三角形五心的证明

合集下载

三角形的五心

三角形的五心

三角形的五心内心(三角形三条内角平分线交点)三角形三条内角平分线的交点叫三角形的内心。

即内切圆的圆心。

内心是三角形角平分线交点的原理:经圆外一点作圆的两条切线,这一点与圆心的连线平分两条切线的夹角(通过全等易证明)。

性质设△ABC的内切圆为☉O(半径r),角A、B、C的对边分别为a、b、c,p=(a+b+c)/2。

1、三角形的三个角平分线交于一点,该点即为三角形的内心。

2、三角形的内心到三边的距离相等,都等于内切圆半径r。

3、r=S/p。

证明:S△ABC=S△OAB+S△OAC+S△OBC=(cr+br+ar)/2=rp, 即得结论。

4、△ABC中,∠C=90°,r=(a+b-c)/2。

5、∠BOC=90°+∠A/2。

6、点O是平面ABC上任意一点,点O是△ABC内心的充要条件是:a(向量OA)+b(向量OB)+c(向量OC)=向量0。

7、点O是平面ABC上任意一点,点I是△ABC内心的充要条件是:向量OI=[a(向量OA)+b(向量OB)+c(向量OC)]/(a+b+c)。

8、△ABC中,A(x1,y1),B(x2,y2),C(x3,y3),那么△ABC内心I的坐标是:(ax1/(a+b+c)+bx2/(a+b+c)+cx3/(a+b+c)),ay1/(a+b+c)+by2/(a+b+c)+cy3/(a+b+c))。

9、(欧拉定理)△ABC中,R和r分别为外接圆为和内切圆的半径,O和I分别为其外心和内心,则OI2=R2-2Rr。

10、内角平分线分三边长度关系:如图:△ABC中,AD是∠A的角平分线,D在BC上,a、b、c分别是∠A、∠B、∠C的对边,d=AD。

设R1是△ABD的外接圆半径,R2是△ACD的外接圆半径,则有:BD/CD=AB/AC证明:由正弦定理得b/sinB=c/sinC,d=2R1sinB=2R2sinC,∴R1/R2=sinC/sinB=c/b.又BD=2R1sinBAD,CD=2R2sinCAD,∠CAD=∠BAD,∴BD/CD=R1/R2=c/b=AB/AC11、内切圆半径r=外心外心定理:三角形的三边的垂直平分线交于一点。

三角形的重心、外心、垂心、内心和旁心(五心定理)

三角形的重心、外心、垂心、内心和旁心(五心定理)

三角形五心定理(三角形的重心,外心,垂心,内心和旁心称之为三角形的五心)三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称。

一、三角形重心定理三角形的三条边的中线交于一点。

该点叫做三角形的重心。

三中线交于一点可用燕尾定理证明,十分简单。

(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2∶1。

2、重心和三角形3个顶点组成的3个三角形面积相等。

即重心到三条边的距离与三条边的长成反比。

3、重心到三角形3个顶点距离的平方和最小。

4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3。

二、三角形外心定理三角形外接圆的圆心,叫做三角形的外心。

外心的性质:1、三角形的三条边的垂直平分线交于一点,该点即为该三角形外心。

2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。

3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。

4、计算外心的坐标应先计算下列临时变量:d1,d2,d3分别是三角形三个顶点连向另外两个顶点向量的点乘。

c1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3。

重心坐标:( (c2+c3)/2c,(c1+c3)/2c,(c1+c2)/2c )。

5、外心到三顶点的距离相等三、三角形垂心定理三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。

垂心的性质:1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。

2、三角形外心O、重心G和垂心H三点共线,且OG∶GH=1∶2。

(此直线称为三角形的欧拉线(Euler line))3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。

