初中七年级数学《不等式与不等式组》测试题
【精选】人教版七年级下册数学第九章《不等式与不等式组》测试卷(含答案)

【精选】人教版七年级下册数学第九章《不等式与不等式组》测试卷(含答案)一、选择题(每题3分,共30分)1.下列各式中,是一元一次不等式的是( )A.x2≥0B.2x-1C.2y≤8D.1x-3x>02.已知a,b,c,d是实数,若a>b,c=d,则( )A.a+c>b+dB.a+b>c+dC.a+c>b-dD.a+b>c-d3.下列说法中正确的是( )A.y=3是不等式y+4<5的解B.y=3是不等式3y≤11的解集C.不等式2y<7的解集是y=3D.y=2是不等式3y≥6的解4.[2023·安徽]在数轴上表示不等式x-12<0的解集,正确的是( )A. B.C. D.5.在平面直角坐标系中,若点P(m-3,m+1)在第二象限,则m的取值范围是( )A.-1<m<3B.1<m<3C.-3<m<1D.m>-16.(母题:教材P130习题T3)不等式组{2x>3x,x+4>2的整数解是( )A.0B.-1C.-2D.17.解不等式2x-12-5x+26-x≤-1,去分母,得( )A.3(2x-1)-5x+2-6x≤-6B.3(2x-1)-(5x+2)-6x≥-6C.3(2x-1)-(5x+2)-6x≤-6D.3(2x-1)-(5x+2)-x≤-18.已知关于x的不等式组{x-a≥b,2x-a≤2b+1的解集是3≤x≤5,则ba的值是( )A.-2B.-12C.-4D.29.春到人间,绿化争先.为增强师生的环境保护意识,提升学生的劳动实践能力,某学校开展了以“建绿色校园,树绿色理想”为主题的植树活动,决定用不超过4 200元购买甲、乙1 / 82 / 8两种树苗共100棵,已知甲种树苗每棵45元,乙种树苗每棵38元,则至少可以购买乙种树苗( )A.42棵B.43棵C.57棵D.58棵10.[2023·重庆八中期末](多选题)已知关于x 的不等式组{x -2(x -1)<3,2k +x 7≥x 有且只有两个整数解,则下列四个数中符合条件的整数k 的值有( )A.3B.4C.5D.6二、填空题(每题3分,共24分)11.(母题:教材P115练习T1)x 的12与5的差不小于3,用不等式可表示为 . 12.在2022卡塔尔世界杯期间,以吉祥物拉伊卜为主题元素的纪念品手办、毛绒公仔深得广大球迷喜爱.某官方授权网店销售的手办每个售价200元,毛绒公仔每个售价40元.小熙打算在该网店购买手办和毛绒公仔共10个送同学,总费用不超过1 500元,若设购买手办x 个,则可列不等式为 .13.不等式2x +3<-1的解集为 .14.[2023·清华附中期中]若关于x 的不等式组{2x -5<0,x -a >0有且仅有一个整数解x =2,则实数a 的取值范围是 .15.已知[x ]表示不超过x 的最大整数,例:[4.8]=4,[-0.8]=-1.现定义{x }=x -[x ],例:{1.5}=1.5-[1.5]=0.5,则{3.9}+{-1.8}-{1}= .16.[2023·泸州]关于x ,y 的二元一次方程组{2x +3y =3+a ,x +2y =6的解满足x +y >2√2,写出a 的一个整数值为 .17.[2022·达州]关于x 的不等式组{-x +a <2,3x -12≤x +1恰有3个整数解,则a 的取值范围是 .18.为了响应国家低碳生活的号召,更多的市民放弃开车选择自行车出行,市场上的自行车销量也随之增加,某种品牌自行车专卖店抓住商机,搞促销活动对原进价为800元,标价为1 000元的某款自行车进行打折销售,若要保持利润率不低于5%,则这款自行车最多可打 折.。
七年级数学不等式与不等式(组)练习题

七年级数学《不等式与不等式(组)》练习题班级_______姓名________成绩_________A 卷 ·基础知识(一)一、选择题(4×8=32)1、下列数中是不等式x 32>50的解的有( ) 76, 73, 79, 80, 74.9, 75.1, 90, 60A、5个 B、6个 C、7个 D、8个2、下列各式中,是一元一次不等式的是( )A、5+4>8 B、12-x C、x 2≤5 D、x x 31-≥0 3、若b a ,则下列不等式中正确的是( )A、b a +-+-33 B、0 b a - C、b a 3131D、b a 22-- 4、用不等式表示与的差不大于2-,正确的是( )A、2-- e d B、2-- e d C、e d -≥2- D、e d -≤2-5、不等式组⎩⎨⎧22 x x 的解集为( ) A 、x >2- B 、2-<x <2 C 、x <2 D 、 空集6、不等式86+x >83+x 的解集为( )A 、x >21 B 、x <0 C 、x >0 D 、x <21 7、不等式2+x <6的正整数解有( ) A 、1个 B 、2个 C 、3 个 D 、4个8、下图所表示的不等式组的解集为( )-2A 、x 3B 、32 x -C 、 2- xD 、32 x -二、填空题(3×6=18)9、“x 的一半与2的差不大于1-”所对应的不等式是10、不等号填空:若a<b<0 ,则5a - 5b -;a 1 b1;12-a 12-b 11、当a 时,1+a 大于212、直接写出下列不等式(组)的解集①42 -x ②105 x -③ ⎩⎨⎧-21 x x 13、不等式03 +-x 的最大整数解是14、某种品牌的八宝粥,外包装标明:净含量为330g ±10g ,表明了这罐八宝粥的净含量x 的范围是三、解下列不等式,并把它们的解集在数轴上表示出来。
人教版七年级下册数学不等式与不等式组试题带答案

2021年七年级下册数学不等式与不等式组试题一、选择题(每小题3分, 共30分) 1.下列说法中, 错误的是( ) A. x =1是不等式x <2的解 B. -2是不等式2x -1<0的一个解 C. 不等式-3x >9的解集是x =-3 D. 不等式x <10的整数解有无数个 2. 下列变形不正确的是( ) A. 由b>5得4a +b>4a +5 B. 由a>b 得b<a C. 由- x>2y 得x<-4y D. -5x>-a 得x>3. 不等式3x +2<2x +3的解集在数轴上表示正确的是( )4. 小明准备用22元钱买笔和笔记本, 已知每支笔3元, 每本笔记本2元, 他买了3本笔记本后, 用剩余的钱来买笔, 那么他最多可以买( )A. 3支笔B. 4支笔C. 5支笔D. 6支笔 5. 不等式组 的解集是( ) A. x >1 B. 1<x ≤2 C. x ≤2 D. 无解6.如果不等式组 的解集是x <2, 那么m 的取值范围是( )A. m =2B. m >2C. m <2D. m ≥2 7. 不等式组 的最小整数解是( )A. 1B. 2C. 3D. 48.小红读一本500页的书, 计划10天内读完, 前5天因种种原因只读了100页, 为了按计划读完, 则从第六天起平均每天至少要读( )姓名:学号:A. 50页B. 60页C. 80页D. 100页 9.已知不等式组 的解集中共有5个整数, 则a 的取值范围为( ) A. 7<a ≤8 B. 6<a ≤7 C. 7≤a <8 D. 7≤a ≤810.关于x 的不等式组 的解集为x<3, 那么m 的取值范围为( ) A. m =3 B. m >3 C. m <3 D. m ≥3 二、填空题(每小题4分, 共24分)11. 在下列各数: -2, -2.5, 0, 1, 6中, 不等式 x>1的解有6;不等式- x>1的解有 . 12.在实数范围内规定新运算“△”, 其规则是:a △b =2a -b.已知不等式x △k ≥1的解集在数轴上如图表示, 则k 的值是 .13. 若不等式组 的解集为3≤x ≤4, 则不等式ax +b <0的解集为 .14. 某种商品的进价为800元, 出售时标价为1 200元, 后来由于该商品积压, 商店准备打折销售, 但要保证利润率不低于5%, 则至多可打 折.15. 对于任意实数m, n, 定义一种运算m ※n =mn -m -n +3, 等式的右边是通常的加减和乘法运算. 例如:3※5=3×5-3-5+3=10.