一面出现的点数不超过3,事件C表示向上的一面出现的点数不少于4.则( ) A. A与B是互斥而非对立事件 B.A与B是对立事件C. B与C是互斥而非对立事件D. B与C是对立事件3.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是( ) A.至少有1个白球,都是白球 B.至少有1个白球,至少有1个红球C.恰有1个白球,恰有2个白球D.至少有1个白球,都是红球4.下列四个命题: ①对立事件一定是互斥事件;②A,B为两个事件,则P(A十B)=P(A)+P(B);③若事件A、B、C两两互斥,则P(A)+P(B)+P(C)=1;④事件A、B满足P(A)十P(B)=1,则A、B是对立事件,其中错误的个数 ( )A.0B.1C.2D.35.从扑克扑克牌40张(四种花色各10张)中,任取一张.(1)”抽取红桃”与”抽取黑桃”;(2)”抽取红色牌”与”抽取黑色牌”; (3)”抽取的牌点数为5的倍数”与”抽取的牌点数大于9”.上述三组事件中,是互斥事件但不是对立事件的是( )A. (1)B.(1)(2)C.(2)D.(1)(2)(3)6.下列说法中正确的是A.事件A、B中至少有一个发生的概率一定比A、B恰有一个发生的概率大B.事件A、B同时发生的概率一定比事件A、B恰有一个发生的概率小C.互斥事件一定是对立事件,对立事件不一定是互斥事件D.互斥事件不一定是对立事件,对立事件一定是互斥事件二、想一想,填一填(每小题5分,共20分)7.某市派出甲乙两支球队参加全省足球冠军赛,甲乙两队夺取冠军的概率分别是3/7和1/4,则该市足球队夺得全省足球冠军的概率。
数学名师导航互斥事件及其发生的概率

7。
4互斥事件及其发生的概率名师导航三点剖析一、互斥事件1.互斥事件的定义:不能同时发生的两个事件称为互斥事件例如,在一个盒子里放有大小相同的10个小球,其中有7个红球,2个绿球,1个黄球.从盒中摸出1个小球得到的结果可能是红球,也可能是绿球或黄球,并且只能是其中一种情况。
我们把“从盒中摸出1个小球,得到红球”叫做事件A,“从盒中摸出1个小球,得到绿球”叫做事件B,“从盒中摸出1个小球,得到黄球”叫做事件C,那么这里的事件A、事件B、事件C中的任何两个是不可能同时发生的.事件A与事件B、事件B与事件C都是互斥事件.从集合的角度来看,事件A与事件B是互斥事件,则事件A所包含的基本事件构成的集合与事件B所包含的基本事件构成的集合的交集是空集.2.互斥事件有一个发生的概率设A、B为互斥事件,当事件A、B有一个发生时,我们把这个事件记作A+B.事件A+B发生的概率等于事件A、B分别发生的概率的和,即P(A+B)=P(A)+P(B),此公式也称概率和公式。
例如上例中“从盒中摸出1个小球,得到红球"叫做事件A,则P(A)=0.7;“从盒中摸出1个小球,得到绿球”叫做事件B,则P (B)=0.2.若记“从盒中摸出1个小球,得到红球或绿球”为事件D,则D=A+B,此时P(D)=P(A)+P(B)=0.7+0。
2=0.9.3.一般地,如果事件A1,A2,…,An中的任何两个都是互斥事件,就说事件A1,A2,…,An彼此互斥.从集合的角度看,几个事件彼此互斥是指由各个事件所含的结果组成的集合彼此没有公共元素,即两两交集都是空集.一般地,如果事件A1,A2,…,A n两两互斥,则P(A1+A2+…+A n)=P(A1)+P(A2)+…+P(A n).二、对立事件对立事件的定义:两个互斥事件必有一个发生,则称这两个事件为对立事件。
事件A的对立事件记为A.从集合的角度看,由事件A的对立事件A所含的结果组成的集合是全集中由事件A所含的结果组成的集合的补集.此时,事件A和它对立事件的交集为空集,而并集为全集。
苏教版高中数学必修三练习:3.4 互斥事件及其发生的概率(一)含答案

