液体比热容的测定报告

合集下载

比热容的测量实验报告

比热容的测量实验报告

比热容的测量实验报告比热容的测量实验报告引言:热容是物质吸热或放热的能力,是热力学重要的物理量之一。

测量物质的比热容可以帮助我们了解物质的热性质以及热传导等相关现象。

本实验旨在通过测量不同物质的比热容,探究物质的热性质。

实验步骤:1. 实验器材准备:实验装置包括热水浴、温度计、热容器等。

2. 实验样品选择:选择不同材质的样品,如铝、铜、铁等。

3. 实验样品准备:将样品切割成相同的大小和形状。

4. 实验样品测量:将样品放入热容器中,并将热容器放入热水浴中。

5. 温度测量:使用温度计测量热容器内的温度,记录下初始温度。

6. 热平衡:等待一段时间,使热容器内的温度与热水浴的温度达到平衡。

7. 温度测量:再次使用温度计测量热容器内的温度,记录下终止温度。

8. 数据处理:根据实验数据计算样品的比热容。

实验结果:通过实验测量,我们得到了不同物质的比热容数据。

以铝、铜和铁为例,我们得到了如下结果:- 铝的比热容为0.897 J/g·℃- 铜的比热容为0.385 J/g·℃- 铁的比热容为0.449 J/g·℃讨论与分析:从实验结果可以看出,不同物质的比热容存在明显的差异。

铝的比热容最大,而铜和铁的比热容较小。

这是因为不同物质的原子结构和分子间的作用力不同,导致它们吸热或放热的能力不同。

此外,我们还可以观察到不同物质的比热容与温度的关系。

一般来说,随着温度的升高,物质的比热容会略微增加。

这是因为随着温度升高,物质内部的分子运动加剧,从而增加了物质吸热或放热的能力。

实验误差的分析:在实验过程中,可能存在一些误差,影响了实验结果的准确性。

以下是一些可能的误差来源:1. 温度测量误差:温度计的精度限制了我们对温度的准确测量。

2. 热量损失:在实验过程中,热量可能会通过热容器的壁面散失,导致实际吸热或放热量小于理论值。

3. 实验样品的不完全平衡:由于实验样品与热水浴的接触不完全,导致实验样品的温度与热水浴的温度不完全一致。

液体的比热容实验报告

液体的比热容实验报告

一、实验目的1. 学习测量液体比热容的原理和方法;2. 熟悉实验仪器的使用及操作;3. 了解实验过程中可能出现的误差及其修正方法;4. 提高实验操作技能和数据处理能力。

二、实验原理比热容是指单位质量的物质温度升高1K所需吸收的热量,其单位为J/(kg·K)。

本实验采用电热法测量液体比热容,即通过电阻丝加热液体,根据液体温度的变化和加热时间来计算液体的比热容。

实验原理公式如下:Q = mcΔT其中,Q为加热过程中电阻丝产生的热量,m为液体的质量,c为液体的比热容,ΔT为液体温度的变化。

三、实验仪器与材料1. 电阻丝加热器2. 量热器3. 温度计(精确到0.1℃)4. 物理天平5. 小量筒6. 待测液体7. 电源8. 计时器四、实验步骤1. 将量热器清洗干净,并用蒸馏水冲洗干净;2. 将待测液体倒入量热器中,记录初始温度T1;3. 将电阻丝加热器插入量热器,确保电阻丝与液体充分接触;4. 打开电源,开始加热,同时启动计时器;5. 当液体温度升高至预定温度T2时,关闭电源,记录加热时间t;6. 将加热后的液体倒入小量筒中,用物理天平称量液体质量m;7. 重复上述步骤多次,取平均值。

五、数据处理1. 根据实验数据,计算加热过程中电阻丝产生的热量Q;2. 根据公式Q = mcΔT,计算液体的比热容c;3. 计算多次实验的平均值,作为最终结果。

六、实验结果与分析1. 实验数据:实验次数 | 初始温度T1 (℃) | 终温T2 (℃) | 加热时间t (s) | 液体质量m (g) | 加热产生的热量Q (J)----|----|----|----|----|----1 | 20.0 | 30.0 | 100 | 50.0 | 250.02 | 20.0 | 30.0 | 110 | 50.0 | 275.03 | 20.0 | 30.0 | 95 | 50.0 | 235.02. 数据处理:Q = 0.5 110 10 = 550 J (取三次实验的平均值)c = Q / (m ΔT) = 550 / (50 10) = 11 J/(g·K)3. 分析:实验结果显示,待测液体的比热容为11 J/(g·K)。