请根据上述定义解决问题:若a<2※x<7, 且解集中有两个整数解, 则a的取值范围是 .16.对一个实数x 按如图所示的程序进行操作, 规定:程序运行从“输入一个实数x ”到“结果是否大于88?”为一次操作.如果操作只进行一次就停止, 那么x 的取值范围是 .三、解答题(共66分)17. (18分)解下列不等式, 并将其解集在数轴上表示出来. (1)8x -1≥6x +3; (2)2x -1<10x +16.(3)解不等式2(x +1)-1≥3x +2, 并把它的解集在数轴上表示出来.18. (8分)若代数式 的值不大于代数式5k +1的值, 求k 的取值范围.19.(8分)(呼和浩特中考)已知实数a是不等于3的常数, 解不等式组并依据a的取值情况写出其解集.20. (10分)定义新运算: 对于任意实数a, b, 都有a⊕b=a(a-b)+1, 等式右边是通常的加法、减法及乘法运算.比如: 2⊕5=2×(2-5)+1=2×(-3)+1=-6+1=-5.(1)求(-2)⊕3的值;(2)若3⊕x的值小于13, 求x的取值范围, 并在数轴上表示出来.21.(10分)某商店5月1日举行促销优惠活动, 当天到该商店购买商品有两种方案. 方案一: 用168元购买会员卡成为会员后, 凭会员卡购买商店内任何商品, 一律按商品价格的8折优惠;方案二: 若不购买会员卡, 则购买商店内任何商品, 一律按商品价格的9.5折优惠. 已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡, 所购买商品的价格为120元时, 实际应支付多少元?(2)请帮小敏算一算, 所购买商品的价格在什么范围内时, 采用方案一更合算?(2)若该商场把这100个球全部以零售价售出, 为使商场获得的利润不低于2 580元, 则采购员至少要购篮球多少个?该商场最多可盈利多少元?参考答案一、选择题(每小题3分, 共30分)1.下列说法中, 错误的是(C)A. x=1是不等式x<2的解B. -2是不等式2x-1<0的一个解C. 不等式-3x>9的解集是x=-3D. 不等式x<10的整数解有无数个2. 下列变形不正确的是(D)A. 由b>5得4a+b>4a+5B. 由a>b得b<aC. 由-x>2y得x<-4yD. -5x>-a得x>3. 不等式3x+2<2x+3的解集在数轴上表示正确的是(D)4. 小明准备用22元钱买笔和笔记本, 已知每支笔3元, 每本笔记本2元, 他买了3本笔记本后, 用剩余的钱来买笔, 那么他最多可以买(C)A. 3支笔B. 4支笔C. 5支笔D. 6支笔5. 不等式组的解集是(B)A. x>1B. 1<x≤2C. x≤2D. 无解6.如果不等式组的解集是x<2, 那么m的取值范围是(D)A. m=2B. m>2C. m<2D. m≥27. 不等式组的最小整数解是(C)A. 1B. 2C. 3D. 48.小红读一本500页的书, 计划10天内读完, 前5天因种种原因只读了100页, 为了按计划读完, 则从第六天起平均每天至少要读(C)A. 50页B. 60页C. 80页D. 100页9.已知不等式组的解集中共有5个整数, 则a的取值范围为(A)A. 7<a≤8B. 6<a≤7C. 7≤a<8D. 7≤a≤810.关于x的不等式组的解集为x<3, 那么m的取值范围为(D)A. m=3B. m>3C. m<3D. m≥3二、填空题(每小题4分, 共24分)11. 在下列各数: -2, -2.5, 0, 1, 6中, 不等式x>1的解有6;不等式-x>1的解有-2, -2.5.12.在实数范围内规定新运算“△”, 其规则是:a△b=2a-b.已知不等式x△k≥1的解集在数轴上如图表示, 则k的值是-3.13. 若不等式组的解集为3≤x≤4, 则不等式ax+b<0的解集为x>.14. 某种商品的进价为800元, 出售时标价为1 200元, 后来由于该商品积压, 商店准备打折销售, 但要保证利润率不低于5%, 则至多可打7折.15. 对于任意实数m, n, 定义一种运算m※n=mn-m-n+3, 等式的右边是通常的加减和乘法运算. 例如:3※5=3×5-3-5+3=10.请根据上述定义解决问题:若a<2※x<7, 且解集中有两个整数解, 则a的取值范围是4≤a<5.16.对一个实数x按如图所示的程序进行操作, 规定:程序运行从“输入一个实数x”到“结果是否大于88?”为一次操作.如果操作只进行一次就停止, 那么x的取值范围是x>49.三、解答题(共66分)17. (18分)解下列不等式, 并将其解集在数轴上表示出来.(1)8x-1≥6x+3;解: 移项, 得8x -6x ≥3+1. 合并同类项, 得2x ≥4. 系数化为1, 得x ≥2.其解集在数轴上表示为:(2)2x -1<10x +16.解: 去分母, 得12x -6<10x +1. 移项, 得12x -10x <1+6. 合并同类项, 得2x <7. 系数化为1, 得x< .其解集在数轴上表示为:(3)解不等式2(x +1)-1≥3x +2, 并把它的解集在数轴上表示出来. 解: 去括号, 得2x +2-1≥3x +2. 移项, 得2x -3x ≥2-2+1. 合并同类项, 得-x ≥1. 系数化为1, 得x ≤-1.∴这个不等式的解集为x ≤-1, 在数轴上表示如下:18. (8分)若代数式 的值不大于代数式5k +1的值, 求k 的取值范围. 解:由题意, 得 3(2k +5)2≤5k +1. 解得k≥134.19.(8分)(呼和浩特中考)已知实数a 是不等于3的常数, 解不等式组 并依据a 的取值情况写出其解集. 解: 解不等式①, 得x ≤3. 解不等式②, 得x<a. ∵a 是不等于3的常数,∴当a>3时, 不等式组的解集为x ≤3; 当a<3时, 不等式组的解集为x<a.20. (10分)定义新运算: 对于任意实数a, b, 都有a⊕b=a(a-b)+1, 等式右边是通常的加法、减法及乘法运算.比如: 2⊕5=2×(2-5)+1=2×(-3)+1=-6+1=-5.(1)求(-2)⊕3的值;(2)若3⊕x的值小于13, 求x的取值范围, 并在数轴上表示出来.解: (1)(-2)⊕3=-2×(-2-3)+1=-2×(-5)+1=10+1=11.(2)∵3⊕x<13,∴3(3-x)+1<13.解得x>-1.解集在数轴表示为:21.(10分)某商店5月1日举行促销优惠活动, 当天到该商店购买商品有两种方案. 方案一: 用168元购买会员卡成为会员后, 凭会员卡购买商店内任何商品, 一律按商品价格的8折优惠;方案二: 若不购买会员卡, 则购买商店内任何商品, 一律按商品价格的9.5折优惠. 已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡, 所购买商品的价格为120元时, 实际应支付多少元?(2)请帮小敏算一算, 所购买商品的价格在什么范围内时, 采用方案一更合算?解: (1)120×0.95=114(元).答: 实际应支付114元.(2)设购买商品的价格为x元, 由题意得0. 8x+168<0.95x, 解得x>1 120.答:当购买商品的价格超过1 120元时, 采用方案一更合算.22. (12分)某体育厂家批发价(元/个) 商场零售价(元/个)用品商场采购(2)若该商场把这100个球全部以零售价售出, 为使商场获得的利润不低于2 580元, 则采购员至少要购篮球多少个?该商场最多可盈利多少元?解:(1)设采购员最多可购进篮球x个, 则排球是(100-x)个, 依题意, 得130x+100(100-x)≤11 815.解得x≤60.5.∵x是整数, ∴x最大取60.答: 该采购员最多可购进篮球60个.(2)设篮球x个, 则排球是(100-x)个, 则(160-130)x+(120-100)(100-x)≥2 580.解得x≥58.又由第(1)问得x≤60.5,∴正整数x的取值为58, 59, 60.即采购员至少要购篮球58个.∵篮球的利润大于排球的利润,∴这100个球中, 当篮球最多时, 商场可盈利最多, 故篮球60个, 排球40个, 此时商场可盈利(160-130)×60+(120-100)×40=1 800+800=2 600(元), 即该商场最多可盈利2 600元.。