三角形的五心讲义-重心、垂心、内心、外心、旁心

三角形的五心讲义-重心、垂心、内心、外心、旁心

.O A BDC2016届高三数学讲义————三角形的“五心”————(Ⅰ)“五心”的概念及性质一、外心(1)定义:三角形三边垂直平分线的交点(三角形外接圆的圆心). (2)外心的位置锐角三角形的外心在三角形内;锐角三角形的外心在三角形内; 直角三角形的外心在斜边中点;直角三角形的外心在斜边中点; 钝角三角形的外心在三角形外. (3)性质垂直平分线的性质:到线段两端点距离相等.垂直平分线的性质:到线段两端点距离相等.外心的性质:到三角形三个顶点距离相等.外心的性质:到三角形三个顶点距离相等. 内心到三顶点距离R(三角形外接圆半径)R= 2sin c C(某边除以它对角正弦的2倍) 证明过程如下:连接AO 并延长交圆O 于D,则AD 为圆直径,AD=2R .又90ABD Ð=°(直径所对的圆周角是90°),AB=c, ADB CÐ=Ð(同弧AB 所对的圆周角相等),∴AD= sin AB ADB Ð,即2R sin c C =, R=2sin cC . 延伸①:正弦定理由于R=2sin cC ,同理易证2sin 2sin 2sin cbaR C B A===,变形得到变形得到正弦定理: 2sin sin sin a b c R A B C===(每边除以它所对角的正弦为2R) 延伸②:余弦定理2222cos a b c bc A =+- (222cos 2b c a A bc+-=)ABC OA BCD证明过程如下:作CD ^AB 交其于D ,∴cos cos AD AC A b A ==,BD= cos c b A -,sin CD b A =,又222BC BD CD =+,即222(cos )(sin )a c b A b A =-+=22222222cos cos sin 2cos c bc A b A b A b c bc A -++=+-,其他边角也同求.二、内心(1)定义:三角形三条内角平分线的交点,也是三角形内切圆的圆心.也是三角形内切圆的圆心. (2)性质角平分线的性质:到角两边距离相等.角平分线的性质:到角两边距离相等.内心的性质:到三角形三边距离相等.内心的性质:到三角形三边距离相等.延伸①:内角平分线定理如图,AD 为△ABC 中BAC Ð的平分线,则有的平分线,则有(=)A B B D A C D C =上左下左上右下右证明过程如下:作BE//AC 交其延长线于E,则E DAC Ð=Ð. ∵BAD DAC Ð=Ð,∴E BAD Ð=Ð,AB BE ==c . 又∵BE//AC,易证△ADC ∽ △EDB, ∴BD=DCAB EB AC AC =,得证. 延伸②:外角平分线定理如图,AD 为△ABC 的外角平分线,交BC 延长线于D ,则有()AB BDAC DC=同上IK H EF D ABCMABDCEcb cAB CDEFcb cA FBDCE证明过程如下:作CE//AB 交AD 于E,则AEC EAF Ð=Ð.∵EAF EAC Ð=Ð,∴AEC EAC Ð=Ð,AC AE =. 又∵CE//AB,易证△ADB ∽ △EDC, ∴BD =DCAB AB ACCE=,得证.得证.延伸③:三角形内角平分线长公式如图,AD 为△ABC 中BAC Ð的平分线,则有的平分线,则有2bccos 2cos2211b+c +b c A AAD =(或)证明过程如下:作BE//AC 交其延长线于E,BF ^AE 交其于F .由前文的内角平分线定理可知,△ADC ∽ △EDB,∴bcAD AC DE BE ==. 又+DE=AE AD ,即bb+cAD AE =.而△ABE 为等腰三角形, BF ^AE, ∴22sin =2csin 2AAE AF AB BAF ==Ð,∴2bccos 2cos 2211b+c +b cA AAD =(或).