3.4互斥事件及其发生的概率(一)【新知导读】1.某个人去新华书店买书,走到一个十字路口,他犹豫了,是向前走,还是向左拐,还是向右拐?把他的三个选择视为三个事件,你知道这三个事件有什么关系吗?2.盒子中放有红,黄,蓝,白四种颜色的球各一个,从中任取一球,设事件A为“取得红球”,事件B为“取得黄球”,事件C为“取得白球或蓝球”,则:(1)A,B是互斥事件吗?(2)A,C 是互斥事件吗?(3)B,C是互斥事件吗?3.把红,黑,白,蓝四张纸牌,随机地分给甲,乙,丙,丁四人,每人得一张,事件“甲分得红牌”与事件“乙分得红牌”是什么事件?【范例点睛】例1:判断下列给出的事件是否为互斥事件,是否为对立事件,并说明道理.从40张扑克牌(红桃,黑桃,方块,梅花点数从1~10各10张)中,任取一张.(1)”抽出红桃”与”抽出黑桃”;(2)”抽出红色牌”与”抽出黑色牌”(3)”抽出牌点数为5的倍数”与”抽出的牌点数大于9”.思路点拨:根据互斥事件与对立事件的定义进行判断.判断是否为互斥事件,主要是看两事件是否同时发生;判断是否为对立事件,首先看是否为互斥事件,然后再看两事件是否必有一个发生,若必有一个发生,则为对立事件,否则,不是对立事件.易错辨析:对立事件是非此即彼的关系,要看一次试验的结果有几种.例2:在某一时期内,一条河流某处的最高水位在各个范围内的概率如下:(1)[10,16);(2)[8,12);(3)[14,18).思路点拨:把事件”最高水位在[10,16)”看作是彼此互斥的事件的和,再用加法公式.方法点评: 在用加法公式之前,要先判断是否为互斥事件,再将要求概率的事件写成几个已知(或易求)概率的事件的和.最后用概率加法公式求得.【课外链接】1.若10把钥匙中只有2把能打开某锁,则从中任取2把能将该锁打开的概率为______________.【自我检测】1.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的事件是( )A.至少有1个白球和全是白球B.至少有1个白球和至少有1个红球C.恰有1个白球和恰有2个白球D.至少有1个红球和全是白球2.如果事件A,B 互斥,那么 ( )A.A+B 是必然事件B.A B +是必然事件C.A 与B 一定互斥D.A 与B 一定不互斥3.下列命题中,真命题的个数是 ( )①将一枚硬币抛两次,设事件A 为”两次出现正面”,事件B 为”只有一次出现反面”,则事件A与B 是对立事件;②若事件A 与B 为对立事件,则事件A 与B 为互斥事件③若事件A 与B 为互斥事件,则事件A 与B 为对立事件;④若事件A 与B 为对立事件,则事件A+B 为必然事件.A .1 B.2 C .3 D .44.甲,乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲,乙两人下成和棋的概率为( )A.60%B.30%C.10%D.50%5.某射击运动员在一次射击训练中,命中10环,9环,8环,7环的概率分别为0.21,0.23,0.25,0.28.则这名运动员在一次射击中:命中10环或9环的概率是__________,少于7环的概率是____________.6.在区间[0,10]上任取一个数x ,求3x <或6x >的概率___________.7.有5张1角,3张2角和2张5角的邮票,任取2张,求其中两张是同价格的概率___________.8.已知随机事件E 为”掷一枚骰子,观察点数”,事件A 表示”点数小于5”,事件B 表示”点数是奇数”,事件C 表示”点数是偶数”.问:(1)事件A+C 表示什么?(2)事件,,A A C A C ++分别表示什么?9.我国已经正式加入WTO,包括汽车在内的进口商品将最多在5年内把关税全部降低到世贸组织所要求的水平,其中有21%的进口商品恰好5年关税达到要求,18%的进口商品恰好4年关税达到要求,其余的进口商品将在3年或3年内达到要求,求进口汽车在不超过4年的时间内关税达到要求的概率.10.袋中有2个伍分硬币,2个贰分硬币,2个壹分硬币,从中任取3个,求总数超过7分的概率.10.