(完整)七年级下册数学不等式与不等式组试卷

一.选择题(每小题5分,共30分)1.下列各数是不等式3X+6>0的解的是()A.-1 B.-2 C.-3 D.-42.以下是各不等式的解集与其在数轴上的表示,正确的对应是( )A. B. C. D.0 1 0 1 0 1 0 1X≥1 X≤1 X>1 X>13.不等式组X>2的解集是()X<3A.X<3 B.X>2 C.2<X<3 D.无解4.如果不等式组x<8有解,那么x的取值范围是()x>mA.m>8B.m≥8C.m<8D.m≤85.课外阅读课上,老师将43本书分给各个小组,每组8本,还有剩余,每组9本,却又不够。
这个课外阅读小组共有()组A.4 B.5 C.6 D.76.已知△ABC的周长为18,BC=8,则这个三角形面积的最大值是( )A.10B.12C.24D.不能确定二.填空题.(每小题5分,共20分)7.已知0<X<兀,X是整数,则X的值是_____________.8.设求知数,列不等式:(1)一个工程队原定在10天内至少要挖土600立方米,在前两天一共完成了120立方米,由于整个工程调整工期,要求提前两天完成挖土任务,设经后 6 天内平均每天至少要挖土X立方米,则列出的不等式为____________.(2)一次智力测验,有20道选择题.评分标准是:对1题得5分,错1题扣2分,不答题不给分也不扣分.小明有两道题未答,至少答对几题,部分才不会低于60分?设小明至少答对的题数为X,则列出的不等式是___________.9.不等式1/X不是一元一次不等式,但是它的解集是存在的,它的解集是_____________.10.已知点A(1-a,a+2)在第二象限,则a的取值范围是_____________.三.解答题. (11题18分,12和13题各10分,14题12分)11.解不等式(组),并把解集在数轴上表示出来.(1) (X-1)/3-(X+4)/2>-2 (2) -3X-1>3 2X+1>3 (3) 2X-6<3X (X+2)/5-(X-1)/4≥012.小明要去福利院看望12个小朋友,打算用10元钱购买笔记本或圆珠笔,给每位小朋友一份礼物,已知每本笔记本0.9元,每支圆珠笔0.7元.问他最多能买多少本笔记本?13.利用不等式性质将1<X<2变为a<1-3x<b(a,b是常数)的形式。
七年级下册数学不等式与不等式组测试题(含答案-)人教版

不等式与不等式组全章测试(一)一、填空题:1.用“>”或“<”填空:(1)m +3______m -3;(2)4-2x ______5-2x ;(3);23______13--yy (4)a <b <0,则a 2______b 2;(5)若23yx -<-,则2x ______3y . 2.若使3233->-yy 成立,则y ______. 3.不等式x >-4.8的负整数解是______. 二、选择题:4.x 的一半与y 的平方的和大于2,用不等式表示为( ).(A)2212>+y x (B)2212>++y x(C)222>+y x(D)221>+y x5.因为-5<-2,所以( ). (A)-5x <-2x (B)-5x >-2x (C)-5x =-2x (D)三种情况都可能 6.若a ≠0,则下列不等式成立的是( ). (A)-2a <2a (B)-2a <2(-a ) (C)-2-a <2-a(D)aa22<-7.下列不等式中,对任何有理数都成立的是( ). (A)x -3>0 (B)|x +1|>0 (C)(x +5)2>0 (D)-(x -5)2≤08.若a <0,则关于x 的不等式|a |x <a 的解集是( ). (A)x <1 (B)x >1 (C)x <-1 (D)x >-1三、解不等式(组),并把解集在数轴上表示出来:9..11252476312-+≥---x x x10.⎪⎩⎪⎨⎧<+-+--≤+.121331),3(410)8(2x x x x四、解答题:11.x 取何整数时,式子729+x 与2143-x 的差大于6但不大于8.12.当k 为何值时,方程1)(5332+-=-k x k x 的解是(1)正数;(2)负数;(3)零.13.已知方程组⎩⎨⎧-=+=-k y x k y x 513,2的解x 与y 的和为负数.求k 的取值范围.14.不等式m m x ->-2)(31的解集为x >2.求m 的值.15.某车间经过技术改造,每天生产的汽车零件比原来多10个,因而8天生产的配件超过200个.第二次技术改造后,每天又比第一次技术改造后多做配件27个,这样只做了4天,所做配件个数就超过了第一次改造后8天所做配件的个数.求这个车间原来每天生产配件多少个?16.仔细观察下图,认真阅读对话:根据对话的内容,试求出饼干和牛奶的标价各是多少?全章测试(二)一、填空题1.当m ______时,方程5(x -m )=-2有小于-2的根. 2.满足5(x -1)≤4x +8<5x 的整数x 为______.3.若11|1|=--xx ,则x 的取值范围是______.4.已知b <0<a ,且a +b <0,则按从小到大的顺序排列a 、-b 、-|a |、-|-b |四个数为______.二、选择题5.若0<a <b <1,则下列不等式中,正确的是( ).,11;11;1;1b a b a b a b a <><>④③②① (A)①、③ (B)②、③ (C)①、④ (D)②、④ 6.下列命题结论正确的是( ).(1)若a >b ,则-a >-b ;(2)若a >b ,则3-2a >3-2b ;(3)8|a |>5|a |. (A)(1)、(2)、(3) (B)(2)、(3) (C)(3) (D)没有一个正确7.若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ). (A)a <0 (B)a >-1 (C)a <-1 (D)a <1 8.已知x <-3,那么|2+|3+x ||的值是( ). (A)-x -1 (B)-x +1 (C)x +1 (D)x -1 9.如下图,对a 、b 、c 三种物体的重量判断正确的是( ).(A)a <c (B)a <b(C)a >c (D)b <c三、解不等式(组):10.3(x +2)-9≥-2(x -1). 11..57321<+<-x12.⎪⎪⎩⎪⎪⎨⎧>--+<-.0415221131x x x x13.求⎪⎩⎪⎨⎧≤-->032,134x x x 的整数解.14.如果关于x 的方程3(x +4)-4=2a +1的解大于方程3)43(414-=+x a x a 的解, 求a 的取值范围.15.某单位要印刷一批北京奥运会宣传资料,在需要支付制版费600元和每份资料元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件,甲印刷厂提出:凡印刷数量超过2000份的,超过部分的印刷费可按9折收费,乙印刷厂提出:凡印刷数量超过3000份的,超过部分印刷费可按8折收费。
七年级数学-不等式与不等式组测试题(有答案)