液体比热容的测定

液体比热容的测定

实验6 液体比热容的测定【实验目的】学会用比较测量法测液体的比热容。

[实验仪器]相同量热器具2只,相同电阻丝2只,温度计(精确到0.1℃,范围为0~50℃),物理天平,小量筒,电源,待测液体。

【实验原理】⒈实验装置。

在两个相同的量热器1和2中,分别盛有质量为1m 和2m 的两种液体,其比热容各为1c 和2c 。

在两种液体中分别安装电阻值相等的电阻丝,如图所示。

⒉测量方法。

电路接通后,即电流流过电阻丝R ,设通过时间t 秒所产生的热量为Q 。

假设电流通过电阻丝R 所产生的热量Q 全部被液体、量热器内筒、搅拌器和温度计浸入液体中的部分所吸收,并升高温度。

若量热器具1和2的热容(包括搅拌器、温度计、内筒及电阻丝)各为1s C 和2s C ,加热前的初始温度各为1T 和2T ,经加热后,终温各为'1T 和'2T ,则可求得在量热器1和2中,电阻丝R 所产生的热量分别为()()1'11111T T C m c Q s -+= (1)()()2'22222T T C m c Q s -+= (2) 由21Q Q =解得 ()⎥⎦⎤⎢⎣⎡---+=11'12'2222111s s C T T T T C m c m c (3) 可见,若第二种液体比热容2c 为已知,则只要测得1m 、2m 、1T 、2T 、'1T 和'2T 并代入(3)式,便可求得待测液体1的比热容1c 。

一般量热器内筒和搅拌器均用电阻丝R 的质量为R m ,比热容为R c ,两温度计各浸入液体1和液体2的体积为1V 、2V (单位3cm ),则 ()℃J V m c m c C R R s 10019.1++= ()℃J V m c m c C R R s 20029.1++=【内容要求】⒈测出量热器内筒及搅拌器质量0m 。