延伸④:内心到三边距离r(三角形内切圆半径)设三角形面积为S ,则有,则有2r=a+b+cS(即面积的(即面积的22倍除以周长) 证明过程如下:连接OA,OB,OC . ∵相切,∴OF AB ^,即S △AOB = 11cr 22AB OF ·=,同理,同理S △AOC = 1br 2,S △BOC = 1ar 2.又∵S=S △AOB + S △AOC + S △BOC ,即S= 1(a+b+c)r 2,∴2r=a+b+cS..O A F BDCE(1)定义:三角形三条中线的交点.三角形三条中线的交点. (2)性质中线性质:将三角形面积等分成两部分.将三角形面积等分成两部分. 重心性质:分三角形的中线两段长比例为2:1(长:短) 如图:AD,BE,CF 为△ABC 三条中线,G 为其重心,则有:::2:1A G G CB G G EC G G F === 证明过程如下:作BH//FC 交AD 延长线于H,易证△GDC ≌ △HDB ,∴,2GD DH GH GD == 又∵BH//FG ,F 为AB 中点,∴G 也为AH 中点,即2AG GH GD ==, ∴:2:1AG GC =,其他同证.,其他同证. 延伸:三角形中线长公式如图,AD 为△ABC 的中线,则有则有221b +c +2bccos 2AD A =证明过程如下:作BE//AC 交AD 延长线于E,易证△ADC ≌ △EDB , ∴1,=2AD DE AD AE=即,∵BE//AC ,∴ABF A Ð=Ð.作AF ^EB 交其交其 延长线于F .又AB=c ,∴BF=AB cos ABF Ð=cos c A ,AF=sin c A , 故EF=cos c A b +.∴12AD AE ==222211(cos )(sin )b +c +2bccos 22c A b c A A ++=四、垂心(1)定义:三角形三条高的交点.:三角形三条高的交点. (2)性质斜三角形的三个顶点与垂心这四个点中,任何三个为顶点的三角形的垂任何三个为顶点的三角形的垂 心就是第四个点.所以把这样的四个点称为一个“垂心组”.AFBEDCBCD EFGAG FE CBD H(1)定义:三角形的一条内角平分线与另两个外角平分线的交点(旁切圆的圆心).(2)性质每个三角形都有三个旁切圆.每个三角形都有三个旁切圆.三角形的四心(内心、重心、垂心、外心)只有 一个,但旁心有三个,旁心到三角形三边所在直线距离相等. (Ⅱ)三角形“四心”与向量的典型问题分析向量是数形结合的载体,有方向,大小,双重性,不能比较大小.在高中数学“平面向量”(必修4第二章)的学习中,一方面通过数形结合来研究向量的概念和运算;另一方面,我们又以向量为工具,运用数形结合的思想解决数学问题和物理的相关问题.我们又以向量为工具,运用数形结合的思想解决数学问题和物理的相关问题.在平面向量的应用中,用平面向量解决平面几何问题时,首先将几何问题中的几何元素和几何关系用向量表示,然后选择适当的基底向量,将相关向量表示为基向量的线性组合,把问题转化为基向量的运算问题,最后将运算的结果再还原为几何关系.把问题转化为基向量的运算问题,最后将运算的结果再还原为几何关系.下面就以三角形的四心为出发点,应用向量相关知识,巧妙的解决了三角形四心所具备的一些特定的性质.既学习了三角形四心的一些特定性质,又体会了向量带来的巧妙独特的数学美感.的数学美感.一、“重心”的向量风采【命题1】 已知G 是ABC △所在平面上的一点,若0GA GB GC ++=,则G 是ABC△的重心.如图⑴.的重心.如图⑴.A'GCAB【命题2】 已知O 是平面上一定点,A B C ,,是平面上不共线的三个点,动点P 满足()OP OA AB AC l =++,(0)l Î+¥,,则P 的轨迹一定通过ABC △的重心.的重心. 