ACD B七年级数学-不等式与不等式组测试题一、选择题:(每题3分,共30分)1.下列根据语句列出的不等式错误的是( )A. “x的3倍与1的和是正数”,表示为3x+1>0.B. “m的15与n的13的差是非负数”,表示为15m-13n≥0.C. “x与y的和不大于a的12”,表示为x+y≤12a.D. “a、b两数的和的3倍不小于这两数的积”,表示为3a+b≥ab.2.给出下列命题:①若a>b,则ac2>bc2;②若ab>c,则b>ca;③若-3a>2a,则a<0;•④若a<b,则a-c<b-c,其中正确命题的序号是( )A.③④B.①③C.①②D.②④3.解不等式3x-32<2x-2中,出现错误的一步是( )A.6x-3<4x-4B.6x-4x<-4+3C.2x<-1D.x>-1 24.不等式12,39xx-<⎧⎨-≤⎩的解集在数轴上表示出来是( )5. .下列结论:①4a>3a;②4+a>3+a;③4-a>3-a中,正确的是( )A.①②B.①③C.②③D.①②③6.某足协举办了一次足球比赛,记分规则是:胜一场积3分,平一场积1分,负一场积0分.若甲队比赛了5场共积7分,则甲队可能平了( )A.2场B.3场C.4场D.5场7.某班学生在颁奖大会上得知该班获得奖励的情况如下表:已知该班共有28人获得奖励,其中获得两项奖励的有13人,那么该班获得奖励最多的一位同学可获得的奖励为( )A.3项B.4项C.5项D.6项8.若│a │>-a,则a 的取值范围是( )A.a>0B.a ≥0C.a<0D.自然数9.不等式23>7+5x 的正整数解的个数是( )A.1个B.无数个C.3个D.4个10.已知(x+3)2+│3x+y+m │= 0中,y 为负数,则m 的取值范围是( )A.m>9B.m<9C.m>-9D.m<-9二、填空题:(每题3分,共24分)11.若y=2x-3,当x______时,y ≥0;当x______时,y<5.12.若x=3是方程2x a --2=x-1的解,则不等式(5-a)x<12的解集是_______. 13.若不等式组2123x a x b -<⎧⎨->⎩的解集为-1<x<1,则a=_______,b=_______.14. (2008苏州)6月1日起,某超市开始有偿..提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3公斤、5公斤和8公斤.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20公斤散装大米,他们选购的3只环保购物袋至少..应付给超市 元. 15.不等式组204060x x x +>⎧⎪->⎨⎪-<⎩的解集为________.16.小明用100元钱去购买笔记本和钢笔共30分,已知每本笔记本2元,•每枝钢笔5元,那么小明最多能买________枝钢笔.17.如果不等式组212x m x m >+⎧⎨>+⎩的解集是x>-1,那么m 的值是_______.18.关于x 、y 的方程组321431x y a x y a +=+⎧⎨+=-⎩的解满足x>y,则a 的取值范围是_________.三、解答题:(共46分)19.解不等式(组)并把解集在数轴上表示出来(每题4分,共16分)(1)5(x+2)≥1-2(x-1) (2) 273125yyy+>-⎧⎪-⎨≥⎪⎩(3)42x--3<522x+; (4)32242539x xx xx+>⎧⎪->-⎨⎪->-⎩20. (5分)k取何值时,方程23x-3k=5(x-k)+1的解是负数.21. (5分)某种客货车车费起点是2km以内2.8元.往后每增加455m车费增加0.5元.现从A 处到B处,共支出车费9.8元;如果从A到B,先步行了300m然后乘车也是9.8元,求AB的中点C到B处需要共付多少车费?22.(5分)(1)A、B、C三人去公园玩跷跷板,从下面的示意图(1)•中你能判断三人的轻重吗?(2)P、Q、R、S四人去公园玩跷跷板,从示意图(2)•中你能判断这四个人的轻重吗?23. (7分)某市“全国文明村”白村果农王保收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王保如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?24.(8分) 2011年我市筹备30周年庆典,园林部门决定利用现有的3490盆甲种花卉和2950,两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需盆乙种花卉搭配A B甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?参考答案一、1.D 2.A 3.D 4.A 5. C 6.C 7.B 8.B 9.C 10.A二、11.x ≥32,x<4 ; 12.x<120; 13.a=1,b=-2; 14.8 ; 15.4<x<6 ; 16.13; 17.-3; 18.a>-6.三、19. (1)x ≥-1 (2)2≤y<8;(3)x>-3; (4)-2<x<320.k<1221.设走xm 需付车费y 元,n 为增加455m 的次数.∴y=2.8+0.5n,可得n=70.5=14 ∴2000+455×13<x ≤2000+455×14即7915<x ≤8370,又7915<x-300≤8370∴8215<x ≤8670,故8215<x ≤8370,CB 为2x ,且4107.5<2x ≤4185, 4107.52000455-=4.63<5,41852000455-=4.8<5, ∴n=5代入y=2.8+0.5×5=5.3(元)∴从C 到B 需支付车费5.3元.22.(1)C 的重量>A 的重量>B 的重量(2)从图中可得S>P,P+R>Q+S ,R>Q+(S-R),∴R>Q;由P+R>Q+S ,S-P<R-Q ∴ (Q+R-P)-P<R-Q ∴P>Q,同理R>S,∴R>S>P>Q23. 解:(1)设安排甲种货车x 辆,则安排乙种货车(8-x )辆,依题意,得4x + 2(8-x )≥20,且x + 2(8-x )≥12,解此不等式组,得 x ≥2,且 x ≤4, 即 2≤x ≤4.∵ x 是正整数,∴ x 可取的值为2,3,4.因此安排甲、乙两种货车有三种方案:甲种货车 乙种货车 方案一 2辆 6辆(2)方案一所需运费 300×2 + 240×6 = 2040元;方案二所需运费 300×3 + 240×5 = 2100元;方案三所需运费 300×4 + 240×4 = 2160元.所以王保应选择方案一运费最少,最少运费是2040元.24. 解:设搭配A 种造型x 个,则B 种造型为(50)x -个,依题意,得: 8050(50)34904090(50)2950x x x x +-⎧⎨+-⎩≤≤ ,解这个不等式组,得:3331x x ⎧⎨⎩≤≥,3133x ∴≤≤ x Q 是整数,x ∴可取313233,,,∴可设计三种搭配方案:①A 种园艺造型31个 B 种园艺造型19个②A 种园艺造型32个 B 种园艺造型18个③A 种园艺造型33个 B 种园艺造型17个.(2)方法一:由于B 种造型的造价成本高于A 种造型成本.所以B 种造型越少,成本越低,故应选择方案③,成本最低,最低成本为:338001796042720⨯+⨯=(元) 方法二:方案①需成本:318001996043040⨯+⨯=(元)方案②需成本:328001896042880⨯+⨯=(元)方案③需成本:338001796042720⨯+⨯=元∴应选择方案③,成本最低,最低成本为42720元。
初一数学不等式与不等式组30道典型题(含答案和解析及相关考点)

初一数学不等式与不等式组30道典型题(含答案和解析)1、在式子 -3<0,x ≥2,x=a,x 2-2x,x ≠3,x+1>y 中,是不等式的有( ).A. 2个B. 3个C. 4个D. 5个 答案:C.解析:式子 -3<0,x ≥2,x ≠3,x+1>y 这四个是不等式.考点:方程与不等式——不等式与不等式组——不等式的基础——不等式的定义.2、下列结论正确的有 (填序号).①如果a >b,c <d,那么a-c >b-d. ②如果a >b,那么ab >1.③如果a >b,那么1a <1b.④如果a c2<bc2,那么a <b.答案:①④.解析:①∵c <d,∴-c >-d,∵a >b,∴a-c >b-d, 故①正确.②当b <0时,ab <1, 故②错.③若a=2,b= -1,满足a >b,但1a >1b , 故③错. ④∵ac2<bc 2,∴c 2>0,∴a <b.考点:方程与不等式——不等式与不等式组——不等式的基础——不等式的性质.3、若0<m <1,m ,m 2,1m的大小关系是( ).A. m <m 2<1m B. m 2<m <1m C. 1m <m <m 2D. 1m <m 2<m答案:B.解析:可用特殊值.考点:方程与不等式——不等式与不等式组——不等式的基础——不等式的性质.4、若a <b,则下列各式中一定成立的是( ).A.a-1<b-1B. a 3>b3 C.-a <-b D.ac <bc 答案:A.解析:根据不等式的性质可得:不等式两边加(或减)同一个数(或式子),不等号的方不变.A. a-1<b-1,故A 选项是正确的.B.a >b,不成立,故B 选项是错误的.C. a >-b,不一定成立,故 选项是错误的.D. C 的值不确定,故D 选项是错误的.