⒉测出电阻丝R 的质量R m 。

⒊测出电阻丝液体(如变压器油和水)的质量分别为1m 和2m ,液体体积要适量。

比热容的实验报告

比热容的实验报告

比热容的实验报告比热容的实验报告引言:比热容是物质吸热或放热的能力的度量,是研究物质热性质的重要参数之一。

本实验旨在通过测量物质的温度变化和吸热量,计算出物质的比热容,并探讨其在不同条件下的变化规律。

实验材料和方法:实验所用材料包括热水浴、烧杯、温度计和待测物质。

首先,将热水浴加热至一定温度,然后将烧杯放入热水浴中,使其与水浴内的温度达到平衡。

接下来,测量烧杯内水的初始温度,并将待测物质加入烧杯中。

记录下物质加入后的最终温度,并计算出物质吸收的热量。

实验结果和分析:通过实验测量,我们得到了不同物质在不同温度下的比热容。

以水为例,我们发现在相同的温度下,水的比热容要远大于其他物质。

这是因为水分子之间的相互作用力较强,需要吸收更多的热量才能使温度上升。

相比之下,其他物质的比热容较小,说明它们在吸热过程中相对容易升温。

进一步分析实验结果,我们发现物质的比热容还受到其他因素的影响。

例如,物质的物态、纯度、结构等都会对比热容产生影响。

以水为例,水在固态、液态和气态下的比热容是不同的。

这是因为在不同的物态下,水分子之间的相互作用力不同,导致吸热能力的差异。

另外,纯度也会对比热容产生一定影响。

纯度较高的物质通常比热容较大,因为杂质的存在会降低物质的吸热能力。

此外,物质的分子结构也会对比热容产生影响。

分子结构较复杂的物质通常比热容较大,因为分子之间的相互作用力更加复杂,需要吸收更多的热量才能使温度上升。

实验的局限性:在实验过程中,我们注意到一些局限性。

首先,实验中使用的温度计可能存在一定的误差,这会对实验结果产生一定的影响。

其次,实验中的待测物质可能受到其他因素的影响,如溶解度、反应速率等。

这些因素可能会导致实验结果不够准确。

此外,实验中的时间和温度控制也可能存在一定的误差,这也会对实验结果产生一定的影响。

结论:通过本次实验,我们成功测量了不同物质在不同温度下的比热容,并探讨了其变化规律。

我们发现比热容受到物质的物态、纯度和分子结构等因素的影响。

比热容的测量 实验报告

比热容的测量  实验报告

个读数尚未达到动平衡状态。
E) 必须调节加热电压,使 30 秒内温升对应的温差电势增加约在
0.012-0.03mV 之间,即让 30 秒的温升约 0.2-0.5 度。如电势增量为负,
说明毫伏表输入端接反了,可调换极性或将所有读数值取相反的符号。
F) 在加热回路中接入开关,在测量开始时才通电加热,加热稳定后记录
和工作条件。
2. 测 4—6 组不同煤油质量的升温“曲线”
用 4—6 组不同质量的煤油* +和相应的加热功率*
+,分别测量
出温差
与时间 的对应数据(直接测量量为温差电势 U 和参考端
水箱内的温度) 。)每隔 30 秒读一次温差电势值。(
秒基本不影
响线性拟合结果的精密度。)注意事项如下: A) 首次煤油质量稍大于 0.25kg,或体积稍大于 300ml,以使加热丝没入煤
()
记内外温差
,则(6)变为
()
一般总是加热功率显著大于散热热流,即
,这时(7)式
左边可以作近似展开,展开后积分略去四次方以上的项可得
,
()
() ( )
()
-
(
)
()
如果已知 的值,实验测出一系列时间 和温差
后,就可以
拟合出直线方程
()
( ) 的斜率
,进而可得
() 4. 镍铬康铜热电偶(E 型)的温差电势公式 测量中,参考端温度(水箱水温) ( )变化不大,设其测量起始、结
所以
()
√ ( )√ ( )
√( (
) )
()
所以 图像如下:
1300 1200 1100 1000
900 800 700 600

用电量热器测液体比热容总结

用电量热器测液体比热容总结

用电量热器测液体比热容总结《用电量热器测液体比热容总结:一场有趣的科学之旅》嘿呀,朋友们!今天咱就来唠唠用电量热器测液体比热容这个事儿。

你们可别小看了这实验,那可真是跟一场奇妙冒险似的!刚开始的时候啊,我感觉自己就像个探险家,面对那些仪器设备,充满了好奇和期待。

电加热器、温度计,就好像我的探险工具,准备好跟着我一起去揭开比热容的神秘面纱啦。

到了真正开始测量的时候,哎呀,那场面,就跟打仗似的!我手忙脚乱地一会儿看看温度计,一会儿瞅瞅电加热器的读数,感觉自己就像是在指挥一场庞大的战斗,就担心有个啥小细节没注意到,导致全盘皆输。

然后呢,就是等待的过程了,这可真是考验耐心啊!就好像是在等待火锅煮开一样,那是一种既期待又焦急的感觉。

眼睛死死盯着那些数据,心里默默祈祷,可千万别出啥岔子呀。

有时候测量出来的数据不太理想,我就会想,这咋回事儿啊?难道是我哪里操作失误啦?还是这液体也有小脾气,故意跟我作对呢?哈哈,开个玩笑。

不过还真得仔细琢磨琢磨,找找原因,调整调整,重新再来一次。

说真的,在这个过程中,我深刻体会到了科学的严谨性。

哪怕是一个小小的疏忽,都可能让结果谬之千里。

但这也正是科学的魅力所在呀,它让我们不停地探索、纠错、进步。

等终于得到了比较理想的结果,那感觉,就像是赢得了一场比赛一样!心里那叫一个美啊,觉得之前所有的辛苦和努力都值了。

通过这次用电量热器测液体比热容的实验,我不仅学到了知识,还锻炼了自己的动手能力和耐心。

我明白了,科学实验可不是一蹴而就的,它需要我们有耐心、细心和恒心。

总之呢,这是一次非常有趣又有意义的经历。

希望大家也都能去尝试尝试这种有趣的科学实验,说不定你就会被科学的魅力深深吸引,从此踏上一段充满惊喜和挑战的科学之旅呢!哈哈!。

液体比热容的测定(精)

液体比热容的测定(精)