某地区有5个工厂,由于用电紧张,规定每个工厂在一周内必须选择某一天停电(选哪一天是等可能的),假定工厂之间的选择互不影响.(1)求”5个工厂均选择星期日停电”的概率;(2)求”至少有2个工厂选择同一天停电”的概率.3.4 互斥事件及其发生的概率(一)【新知导读】1. 三个事件不可能同时发生2. 是,是,是3. 是互斥事件但不是对立事件【范例点睛】例1. (1)是互斥事件,不是对立事件.(2)既是互斥事件,又是对立事件.(3)不是互斥事件,也不是对立事件.例2.记河流年最高水位在”[8,10)”为事件A, ”[10,12)”为事件B ,”[12,14)”为事件C, ”[14,16)”为事件D, ”[16,18)”为事件E,则A,B,C,D,E 为互斥事件.由互斥事件的概率的加法公式,得 (1)最高水位在[10,16)的概率为()()()()0.280.380.160.82P B C D P B P C P D ++=++=++=.(2) 最高水位在[8,12)的概率()()()0.10.280.38P A B P A P B +=+=+=. (3)最高水位在[14,18)的概率为()()()0.160.080.24P D E P D P E +=+=+=.【课外链接】1. 1745【自我检测】 1.C 2.B 3.B 4.D 5.0.44 0.03 6. 347111111P =+= 7.1445 8. (1)A+C 表示出现点数为1,2,3,4,6. (2){5,6}A =,{5}A C +=,{5,6}{1,3,5}{1,3,5,6}A C +=⋃=9. 79% 10.710。
苏教版必修3高一数学7.4.2互斥事件及其发生的概率练习

第10课时7.4.2 互斥事件及其发生的概率(2)分层训练1、先后抛掷两颗骰子,设出现的点数之和是12,11,10的概率依次是123,,P P P ,则( ) A .123P P P =< B .123P P P << C .123P P P <= D .321P P P =<2、已知直线36y x =-+与4y x =-+,现将一个骰子连掷两次,设第一次得的点数为x ,第二次得的点数为y ,则点(x ,y )在已知直线下方的概率为_____________.3、 某工厂为节约用电,规定每天的用电量指标为1000千瓦时,按照上个月的用电记录,30天中有12天的用电量超过指标,若第二个月仍没有具体的节电措施,则该月的第一天用电量超过指标的概率为_______________.4、抛掷一粒骰子,观察掷出的点数,设事件A 为出现奇数,事件B 为出现2点,已知P (A )=21,P (B )=61,求出现奇数点或2点的概率之和.5、在房间里有4个人.问至少有两个人的生日是同一个月的概率是多少?拓展延伸6、在一只袋子中装有7个红玻璃球,3个绿玻璃球.从中无放回地任意抽取两次,每次只取一个.试求:(1)取得两个红球的概率; (2)取得两个绿球的概率; (3)取得两个同颜色的球的概率; (4)至少取得一个红球的概率.7、.某单位36人的血型类别是:A 型12人,B 型10人,AB 型8人,O 型6人.现从这36人中任选2人,求此2人血型不同的概率.8、一场篮球比赛到了最后5分钟,甲队比乙队少得5分.若甲队全投3分球,则有8次投篮机会.若甲队全投2分球,则有3次投篮机会.假设甲队队员投3分球的命中率均为0.6,投2分球的命中率均为0 .8,并且甲队加强防守,不给乙队投篮机会.问全投3分球与全投2分球这两种方案中选择哪一种甲队获胜的概率较大?本节学习疑点:7.4.2随机事件及其概率(2)1、B2、118 3、254、“出现奇数点”的概率是事件A ,“出现2点”的概率是事件B ,“出现奇数点或2点”的概率之和为P (C )=P (A )+P (B )=21+61=325、96416、 (1)157 (2)151 (3)158 (4)15147、45348、要使甲队获胜,甲队至少投中2个3分球,或3个2分球,甲队全投3分球至少投中2个球的概率为[]99148032.04.0C 4.06.0C 1808718=⨯+⨯⨯-.,甲队全投2分球至少投中3个的概率为512.08.03=.,所以选择全投3分球甲队获胜的概率较大。