考点:方程与不等式——不等式与不等式组——不等式的基础——不等式的性质.5、下列式子中,是一元一次不等式的有( ).①x 2+x <1 ②1x +2>0 ③x-3>y+4 ④2x+3<8 A.1个 B.2个 C.3个 D.4个 答案:A.解析:①不是,因为它的未知数的最高次数是2.②不是,因为不等式的左边是1x +2,它不是整式.③不是,因为不等式中含有两个未知数.④是,因为它符合一元一次不等式定义中的三个条件. 故答案为A.考点:方程与不等式——不等式与不等式组——一元一次不等式的定义.6、如果(m+1)x >2是一元一次不等式,则m = . 答案:1. 解析:∵(m+1)x∣m ∣>2是一元一次不等式.∴m+1≠0.︱m ︱=1,解得:m=1.考点:数——有理数——绝对值——方程与不等式——不等式与不等式组——一元一次不等式的定义.7、解不等式3-4(2x-3)≥3(3-2x),并把它的解集在数轴上表示出来.答案:原不等式的解集为x≤3.画图见解析.解析:去括号,得3-8x+12≥9-6x.移项,得-8x+6x≥9-3-12.合并同类项,得-2x≥-6.系数化1 ,得x≤3.把它的解集在数轴上表示为:考点:方程与不等式——不等式与不等式组——在数轴上表示不等式的解集——解一元一次不等式.8、当a<3时,不等式ax≥3x+7的解集是..答案:x≤7a−3解析:ax≥3x+7.ax-3x≥7.(a-3)x≥7.∵a<3.∴a-3<0..∴x≤7a−3考点:方程与不等式-不等式与不等式组-含参不等式(组)-解含参不等式.(x-5)-1>x+m的解集为x<2,则m的值为.9、已知不等式12答案:-4.5.解析:1(x-5)-1>x+m.212x-52-1-x >m.-12x >m+72. x <-2m-7. ∵解集为x <2. 则-2m-7=2. m=-4.5.考点:方程与不等式——不等式与不等式组——含参不等式(组)——已知解集反求参数.10、若不等式4x-a <0只有三个正整数解,则 的取值范围 . 答案:12<a ≤16.解析::将4x-a <0变形为x <a4.不等式只有三个正整数解.即x 的正整数解为1,2,3,所以3<a4≤4,解得a 的取值范围为12<a ≤16.考点:方程与不等式——不等式与不等式组——一元一次不等式的整数解.11、若关于x 的不等式mx-n >0的解集是x <15,则关于x 的不等式(m+n )x >n-m 的解集是( ).A. x <-23B. x >-23C. x <23D. x >23答案:A.解析:∵不等式mx-n >0的解集是x <15.∴m <0且n m= 15.∴m=5n,n <0.∴不等式(m+n )x >n-m 可整理为6nx >-4n 的解集是x <-23.考点:方程与不等式——不等式与不等式组——解一元一次不等式.12、若方程3(x+1)-m = 3m-5x 的解是负数,则 的取值范围是( ).A. m <34 B. m >34 C. m <−34 D. m >−34答案:A.解析:3(x+1)-m = 3m-5x.3x+5x = 3m+m-3. 8x = 4m-3. ∵解是负数. ∴8x <0. ∴4m-3<0. m <34.考点:方程与不等式—一元一次方程—含字母参数的一元一次方程—含参一元一次方程.不等式与不等式组—一元一次不等式的应用.13、若关于x ,y 的二元一次方程组 {3x +y =1+ax +3y =3的解满足x+y <2,则a 的取值范围是 . 答案:a <4.解析:将二元一次方程组两个等式相加,得4x+4y=a+4,即x+y=a+44.∵x+y <2. ∴a+44<2.∴a <4.考点:方程与不等式——二元一次方程组——含字母参数的二元一次方程组.14、关于x,y 的二元一次方程组{3x −y =ax −3y =5−4a的解满足x <y,则a 的取值范围是( ).A. a >35B. a <13C. a <53D. a >53答案:D. 解析:解法一:解不等式组得{x =7a−58y =13a−158.∵x <y.∴7a−58<13a−158.解得a >53. 解法二:两式相加得4(x-y )=5-3a. ∵x <y. ∴x-y <0. ∴5-3a <0. ∴a >53.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.15、解不等式2x−13-5x+12≥1,并把它的解集在数轴上表示出来.答案:不等式的解集为x ≤-1,在数轴上表示如图所示:解析:去分母,得2(2x-1)-3(5x+1)≥6.去括号,得4x-2-15-3≥6. 移项合并同类项,得-11x ≥11. 系数化为1,得x ≤-1.∴此不等式的解集为x ≤-1,在数轴上表示如图所示:考点:方程与不等式——不等式与不等式组——在数轴上表示不等式的解集——解一元一次不等式.16、解不等式12(x+1)≤23x-1,并把它的解集表示在数轴上,再写出它的最小整数解. 答案:最小整数解为x=9. 解析:12(x+1)≤23x-1.3(x+1)≤4x-6.3x+3≤4x-6.3x-4x≤-6-3.-x≤-9.x≥9.将它的解集表示在数轴上:∴它的最小整数解为x=9.考点:方程与不等式——不等式与不等式组——解一元一次不等式.17、若m>6,则(6-m)x<m-6的解集为.答案:x>-1.解析:∵m>6.∴(6-m)x<m-6.∴x>-1.考点:方程与不等式——不等式与不等式组——含参不等式(组)——解含参不等式. 18、关于x的不等式2x-a≤-1的解集如图所示,则a的值是( ).A.4B.3C.2D.1答案:B.解析:解不等式2x-a≤-1得,x≤a−1,根据数轴可知x≤1.2=1,即a=3.∴a−12考点:方程与不等式——不等式与不等式组——在数轴上表示不等式的解集——解一元一次不等式.19、已知a、b为常数,若ax+b>0的解集是x<1,则bx-a<0的解集是( ).4A.x >-4B.x <-4C.x >4D.x <4 答案:B.解析:∵ax+b >0的解集x <14.∴x <-ba . 则-ba = 14. ∴a <0. 又∵a=-4b. ∴b >0. ∴bx-a <0. ∴bx+4b <0. ∴x+4<0. ∴x <-4.考点:方程与不等式——不等式与不等式组——含参不等式(组)——解含参不等式.20、已知方程组{2x +3y =3m +72x +y =4m +1的解满足x+y >0,求m 的取值范围.答案:m >-87.解析:{2x +3y =3m +7①2x +y =4m +1 ②.解:①+②得. 4x+4y=7m+8. 4(x+y)=7m+8. x+y=7m+84.∵x+y >0. ∴7m+84>0.∴7m+8>0. ∴7m >-8. ∴m >-87.考点:方程与不等式——二元一次方程组——含字母参数的二元一次方程组.不等式与不等式组——一元一次不等式的应用.21、解不等式组{2(x +8)≤10−4(x −3)x+12−4x+16<1,并写出该不等式组的整数解. 答案:-4<x ≤1,整数解有-3,-2,-1,0,1. 解析:{2(x +8)≤10−4(x −3)①x+12−4x+16<1 ②. 由①得:x ≤1. 由②得:x >-4. ∴-4<x ≤1.整数解有-3,-2,-1,0,1.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.22、解不等式组:{7(x −5)+2(x +1)>−152x+13−3x−12<0答案:x >2.解析:{7(x −5)+2(x +1)>−15①2x+13−3x−12<0②. 解①得:x >2. 解②得:x >1. ∴x >2.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.23、解不等式组:{2(x +1)>5x −7x+103>2x 答案:x <2.解析:解不等式2(x+1)>5x-7得.2x+2>5x-7. 3x <9.x <3. 解不等式x+103>2x 得.x+10>6x. 5x <10. x <2.