【解析】【解析】 由题意()AP AB AC l =+ ,当(0)l Î+¥,时,由于()AB AC l +表示BC 边ABCDEFI a图⑴图⑴图⑵图⑵MPCBAO二、“垂心”的向量风采【命题3】 P 是ABC △所在平面上一点,若PA PC PC PB PB PA ×=×=×,则P 是ABC △的垂心.的垂心.【解析】【解析】由PA PB PB PC ×=× ,得()0PB PA PC ×-= ,即0PB CA ×=,所以PB CA ⊥.同理可证PC AB ⊥,PA BC⊥.∴P 是ABC △的垂心.如图⑶.的垂心.如图⑶.PABC【命题4】 已知O 是平面上一定点,AB C ,,是平面上不共线的三个点,动点P 满足cos cos AB AC OP OA AB B AC C l æöç÷=++ç÷èø ,(0)l Î+¥,,则动点P 的轨迹一定通过ABC △的垂心.的垂心.【解析】【解析】 由题意cos cos AB AC AP AB B AC C l æöç÷=+ç÷èø,由于0cos cos AB AC BC AB B AC C æöç÷+×=ç÷èø, 即0cos cos AB BC AC BC BC CB AB B AC C××+=-=,所以AP 表示垂直于BC 的向量,即P 点在过点A 且垂直于BC 的直线上,所以动点P 的轨迹一定通过ABC △的垂心,如图⑷.的垂心,如图⑷.图⑶图⑶ 图⑷图⑷ H FEM ABCO P三、“内心”的向量风采 【命题5】 已知I 为ABC △所在平面上的一点,且AB c =,AC b =,BC a = .若0aIA bIB cIC++=,则I 是ABC △的内心.的内心.【解析】 ∵IB IA AB =+ ,IC IA AC =+ ,则由题意得()0a b c IA bAB cAC++++=,∵AB AC bAB cAC AC AB AB AC AC AB AB ACæöç÷+=×+×=××+ç÷èø, ∴bc AB AC AI a b c AB ACæöç÷=+ç÷++èø.∵AB AB与ACAC分别为AB 和AC 方向上的单位向量,量,∴AI与BAC ∠平分线共线,即AI 平分BAC Ð. 同理可证:BI 平分ABC Ð,CI 平分ACB Ð.从而I 是ABC △的内心,如图⑸.的内心,如图⑸.【命题6】 已知O 是平面上一定点,AB C ,,是平面上不共线的三个点,动点P 满足AB ACOP OA AB ACl æö=++ç÷èø,(0)l Î+¥,,则动点P 的轨迹一定通过ABC △的内心.的内心. 【解析】【解析】 由题意得AB AC AP AB AC l æöç÷=+ç÷èø,∴当(0)l Î+¥,时,AP 表示BAC Ð的平分线所在直线方向的向量,故动点P 的轨迹一定通过ABC △的内心,如图⑹.的内心,如图⑹.图⑸图⑸图⑹图⑹ABCOPbacIA CBOCAB四、“外心”的向量风采【命题7】 已知O 是ABC △所在平面上一点,若222OA OB OC == ,则O 是ABC △的外心.外心.【解析】 若222OA OB OC == ,则222O A O B O C == ,∴OA OB OC == ,则O是ABC △的外心,如图⑺.的外心,如图⑺.【命题7】 已知O 是平面上的一定点,A B C ,,是平面上不共线的三个点,动点P 满足2cos cos OB OC AB AC OP AB B AC Cl æö+ç÷=++ç÷èø,(0)l Î+¥,,则动点P 的轨迹一定通过ABC △的外心.的外心.【解析】 由于2OB OC + 过BC 的中点,当(0)l Î+¥,时,cos cos AB AC AB B AC Cl æöç÷+ç÷èø表示垂直于BC的向量(注意:理由见二、命题4解释.),所以P 在BC 垂直平分线上,动点P 的轨迹一定通过ABC △的外心,如图⑻.的外心,如图⑻.图⑺图⑺M OB CAP图⑻图⑻。