苏教版数学高一数学苏教版必修3课时检测(十九)互斥事件

阶段质量检测(十九) 互斥事件[层级一 学业水平达标]1.从装有十个红球和十个白球的罐子里任取两球,下列情况中是互斥但不对立的两个事件是________.①至少有一个红球;至少有一个白球 ②恰有一个红球;都是白球 ③至少有一个红球;都是白球 ④至多有一个红球;都是红球解析:对于①,“至少有一个红球”可能为一个红球、一个白球,“至少有一个白球”可能为一个白球,一个红球,故两事件可能同时发生,所以不是互斥事件;对于②,“恰有一个红球”,则另一个必是白球,与“都是白球”是互斥事件,而任取两个球还有都是红球的情形,故两事件不是对立事件;对于③,“至少有一个红球”为都是红球或一红一白,与“都是白球”显然是对立事件;对于④,“至多有一个红球”为都是白球或一红一白,与“都是红球”是对立事件.答案:②2.口袋中装有100个大小相同的红球、白球、黑球,其中红球45个,从口袋中摸出一个球,摸出白球的概率是0.23,则摸出黑球的概率是________.解析:∵摸出红球的概率P 1=45100=0.45, ∴摸出黑球的概率为1-0.45-0.23=0.32. 答案:0.323. 如图所示,靶子由一个中心圆面Ⅰ和两个同心圆环Ⅱ、Ⅲ构成,射手命中Ⅰ、Ⅱ、Ⅲ的概率分别为0.15,0.20,0.45,则不中靶的概率是________.解析:设射手“命中圆面Ⅰ”为事件A ,“命中圆环Ⅱ”为事件B ,“命中圆环Ⅲ”为事件C ,“不中靶”为事件D ,则A ,B ,C ,D 彼此互斥,故射手中靶概率为P (A +B +C )=P (A )+P (B )+P (C )=0.15+0.20+0.45=0.80.因为中靶和不中靶是对立事件,所以不中靶的概率P (D )=1-P (A +B +C )=1-0.80=0.20.答案:0.204.甲、乙两人下棋,和棋的概率为12,乙获胜的概率为13,则(1)甲获胜概率为________.(2)甲不输的概率为________.解析:(1)“甲获胜”是“和棋或乙获胜”的对立事件, ∴“甲获胜”的概率P =1-12-13=16.∴甲获胜的概率是16.(2)设事件A 为“甲不输”,看做是“甲获胜”和“和棋”这两个互斥事件的并事件, ∴P (A )=16+12=23.答案:(1)16 (2)235.从装有5只红球,5只白球的袋中任意取出3只球,判断下列每对事件是否为互斥事件,是否为对立事件.(1)“取出2只红球和1只白球”与“取出1只红球和2只白球”; (2)“取出2只红球和1只白球”与“取出3只红球”; (3)“取出3只红球”与“取出3只球中至少有1只白球”; (4)“取出3只红球”与“取出3只球中至少有1只红球”.解:任取3只球,共有以下4种可能结果:“3只红球”,“2只红球1只白球”,“1只红球2只白球”,“3只白球”.(1)“取出2只红球和1只白球”与“取出1只红球和2只白球”不可能同时发生,是互斥事件,但有可能两个都不发生,故不是对立事件.(2)“取出2只红球1只白球”,与“取出3只红球”不可能同时发生,是互斥事件,可能同时不发生,故不是对立事件.(3)“取出3只红球”与“取出3只球中至少有一只白球”不可能同时发生,故互斥.其中必有一个发生,故对立.(4)“取出3只红球”与“取出3只球中至少有1只红球”可能同时发生,故不是互斥事件,也不可能是对立事件.[层级二 应试能力达标]1.把红、黑、黄、白4球随机地分给甲、乙、丙、丁4个人,每人分得1球,事件“甲分得红球”与事件“乙分得红球”是________事件.解析:因为两个事件不能同时发生,但可能同时不发生,所以是互斥事件,但不对立. 答案:互斥但不对立2.从一副混合后的扑克牌(52张)中,随机抽取1张,事件A 为“抽得红桃K ”,事件B 为“抽得黑桃”,则概率P (A +B )=________.