∴原不等式的解集为x <2.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.24、不等式组{x +9<5x +1x >m +1的解集是x >2,则m 的取值范围是 .答案:m ≤1.解析:由不等式组可得{x >2x >m +1,其解集为x >2,则m+1≤2,m ≤1.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.25、若关于x 的不等式组{x −2<5x −a >0无解,则 的取值范围是 .答案:a ≥7.解析:解不等式组得{x <7x >a,由不等式组无解可知a ≥7.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.26、已知关于x 的不等式组{x −a ≥b 2x −a <2b +1的解集为3≤x <5,则ba 的值为 .答案:-2.解析::由x-a ≥b 得x ≥a+b.由2x-a <2b+1得x <a+2b+12.∵解集为3≤x <5. ∴{a +b =3a+2b+12=5.解b=6,a=-3.∴ba = 6−3= -2.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.27、已知方程组{x+y=m+3x−y=3m−1的解是一对正数,试化简∣2m+1∣+∣2-m∣.答案:化简得:m+3.解析:{x+y=m+3①x−y=3m−1②.①+②:2x=4m+2.x=2m+1.①-②:2y=-2m+4.y=-m+2.∵方程组的解是一对正数.∴{x>0 y>0.∴{2m+1>0−m+1>0.解得:-12<m<2.∴∣2m+1∣+∣2-m∣.=2m+1+2-m.=m+3.考点:数——有理数——绝对值化简——已知范围化简绝对值.方程与不等式——二元一次方程组——含字母参数的二元一次方程组——含参方程组解的分类讨论.不等式与不等式组——含参不等式(组)——方程根的取值范围.28、若关于x的不等式组{x−m<07−2x≤1的整数解有且只有4个,则m的取值范围是( ).A.6<m <7B.6≤m <7C.6≤m ≤7D.6<m ≤7 答案:D解析:{x −m <07−2x ≤1.由x-m <0得:x <m . 有7-2x ≤1得:x ≥3. ∴不等式的解集为:3≤x <m .∴不等式的整数解为:3 、4 、5 、6 . ∴m 的取值范围是6<m ≤7.考点:方程与不等式——不等式与不等式组——解一元一次不等式组——一元一次不等式组的整数解.29、对x,y 定义一种新运算T,规定:T(x,y )= ax+by2x+y (其中a 、b 均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)= a×0+b×12×0+1 = b .(1) 已知T(1,-1)= -2,T(4,2)= 1.① 求 a,b 的值.② 若关于m 的不等式组{T(2m,5−4m )≤4T(m,3−2m )>p恰好有3个整数解,求实数p 的取值范围.(2) 若T(x,y )=T(y,x )对任意实数x,y 都成立(这里T(x,y )和T(y,x )均有意义),则a,b 应满足怎样的关系式?答案: (1) ① a=1,b=3 .② -2≤p <−13 . (2) a=2b .解析: (1)① 根据题意得:T(1,-1)=a−b 2−1=-2,即a-b=-2.T(4,2)=4a+2b 8+2=1,即2a+b=5.解得: a=1,b=3.② 根据题意得:{2m+(5−4m )4m+(5−4m )≤4 ①m+3(3−2m )2m+3−2m>p ②.由①得:m ≥−12. 由②得:m <−9−3p 5.∴不等式组的解集为−12≤m <−9−3p 5.∵不等式组恰好有3个整数解,即m=0,1,2. ∴2<9−3p 5≤3.解得: -2≤p <-13.(2) 由T(x,y )=T(y,x ),得到ax+by 2x+y = ay+bx2y+x .整理得:(x 2-y 2)(2b-a )=0.∵T(x,y )=T(y,x )对任意实数x,y 都成立. ∴2b-a=0,即 a=2b.考点:式——探究规律——定义新运算.方程与不等式——不等式与不等式组——解一元一次不等式组.30、如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1) 在方程① 3x-1=0,② 23x+1=0,③ x-(3x+1)=-5中,不等式组{−x +2>x −53x −1>−x +2的关联方程是 .(填序号) (2)若不等式组{x −12<11+x >−3x +2的一个关联方程的根是整数,则这个关联方程可以是 (写出一个即可).(3)若方程3-x=2x,3+x=2(x+12)都是关于x 的不等式组{x <2x −m x −2≤m的关联方程,直接写出m 的取值范围.答案: (1) ③.(2)2x-1=1.(3)m 的取值范围为0≤m <1 .解析: (1)解不等式组{−x +2>x −53x −1>−x +2.解−x +2>x −5得x <312. 解3x −1>−x +2得x >34. ∴不等式的解为34<x <312.解方程① 3x-1=0得x=13,② 23x+1=0得x=-32 ,③ x-(3x+1)=-5得x=2. 根据一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程. ∴关联方程为③. (2) 解不等式{x −12<11+x >−3x +2.解x −12<1,得x <112. 解1+x >−3x +2,得x >14. ∴不等式得解集为14<x <112.∵关联方程的根是整数,∴方程的根为1. ∵2x-1=1的方程的解为1. ∴2x-1=1满足.答案不唯一,只要解为1一元一次方程即可. (3) 解方程3-x=2x,得x=1.解方程3+x=2(x+12),得x=2.∵方程3-x=2x,3+x=2(x+12),都是关于x 的不等式组{x <2x −m x −2≤m的关联方程.∴满足{1<2×1−m 1−2≤m ,即-1<m <1.且{2<2×2−m 2−2≤m ,即0≤m <2.∴m 的取值范围为0≤m <2.考点:方程与不等式——一元一次方程——一元一次方程的解.不等式与不等式组——解一元一次不等式组.。
人教版初中数学七年级下册第9章《不等式与不等式组》测试题及答案

人教版初中数学七年级下册第9章《不等式与不等式组》测试题(一)一、选择题:1,下列各式中,是一元一次不等式的是( ) A.5+4>8 B.2x -1 C.2x ≤5D.1x-3x ≥0 2,已知a<b,则下列不等式中不正确的是( )A. 4a<4bB. a+4<b+4C. -4a<-4bD. a-4<b-4 3,下列数中:76, 73,79, 80, 74.9, 75.1, 90, 60,是不等式23x >50的解的有( ) A.5个 B.6个 C.7个 D.8个 4,若t>0,那么12a+12t 与a 的大小关系是( ) A .2a +t>2a B .12a+t>12a C .12a+t ≥12a D .无法确定5,如图,a 、b 、c 分别表示苹果、梨、桃子的质量.