三角形的、外心、内心、重心、垂心、和旁心(五心定理)

三角形的、外心、内心、重心、垂心、和旁心(五心定理)

--WORD 格式--可编辑-----三角形的外心、内心、重心、垂心、旁心(五心定理 )序 名 定义号称三 三角形的三条边角的垂直平分线交形1于一点 ,这点称为 的三角形的外心 (外外 接圆圆心 )心三 三角形的三条内角角平分线交于一形 2点 ,这点称为三角 的形的内心 (内切圆内圆心 )心三角 三角形的三条中 3形 线交于一点 ,这点的 称为三角形的重重 心心 三角 三角形的三条高形4交于一点 ,这点称的 为三角形的垂心垂心图形AOBCAM FEKI BCD HAFEG BCDCED OAFBA性质1, 三角形的外心到三角形的三个顶点距离相等.都等于三角形的外接圆半径;2, 锐角三角形的外心在三角形内;直角三角形的外心在斜边中点;钝角三角形的外心在三角形外1, 三角形的内心到三边的距离相等,都等于三角形内切圆半径;2, 直角三角形的内心到边的距离等于两直角边的和减去斜边的差的二分之一1, 三角形的重心到边的中点与到相应顶点的距离之比为1∶ 2;2, 重心和三角形 3 个顶点组成的 3 个三角形面积相等; 3, 重心到三角形 3 个顶点距离的平方和最小1,三角形任一顶点到垂心的距离,等于外心到对边的距离的 2 倍;锐角三角形的垂心到三顶点的距离之和等于其内切圆与外接圆半径之和的 2 倍;2,锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上; 钝角三角形的垂心在三角形外 ;三 三角形的一条内 BD角角平分线与另两 C形 个外角平分线交 F1, 每个三角形都有三个旁心;2, 旁心到三边的距离相等5于一点 ,称为三角的 E旁 形的旁心 (旁切圆 I a心圆心 )附:三角形的中心:只有正三角形才有中心,这时重心,内心,外心,垂心,四心合一。

第 1 页,共 1 页。

三角形的五心一次看个够

三角形的五心一次看个够

三角形的五心一次看个够三角形中有许多重要的特殊点,特别是三角形的“五心”,在解题时有很多应用,在这里分别给予介绍.一、三角形外心的性质外心定理的证明:如图,设AB 、BC 的中垂线交于点O ,则有OA =OB =OC ,故O 也在A 的中垂线上,因为O 到三顶点的距离相等,故点O 是ΔABC 外接圆的圆心.因而称为外心.设⊿ABC 的外接圆为☉G(R),角A 、B 、C 的对边分别为a 、b 、c ,p=(a+b+c)/2.1:(1)锐角三角形的外心在三角形内;(2)直角三角形的外心在斜边上,与斜边中点重合; (3)钝角三角形的外心在三角形外. 2:∠BGC=2∠A ,(或∠BGC=2(180°-∠A).3:点G 是平面ABC 上一点,那么点G 是⊿ABC 外心的充要条件是: 点G 是ABC ∆的外心⇔GA GB GC == (或GA 2=GB 2=GC 2)(点G 到三顶点距离相等)⇔(GA +GB )·AB =(GB +GC )·BC =(GC +GA )·CA =0(G 为三边垂直平分线的交点)4:点G 是平面ABC 上一点,点P 是平面ABC 上任意一点,那么点G 是⊿ABC 外心的充要条件是:PG =((tanB+tanC) PA +(tanC+tanA) PB +(tanA+tanB) PC )/2(tanA+tanB+tanC).或PG =(cosA/2sinBsinC)PA +(cosB/2sinCsinA)PB +(cosC/2sinAsinB)PC . 5:R=abc/4S ⊿ABC.正弦定理:2R=a/sinA=b/sinB=c/sinC 。