(结果用最简分数表示)解析:一副混合后的扑克牌(52张)中有1张红桃K,13张黑桃,事件A 与事件B 为互斥事件,所以P (A +B )=P (A )+P (B )=152+1352=726. 答案:7263.在数学考试中,小明的成绩在90分以上的概率是0.18,在80~89分的概率是0.51,在70~79分的概率是0.15,在60~69分的概率是0.09,60分以下的概率是0.07,则:(1)小明在数学考试中取得80分以上的概率是________;(2)小明考试及格的概率是________. 解析:(1)P =0.51+0.18=0.69. (2)P =1-0.07=0.93. 答案:(1)0.69 (2)0.934.某产品分甲,乙,丙三级,其中乙,丙两级均属次品.若生产中出现乙级品的概率为0.03,出现丙级品的概率为0.01,则对产品抽查一件,抽得正品的概率为________.解析:记事件A ={甲级品},B ={乙级品},C ={丙级品},事件A ,B ,C 彼此互斥且A 与B ∪C 是对立事件,所以P (A )=1-P (B ∪C )=1-P (B )-P (C )=1-0.03-0.01=0.96.答案:0.965.掷一个骰子的试验,事件A 表示“小于5的偶数点出现”,事件B 表示“小于5的点数出现”,若B 表示B 的对立事件,则一次试验中,事件A +B 发生的概率为________.解析:掷一个骰子的试验有6种可能结果. 依题意P (A )=26=13,P (B )=46=23,∴P (B )=1-P (B )=1-23=13,∵B 表示“出现5点或6点”的事件, 因此事件A 与B 互斥,从而P (A +B )=P (A )+P (B )=13+13=23.答案:236.如果事件A 与B 是互斥事件,且事件A +B 的概率是0.8,事件A 的概率是事件B 的概率的3倍,则事件A 的概率为________.解析:依题意得⎩⎪⎨⎪⎧P (A )+P (B )=0.8,P (A )=3P (B ),∴P (A )=0.6. 答案:0.67.现有8名翻译人员,其中A 1,A 2,A 3通晓日语,B 1,B 2,B 3通晓俄语,C 1,C 2通晓韩语,从中选出通晓日语、俄语、韩语的翻译人员各一个组成一个翻译小组,则B 1和C 1不全被选中的概率为________.解析:用列举法可求出所有可能的结果共18个用N 表示“B 1,C 1不全被选中这一事件”,则N 表示“B 1,C 1全被选中”这一事件,由于N 由(A 1,B 1,C 1),(A 2,B 1,C 1),(A 3,B 1,C 1)3个基本事件组成,∴P (N )=318=16,∴P (N )=1-P (N )=56.答案:568.袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为14,得到黑球或黄球的概率是512,得到黄球或绿球的概率是12,则得到黑球、黄球、绿球的概率分别为________.解析:分别记得到红球、黑球、黄球、绿球为事件A ,B ,C ,D .由于A ,B ,C ,D 为互斥事件,故由已知得⎩⎪⎨⎪⎧ 14+P (B )+P (C )+P (D )=1,P (B )+P (C )=512,P (C )+P (D )=12,解得⎩⎪⎨⎪⎧P (B )=14,P (C )=16,P (D )=13.答案:14 16 139.在一只袋子中装有7个红玻璃球,3个绿玻璃球,从中无放回地任意抽取两次,每次只取一个,试求:(1)取得两个红球的概率; (2)取得两个同颜色的球的概率; (3)至少取得一个红球的概率.解:设“取得两个红球”为事件A ,“取得两个绿球”为事件B .易知A ,B 为互斥事件,“至少取得一个红球”为事件C .7个红玻璃球,3个绿玻璃球,从中无放回地任意抽取两次,所有基本事件有10×9=90(个).