同类水果质量相等 则下列关系正确的是( )A .a >c >bB .b >a >cC .a >b >cD .c >a >b6,若a<0关于x 的不等式ax+1>0的解集是( )A .x>1a B .x<1a C .x>-1a D .x<-1a7,不等式组31027x x +>⎧⎨<⎩的整数解的个数是( )A .1个B .2个C .3个D .4个8,从甲地到乙地有16千米,某人以4千米/时~8千米/时的速度由甲到乙,则他用的时间大约为( )A 1小时~2小时 B2小时~3小时 C3小时~4小时 D2小时~4小时9,某种出租车的收费标准:起步价7元(即行使距离不超过3千米都须付7元车费),超过3千米以后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( )A .5千米 B.7千米 C.8千米 D.15千米 10,在方程组2122x y mx y +=-⎧⎨+=⎩中若未知数x 、y 满足x+y ≥0,则m 的取值范围在数轴上表示应是( )二、填空题11,不等号填空:若a<b<0 ,则5a -5b -;a1 b 1;12-a 12-b .12,满足2n-1>1-3n 的最小整数值是________.13,若不等式ax+b<0的解集是x>-1,则a 、b 应满足的条件有______.14,满足不等式组122113x x x -⎧>-⎪⎪⎨-⎪-≥⎪⎩的整数x 为__________.15,若|12x --5|=5-12x -,则x 的取值范围是________.16,某种品牌的八宝粥,外包装标明:净含量为330g ±10g ,表明了这罐八宝粥的净含量x 的范围是 .17,小芳上午10时开始以每小时4km 的速度从甲地赶往乙地,•到达时已超过下午1时,但不到1时45分,则甲、乙两地距离的范围是_________. 18,代数式x-1与x-2的值符号相同,则x 的取值范围________.三、解答题19,解不等式组,并把它的解集在数轴上表示出来.(1)9-4(x-5)<7x+4; (2)0.10.81120.63x x x ++-<-;(3)523(1),317;22x x x x ->+⎧⎪⎨-≤-⎪⎩ (4)6432,2111.32x x x x +≥+⎧⎪+-⎨>+⎪⎩20,代数式213 1--x的值不大于321x-的值,求x的范围21,方程组3,23x yx y a-=⎧⎨+=-⎩的解为负数,求a的范围.22,已知,x满足3351,11.4x xx+>-⎧⎪⎨+>-⎪⎩化简:52++-xx.23,已知│3a+5│+(a-2b+52)2=0,求关于x的不等式3ax-12(x+1)<-4b(x-2)的最小非负整数解.24,是否存在这样的整数m,使方程组24563x y mx y m+=+⎧⎨-=+⎩的解x、y为非负数,若存在,求m•的取值?若不存在,则说明理由.25,有一群猴子,一天结伴去偷桃子.分桃子时,如果每只猴子分3个,那么还剩下59个;如果每个猴子分5个,就都分得桃子,但有一个猴子分得的桃子不够5个.你能求出有几只猴子,几个桃子吗?参考答案一、1,C;2,C;3,A;4,A.解:不等式t>0利用不等式基本性质1,两边都加上12a得12a+t>12a.5,C.6,D.解:不等式ax+1>0,ax>-1,∵a<0,∴x<-1a因此答案应选D.7,D.解:先求不等式组解集-13<x<72,则整数x=0,1,2,3共4个.8,D;9,C.10,D.解:2122x y m x y+=-⎧⎨+=⎩①+②,得3x+3y=3-m,∴x+y=33m-,∵x+y≥0,∴33m-≥0,∴m≤3在数轴上表示3为实心点.射线向左,因此选D.二、11,>、>、<;12,1.解:先求解集n>25,再利用数轴找到最小整数n=1.13,a<0,a=b 解析:ax+b<0,ax<-b,而不等式解集x>-1不等号改变了方向.因此可以确定运用不等式性质3,所以a<0,而-ab=-1,∴b=a.14,-2,-1,0,1 解析:先求不等式组解集-3<x≤1,故整数x=0,1,-1,-2.15,x≤11 解析:∵│a│=-a时a≤0,∴12x--5≤0,解得x≤11.16,320≤x≤340.17,(12~15)km.解:设甲乙两地距离为xkm,依题意可得4×(13-10)<x<4•×(134560-10),即12<x<15.18,x>2或x<1 解析:由已知可得10102020 x xx x->-<⎧⎧⎨⎨->-<⎩⎩或者.三、19,(1)9-4(x-5)<7x+4.解:去括号9-4x+20<7x+4,移项合并11x>25,化系数为1,x>2511.(2)0.10.81120.63x x x++-<-.解:811263x x x++-<-,去分母 3x-(x+8)<6-2(x+1),去括号 3x-x-8<6-2x-2,移项合并 4x<12,化系数为1,x<3.(3)523(1)31722x xxx->+⎧⎪⎨-≤-⎪⎩解:解不等式①得 x>52,解不等式②得 x≤4,∴不等式组的解集52<x ≤4. (4)6432211132x x x x+≥+⎧⎪+-⎨>+⎪⎩解:解不等式①得x ≥-23,解不等式②得x>1,∴不等式组的解集为x>1. 20,57≥x ;21,a<-3;22,7; 23,解:由已知可得535035520212a a ab b ⎧+==-⎧⎪⎪⎪⎨⎨-+=⎪⎪=⎩⎪⎩解得代入不等式得-5x-12(x+1)<-53(x-2),解之得 x>-1,∴最小非负整数解x=0.24,解:24563x y m x y m +=+⎧⎨-=+⎩得11139529m x m y +⎧=⎪⎪⎨-⎪=⎪⎩∵x ,y 为非负数00x y ≥⎧⎨≥⎩∴1113095209m m +⎧≥⎪⎪⎨-⎪≥⎪⎩解得-1311≤m ≤52,∵m 为整数,∴m=-1,0,1,2.答:存在这样的整数m=-1,0,1,2,可使方程24563x y m x y m +=+⎧⎨-=+⎩的解为非负数.点拨:先求到方程组的解,再根据题意设存在使方程组的解00x y ≥⎧⎨≥⎩的m ,•从而建立关于m 为未知数的一元一次不等式组,求解m 的取值范围,选取整数解.25,设有x 只猴子,则有(3x+59)只桃子,根据题意得:0<(3x+59)-5(x-1)<5,解得29.5<x<32,因为x 为整数,所以x=30或x=31,当x=30时,(3x+59)=149,当x=31时,(3x+59)=152.答:有30只猴子,149只桃子或有31只猴子,152只桃子.1. 将不等式组13x x ⎧⎨⎩≥≤的解集在数轴上表示出来,应是 ( )2. 下面给出的不等式组中①23x x >-⎧⎨<⎩②020x x >⎧⎨+>⎩③22124x x x ⎧>+⎪⎨+>⎪⎩④307x x +>⎧⎨<-⎩⑤101x y x +>⎧⎨-<⎩其中是一元一次不等式组的个数是( ) A.2个B.3个C.4个D.5个3. 不等式组24030x x ->⎧⎨->⎩,的解集为( )A.23x << B. 3x > C. 2x <D. 23x x ><-或4. 下列不等式中哪一个不是一元一次不等式( )A.3x >B.1y y -+>C.12x> D.21x >5. 下列关系式是不等式的是( )A.25x += B.2x + C.25x +>D.235+=6. 若使代数式312x -的值在1-和2之间,x 可以取的整数有( ) A.1个B.2个C.3个D.4个7. 不等式组2030x x -<⎧⎨->⎩的正整数解是( )A.0和1 B.2和3 C.1和3 D.1和2 8. 下列选项中,同时适合不等式57x +<和220x +>的数是( )A.3 B.3- C.1- D.19. 不等式211133x ax +-+>的解集是53x <,则a 应满足( ) A.5a > B.5a = C.5a >- D.5a =-10. a 是一个整数,比较a 与3a 的大小是( )C1DA3BA.3a a >B.3a a <C.3a a =D.无法确定二、填空题(每题3分,共30分) 11. 不等式(3)1a x ->的解集是13x a <-,则a 的取值范围 . 12. 某商品进价是1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降 元出售商品.13. 一个两位数,十位数字与个位数字的和为6,且这个两位数不大于42,则这样的两位数有 ______个. 14. 若a b >,则22____ac bc .15. 关于x 的方程32x k +=的解是非负数,则k 的取值范围是 . 16. 若(1)20mm x++>是关于x 的一元一次不等式,则m 的取值是 .17. 关于x 的方程4132x m x -+=-的解是负数,则m 的取值范围 .18. 若0m n <<,则222x m x n x n >⎧⎪>-⎨⎪<⎩的解集为 .19. 不等式15x +<的正整数解是 .20. 不等式组⎩⎨⎧-<+<632a x a x 的解集是32+<a x ,则a 的取值 .三、解答题(21、22每小题8分,23、24第小题10分,共36分) 21. 解不等式5(1)33x x x +->+22. 