6.外心坐标:给定112233(,),(,),(,)A x y B x y C x y 求外接圆心坐标O (x ,y )①. 首先,外接圆的圆心是三角形三条边的垂直平分线的交点,我们根据圆心到顶点的距离相等,可以列出以下方程:22221122()()()()x x y y x x y y ---=--- 22223322()()()()x x y y x x y y ---=--- ②.化简得到:2222212122112()2()x x x y y y x y x y -+-=+--2222232322332()2()x x x y y y x y x y -+-=+--令1212()A x x =-;1212()B y y =-;222212211C x y x y =+-- 2232()A x x =-;2232()B y y =-;222222233C x y x y =+--A B C O7.若O 是△ABC 的外心,则S △BOC :S △AOC :S △AOB =sin ∠BOC :sin ∠AOC :sin ∠AOB=sin∠2A :sin ∠2B :sin ∠2C 故sin ∠2A ·OA +sin ∠2B ·OB +sin ∠2C ·OC =0 证明:设O 点在ABC ∆内部,由向量基本定理,有()+∈=++R r n m OC r OB n OA m ,,0,则r n m S S S AOB COA BOC ::::=∆∆设:r n m ===,,,则点O 为△DEF 的重心, 又EOF BOC S nr S ∆∆=1,DOF AOC S mr S ∆∆=1,DOE AOB S mnS ∆∆=1,∴r n m S S S AOB COA BOC ::::=∆∆若O 是△ABC 的外心,则S △BOC :S △AOC :S △AOB =sin ∠BOC :sin ∠AOC :sin ∠AOB =sin∠2A :sin ∠2B :sin ∠2C故si n ∠2A ·OA +si n ∠2B ·OB +si n ∠2C ·OC =0二、三角形的内心内心定理的证明:如图,设∠A 、∠C 的平分线相交于I 、过I 作ID ⊥BC ,IE ⊥AC ,IF ⊥AB 则有IE=IF =ID .因此I 也在∠C 的平分线上,即三角形三0aOA bOB cOC ++=。

三角形的、外心、内心、重心、垂心、和旁心(五心定理)

三角形的、外心、内心、重心、垂心、和旁心(五心定理)

三角形的外心、内心、重心、垂心、旁心(五心定理)
4


形的
垂心
三角形的三条高交于一点,这点称
为三角形的垂心 1,三角形任一顶点到垂心的距离,等于外
心到对边的距离的2倍;锐角三角形的垂
心到三顶点的距离之和等于其内切圆与外接圆半径之和的2倍;
2,锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的
垂心在三角形外 ;
5
三角形的旁心
三角形的一条内角平分线与另两
个外角平分线交
于一点,称为三角形的旁心(旁切圆圆心)
1, 每个三角形都有三个旁心;
2, 旁心到三边的距离相等
附:三角形的中心:只有正三角形才有中心,这时重心,内心,外心,垂心,四心合一。

A
B
C
D
E F
I a
A B
C D
E
F O。

完整版三角形的五心向量结论证明

三角形的五心向量结论证明1. O是RP2R的重心UJU uuir umr rOp OP, OP3 0(其中a,b,c 是PP2P3 三边)P2 PP3uu uur uur r证明:充分性:OR OF2 OP30 O是PP2F3的重心uuu uir uur r uur uur uur uuur uur若OR OP,OP3 0 ,则O R OP2 OR,以OR,OF2OP1P3 ' P2,设OP3与RP2交于点P3,则F3为RF2的中点,有即O,R, P,p四点共线,故PP2P3的中线,同理,uur uuuOP3 OP3 ,为邻边作平行四边形uurOP1uur uuur,OP2OP3,得PO, P2O亦为PP2P3的中线,所以,O为的重心。