Q放 Q吸
I 2R0t (cm c1m1 c2m2 c3m3)(T2 T1)
c

1 [ I 2R0t m T2 T1
m1c1

m2c2

m3c3 ]
(6-4)
如果计算出 Q放 I 2R0t ,再称出待测液体、 量热器内筒和搅拌器的质量m、m1和m2,铜电 极的质量m3给出,并测出温度T1、T2,就由 (6-4)式可得到待测液体的比热容c。
6.按下开关,开始加热的同时,按下秒表开始计时。 7.不断用搅拌器搅动,使整个量热器内各处的温度均匀。 待温度升高5 C左右时,切断电源,同时记下温度T2,并停 止计时。
8.记录数据代入公式计算。
问题讨论
分析实验中产生误差的原因? 采取那些措施减小误差?
滑线变阻器 单刀开关 秒表 物理天平 导线
实验原理
设在量热器中,装有 质量为m、比热容c为的液 体,液体中安置着阻值为 R0 的电阻。如果按照实验 电路图6-1连接好电路,然 后闭合开关,则有电流通 过电阻,根据焦耳—楞次 定律,电阻产生的热量为
Q放 I 2R0t
液体、量热器内筒和铜电极等吸收电阻释放热
实验内容
1.按照图6-1连接电路。 2.用物理天平称出量热器内筒(玻璃杯)、搅拌器的质量。 3.给玻璃杯内加入约为玻璃杯容积2/3的待测液体,再用物 理天平称出质量,从而计算出待测液体的质量。
4.将玻璃杯放入量热器中,注意不要将液体溅出,插好温 度计,盖好盖子。
5.打开电源开关,调节电源电压在15V左右,观察电流表电 流(约1A),然后断开开关,轻轻搅动搅拌器,读取温度计的读 数T1。
实验五 液体比热容的测定
实验目的 实验仪器 实验原理 实验内容 问题讨论

液体比热容的实验研究

液体比热容的实验研究

陕西理工学院毕业论文
知热容的标准液体样品(即纯水),待测液体(即饱和食盐水),另一次含有待测液体(即饱和食 盐水),两次测量的实验条件完全相同,从而确定(1.2)式中未知液体的比热容。 1.4 利用比较法进行散热修改 在上述实验过程中,出现了两种试验方法,一种是冷却法,一种是比较法。当系统处于冷却过程 中时,测出待测系统的温度随时间的变化关系,然后用这个关系来确定未知的物理量,把它称之为 冷却法;如果两个测量系统是在相同的条件下进行测量的,那么通过对这两个系统进行对比,以此 来确定未知物理量,这种方法称之为比较法。 热是一个具有耗散性的物理量,那么在整个实验的过程中,系统与外界环境之间就会总是存在 热量的交换,这对实验来说会产生比较大的影响,解决这个问题的方法就是对实验结果进行散热修 正。在物理学尤其是热学的实验当中,牛顿冷却定律是最常被用到的。 利用(1.2)式分别写出对已知标准液体(即纯水)和待测液体(即饱和食盐水)进行冷却的公 式,如下:
0 t
图 2.2 饱和食盐水的 ln
0 t
由图可以看出得到的图像基本为一条直线。这也验证了(1.2)式,同时也间接验证了(1.1)式, 即被研究的系统的冷却速率同系统与环境之间的温差成正比。 对纯水和饱和食盐水分别取 ln 0 及相应的 t 数据,即表 2.2 和表 2.3 的数据,用最小二乘 法求得: S1 0.323 , S2 0.328 . 也可以通过 ln 0 t 图直接得出 S1 与 S 2 的值(即两条直线的斜率)。 将黄铜的比热容 c1 =0.389 J g k ,水的比热容 c0 =4.18 J g k ,以及 S1 与 S 2 的值代入(1.6) 式与(1.8)式中得到饱和食盐水的比热容 cx =3.23 J g k .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

梧州学院学生实验报告
成绩: 指导教师:
专业: 班别: 实验时间: 实验人: 学号: 同组实验人: 实验名称:液体比热容的测定
实验目的: 1、学习测定液体比热容的一种方法。

2、学会使用FD-LCD-A 液体比热容实验仪。

实验仪器:
序号 名称 单位 数量 备注 1 实验主机 台 1
2 实验容器 套 1 内筒(铜)、外筒(有机玻璃)、
隔离筒(铜)各一只
3 温度传感器 根 2
4 电源线 根 1
5 串行通讯线 根 1
6 产品说明书 本 1
7 合格证书 份 1 8
联机软件

1
选配
注意事项: 1、做实验前必须精读FD-LCD-A 液体比热容实验仪的使用说明书,正规操作。

2、注意食盐水的配制,必须保证饱和。

FD-LCD-A 液体比热容实验仪实验装置示意图
1、实验主机
2、温度显示表
3、查阅按钮
4、复位按钮
5、电源开关
6、实验外筒
7、实验内筒
8、环境水
9、传感器 10、被测液体 11、传感器 12、坚固螺丝
【实验原理】
由牛顿冷却定律知,一个表面温度为θ的物体,在温度为0θ的环境中自然冷却(0θθ>),在单位时间里物体散失的热量t q
δδ与温度差(0θθ-)有下列关系: ()0θθδδ-=k t
q
当物体温度的变化是准静态过程时,上式可改写为:
()0θθδδθ-=
S
C k
t (1)。

相关文档
最新文档