解不等式组3(2)41214x x x x --⎧⎪⎨-<-⎪⎩≤23. 关于x ,y 的方程组322441x y k x y k +=+⎧⎨+=-⎩的解x ,y 满足x y >,求k 的取值范围.24.有学生若干人,住若干间宿舍,若每间住4人,则有20人无法安排住宿;若每间住8 人,则有一间宿舍不满也不空,问宿舍间数和学生人数分别是多少?25.喷灌是一种先进的田间灌水技术.雾化指标P是它的技术要素之一.当喷嘴的直径d(mm).喷头的工作压强为h(kPa)时.雾化指标P=100hd.如果树喷灌时要求3000≤P≤4000.若d=4mm.求h的范围.四、解答题(本题共2小题,每题12分,共24分)26.某同学在A,B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包的单价的4倍少8元.(1)求该同学看中的随身听和书包的单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样商品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?27.在“512大地震”灾民安置工作中,某企业接到一批生产甲种板材240002m和乙种板材120002m的任务.(1)已知该企业安排140人生产这两种板材,每人每天能生产甲种板材302m或乙种板材202m .问:应分别安排多少人生产甲种板材和乙种板材,才能确保他们用相同的时间完成各自的生产任务?(2)某灾民安置点计划用该企业生产的这批板材搭建A B ,两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A 型板房和一间B 型板房所需板材问:这400间板房最多能安置多少灾民?参考答案:一、选择题:1. B2. B.3. A4. C.5. C.6. B7. D.8. D.9. B.10. D. 二、填空题:11. 3a <. 12. 450元. 13. 4个. 14. ≥. 15. 2k ≤. 16. 1m =.17. 3m <. 18. 无解. 19. 1,2,3. 20..a ≤ -9 三、解不等式(组):21. 2x >-. 22. 312x <≤ 23. 1k > 24.解:设宿舍间数为x ,学生人数为y. 由题意得⎪⎩⎪⎨⎧>--<--+=0)1(88)1(8204x y x y x y解得: 5 < x < 7∵x 是正整数 ∴ x = 6 故y=44 答:宿舍间数为6,学生人数为44 . 24.解:把d=4代入公式P=100h d 中得P=1004h,即P=25h ,又∵3000≤P≤4000,∴3000≤25h≤4000,120≤h≤160,故h 的范围为120~160(kPa )26. (1)随身听的单价为360元,书包单价为92元.(2)在超市A 购买更省钱. 27.(1)设安排x 人生产甲种板材,应安排80人生产甲种板材,60人生产乙种板材.(2)设建造A 型板房m 间,则建造B 型板房为(400)m -间,由题意有:5478(400)240002641(400)12000m m m m +-⎧⎨+-⎩≤≤,.解得300m ≥.又0400m ≤≤,300400m ∴≤≤.这400间板房可安置灾民58(400)33200w m m m =+-=-+. ∴当300m =时,w 取得最大值2300名.答:这400间板房最多能安置灾民2300名.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《不等式与不等式组》测试题(一)
一、 精心选一选,你一定能行(每小题3分,共30分)
1.一家三口(父母和女儿)准备参加旅行团外出旅游,甲旅行社告知:“父母买全票,女儿按半价优惠。
”乙旅
行社告知:“家庭旅游可按团体票价,即每人均按 的收费。
”若这两家旅行社每人的原票价相同,那么 ( )
A.甲比乙优惠
B.乙比甲优惠
C.甲与乙相同
D.与原票价相同
2.已知a 是有理数,下列格式总正确的是 ( )
A.2
0a > B.11a -> C.10a -≥ D.11a a +>--
3.ABC ∆的三边,,a b c 都是正整数,且满足a b c ≤≤,如果4c =,那么这样的三角形共有
( )
A.4
B.6
C.8
D.10
4.四个小朋友玩跷跷板,他们的体重分别为,,,P Q R S ,如图,则他们的大小关系是( )
A.P R S Q >>>
B.Q S P R >>>
C.S P Q R >>>
D.S P R Q >>>
5.若不等式组0{321
x a x -≥->-的整数解有5个,则a 的取值范围是 ( ) A.3a <- B.4a >-
C.3a >-
D.43a -<≤-
6.不等式组211{841
x x x x ->++<-的解集是( ) A.3x < B.3x >- C.3x <- D.3x >
7.一次知识竞赛共有30道题,规定答对一道得4分,打错或不答得-1分,在这次竞赛中,小明获得优秀(90分或90分以上),则小明至少答对( )道题
A.23 .
B.24
C.25
D.26
8.若点(2,1)A a a -+在第二象限,则a 的取值范围是 ( )
A.2a >
B.12a -<<
C.1a <-
D.1a <
9.若式子221x x
-+的值是负数,则x 的取值范围是 ( )
A.2x >
B.0x >
C.2x <且0x ≠
D.2x <
10.两个式子1x -与3x -的值的符号相同,则x 的取值范围是 ( )
A.3x =
B.1x <
C.12x <<
D.1x <或3x >
二、精心填一填,马到成功(每题3分,共30分)
11.当x_____时,代数式6124
x x --的值是负的。
12.要使21x p
-+保持非负值,则x 的取值范围是_________ 13.不等式组{3610
x x ≤+> 的整数解是_____ 14.已知三角形的三边长分别为2,2,x.则整数x 的值可为_____
15.若23396a x +->是关于x 的一元一次不等式,则a=______
16.满足-1326x ≤-<的所有的x 的整数之和是______
17.已知一个球队共得了14场,恰红赢的场比平的场数和输的场数都要少,那么这个球队最多赢了_____场。
18.已知关于x 的不等式(1)2a x ->的解集是21x a
<-,则a 的取值范围是______ 19.学生若干人,住若干房间,若每间住4人,则剩19人没处住,若每间住6人,则有一间不满也不空,则共有_____个房间,有_____人。
20.如果112
x <<,则(21)(1)x x --_____0. 三.解答题(共60分)
1.解下列不等式(组),并把解集在数轴上表示出来。
(1)181326x x x x +++
<++ (9分)
(2)35582
x -≤
≤ (9分)
(3){
2(2)513(2)82x x x x +<+-+<(10分)
2.(10分)若不等式
52122x ax ++-<的解集是12
x >,求a 的取值。
3.(10分)已知关于x 的方程3(2)273x a +-=+的解不大于
51(23)52
a a x x ++=得解,求a 的取值范围。
4.(12分)七(1)班有50名学生,每人血药制作一间A 型或B 型陶艺品,学校现有甲种材料36kg ,乙种材料29kg ,制作A,B 两种型号的陶艺品用材料情况如下表:
()1 设制作B 型陶艺品x 件,求x 的取值范围
()2请你根据学校现有材料,分别写出七(1)班制作A型和B性的件数。
答案
一、1.B 2.C 3.B 4.D 5.D 6.D 7.B 8.A 9.A 10.D
二、11、12
x >- 12.7x ≥- 13、1-12x -<≤ 14、4或5或6 15、—1 16、2 17、4 18、1a > 19、10或11或12 59或63或67 20、< 三、1、(!)3x <(2)57x ≤≤(3)1x < 2、3a = 3、1712x ≥-
4、(1)1820x ≤≤ (2)A 型32件B 型18件或A 型31件B 型19件或A 型30件B 型20件。