2•在ABC中,给uurADuur uuuAB AC ,等于已知AD是ABC 中BC边的中线;————uur* △ ABC中AB AC 一定过BC的中点,通过△ABC的重心luuAPuuBP*PUG1 uuu(AB31 uuu-(BA31 uur -(PAuurAC),uurBC),P为VABC的重心uur uirPB PC)uuu uu uur uur uur urir uur uur uur uur uuu uuu uuu uurPG PA AG PB BG PC CG 3PG (AG BG CG) (PA PB PC)-G是厶ABC的重心uur uuu uuu r UU uur uuu r 亦uur uuu uuu uuu-GA GB GC = 0 AG BG CG : =0,即3PG PA PB PCG ABC的重心(P是平面上任意点).证明(反之亦然(证略))uurPBuirPC).uur 1 uur 由此可得PG (PA3S*若O是ABC的重心,则BOC S AOC S AOB1SS ABC3uuu umrAPgBC 0 2. uuu uuirBPgAC 0则0是厶ABC 的垂心证明:由 OA '\BC 3 = 003 +CA J ,得 -0?)3 = OB \COC -OA )2 ,所以.■ .' ■''"。

三角形五心(外心内心重心旁心)相关结论与应用汇总(精品)



(h

a)

b

(h

b)

a

h

(b

a)

0.
(h b) a 0
AH BC.
垂心
又∵点D在AH的延长线上,∴AD、BE、CF相交于一点.
例2.已知O为⊿ABC所在平面内一点,且满足:
证明外心定理
证明: 设AB、BC的中垂线交于点O,
则有OA=OB=OC,
A
故O也在AC的中垂线上, 因为O到三顶点的距离相等,
A
故点O是ΔABC外接圆的圆心.
O
因而称为外心.
O
B
C
B
C
若 O 为 ABC内一点,OA OB OC
则 O 是 ABC 的( B )
A.内心 B.外心 C.垂心 D.重心
可以大显神通了.
思考练习 3. AB 为半圆 O 的直径,其弦 AF、BE 相交于 Q, 过 E、F 分别作半圆的切线得交点 P,求证:PQ⊥AB.
3答案
思考练习 3. AB 为半圆 O 的直径,其弦 AF、BE 相交于 Q, 过 E、F 分别作半圆的切线得交点 P,求证:PQ⊥AB. 分析:延长 EP 到 K,使 PK=PE,连 KF、AE、EF、BF, 直线 PQ 交 AB 于 H.因∠EQF=∠AQB =( 90 -∠1)+( 90 +∠2) =∠ABF+∠BAE=∠QFP+∠QEP, 又由 PK=PE=PF 知∠K=∠PFK, ∴∠EQF+∠K=∠QFK+∠QEK= 180 , 从而 E、Q、F、K 四点共圆. 由 PK=PF=PE 知,P 为△EFK 的外心,显然 PQ=PE=PF.于 是∠1+∠AQH=∠1+PQF=∠1+∠PFQ=∠1+∠AFP=∠1+∠ ABF=90º .由此知 QH⊥AH,即 PQ⊥AB.

三角形五心的证明

三角形五心的证明
三角形五心证明
三角形五心是一个普遍存在的几何定理,它说明在任何一个三角形中,其内部总是存在三条中垂线相交的心形,在每个角上还有两个凹点,就形
成了五点的心形。

在推导三角形五心定理前,我们先来看看三角形的基本概念:
定义1:三角形是由三条有限直线构成的面,这三条直线两两相交构
成三个点。

定义2:三角形的角是三条有限直线在其共同点处所形成的角,三角
形的三个角一定都是小于180°的角。

定义3:三角形的高是连接其三个顶点的直线与其对边的中垂线,每
一条高垂线将它所连接的对边截成两部分,称之为垂足。

现在我们开始推导三角形五心定理:
步骤一:证明存在三角形内部心形
同样,我们也可以在三角形B和三角形C的内角处做高为b/2和c/2
的垂线。

(完整版)三角形五心的证明

三角形五心内心:内切圆的圆心,即三条角平分线的交点.外心:外切圆的圆心,即三条中垂线的交点。

旁心:旁切圆的圆心,即三条角平分线的交点。

(类似、但不同于内心)垂心:三条高的交点.重心:三条中线的交点。

注:红线为所要证明的线,绿线为辅助线。

内心:三条角平分线的交点证:过点O作三边的垂线,垂足分别为D、E、F。

由角平分线定理(角平分线上一点到两边的距离相等)得:OD=OF,OF=OE∴ OD=OE∴AO为角BAC的平分线外心:三条中垂线的交点证:连结OA、OB、OC,并过O点作OF⊥BC于点F。