其中使事件A 发生的基本事件有7×6=42(个),使事件B 发生的基本事件有3×2=6(个),所以P (A )=4290,P (B )=690.(1)取得两个红球的概率为P (A )=715.(2)两球同色的概率为P (A )+P (B )=4290+690=815.(3)至少取得一个红球概率即为P(B)=1-P(B)=1415.10.如图,A地到火车站共有两条路径L1和L2,现随机抽取100位从A地到达火车站的人进行调查,调查结果如下:所有时间(分钟)10~2020~3030~4040~5050~60选择L1的人数612181212选择L2的人数041616 4(2)分别求通过路径L1和L2所用时间落在上表中各时间段内的频率;(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.解:(1)由已知共调查了100人,其中40分钟内不能赶到火车站的有12+12+16+4=44(人),∴用频率估计相应的概率为0.44.(2)选择L1的有60人,选择L2的有40人,故由调查结果得频率为:所用时间(分钟)10~2020~3030~4040~5050~60 L1的频率0.10.20.30.20.2L2的频率00.10.40.40.1(3)设A1,A2分别表示甲选择L1和L2时,在40分钟内赶到火车站;B1,B2分别表示乙选择L1和L2时,在50分钟内赶到火车站.由(2)知P(A1)=0.1+0.2+0.3=0.6,P(A2)=0.1+0.4=0.5,P(A1)>P(A2),∴甲应选择L1.同理,P(B1)=0.1+0.2+0.3+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9,P(B1)<P(B2),∴乙应选择L2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第9课时7.4.1 互斥事件及其发生的概率(1)
分层训练
1、某人在打阿靶中,连续射击2次,至少有1次中靶的对立事件是( )
A 、两次都中靶
B 、到多有一次中靶
C 、两次都不中靶
D 、只有一次中靶
2、某产品分甲、乙、丙三个等级,其中乙、丙两等级均属次品,若生产中出现乙级产品的概率为0.03,丙级产品的概率为0.01,则对成品抽查一件,恰好是正品的概率为( ) A 、0.99 B 、0.98 C 、0.97 D 、0.96
3、甲乙两人下棋,甲获胜的概率为0.2,两人下成和棋的概率为0.35,那么甲不输的概率为( ) A 、0.2 B 、0.35 C 、0.55 D 、0.65
4、一个盒内放有大小相同的10个小球,其中有5个红球、3个绿球、2个白球,从中任取2个球,至少有一个绿球的概率是( ) A 、
152 B 、158 C 、157 D 、5
2 5、某人进行射击表演,已知其击中10环的概
率0.35,击中9环的概率为0.30,中8环的概率是0.25,现准备射击一次,问击中8环以下(不含8环)的概率是多少?
6、若A 表示四件产品中至少有一件是废品的事件,B 表示废品不少于两件的事件,试问对立事件A 、B 各表示什么?
拓展延伸
7、已知盒子中有散落的棋子15粒,其中6粒是黑子,9粒是白子,已知从中取出2粒都是黑子的概率是7
1
,从中取出2粒都是白子的概率是
35
12
,现从中任意取出2粒恰好是同一色的概率是多少?
8、四位同学各人写好一张贺卡,集中起来每人从中抽取一张,试求都抽不到自己所写卡片的概率。
9、某医院一天内派出医生下乡医疗,派出医生人
求:(1)派出医生至多2人的概率; (2)派出医生至少2人的概率.
本节学习疑点:
7.4.1随机事件及其概率(1)
1、C
2、 D
3、C
4、B
5、0.1
6、A 表示四件产品中没有废品的事件;B 表示四件产品中没有废品或只有一件废品的事件.
7、从盒子中任意取出2粒恰好是同一色的概率恰为取2粒白子的概率与2粒黑子的概率 的和,即为71+3512=35
17 8、8
3
9、(1)0.46 (2)0.74。