由线段中垂线定理(线段中垂线上一点到两端点的距离相等),得:OA=OB,OA=OC.∴OB=OC∴点O在线段BC的中垂线上∴OF为线段BC的中垂线旁心:证:过点O作三边的垂线,垂足分别为D、E、F。

由角平分线定理(角平分线上一点到两边的距离相等)得:OD=OF,OD=OE∴ OF=OE∴BO为角ABC的平分线垂心:三条高的交点证:连结DE,连结AO交BC于F点。

∵角BDC=角BEC=90°∴B、D、E、C四点共圆(以BC为直径的圆)。

∴角FBO=角CDE ······①(同弦(弧)所对圆周角相等)又∵角ODA=角AEO=90°∴O、D、A、E四点共圆(以AO为直径的圆).∴角AOE=角ADE (同弦(弧)所对圆周角相等)且角AOE=角BOF∴角ADE=角BOF ······②由①②可知,角OFB=角ODA=90°∴AF为BC边上的高。

重心:三条中线的交点方法一:证:连结AO交BC于点F。

∵D为AB的中点∴S△ACD=S△BCD (S△表示三角形的面积)(底相等(AD=BD),高相同(都为点C到AB的距离))S△AOD=S△BOD∴S△AOC=S△BOC ······①同理可得:S△BOC=S△AOB ······②由①②得,S△AOC=S△AOB又∵△AOC与△AOB底都为AO∴它们高相等,即:点B和点C到AF的距离相等.对于△AFB和△AFC,底相同(为AF),高相等(分别为点B和点C到AF的距离)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形五心
内心:内切圆的圆心,即三条角平分线的交点。

外心:外切圆的圆心,即三条中垂线的交点。

旁心:旁切圆的圆心,即三条角平分线的交点。

(类似、但不同于内心)垂心:三条高的交点。

重心:三条中线的交点。

注:红线为所要证明的线,绿线为辅助线。

内心:三条角平分线的交点
证:过点O作三边的垂线,垂足分别为D、E、F。

由角平分线定理(角平分线上一点到两边的
距离相等)得:
OD=OF,OF=OE
∴ OD=OE
∴AO为角BAC的平分线
外心:三条中垂线的交点
证:连结OA、OB、OC,并过O点作OF⊥BC于点F。

由线段中垂线定理(线段中垂线上一点到
两端点的距离相等),得:
OA=OB,OA=OC.
∴OB=OC
∴点O在线段BC的中垂线上
∴OF为线段BC的中垂线
旁心:
证:过点O作三边的垂线,垂足分别为D、E、F。

由角平分线定理(角平分线上一点到两边的
距离相等)得:
OD=OF,OD=OE
∴ OF=OE
∴BO为角ABC的平分线
垂心:三条高的交点
证:连结DE,连结AO交BC于F点。

∵角BDC=角BEC=90°
∴B、D、E、C四点共圆(以BC为直径的圆)。

∴角FBO=角CDE ······①
(同弦(弧)所对圆周角相等)
又∵角ODA=角AEO=90°
∴O、D、A、E四点共圆(以AO为直径的圆)。

∴角AOE=角ADE (同弦(弧)所对圆周角相等)
且角AOE=角BOF
∴角ADE=角BOF ······②
由①②可知,角OFB=角ODA=90°
∴AF为BC边上的高。

重心:三条中线的交点
方法一:
证:连结AO交BC于点F。

∵D为AB的中点
∴S△ACD=S△BCD (S△表示三角形的面积)
(底相等(AD=BD),高相同(都为点C到AB的距离))
S△AOD=S△BOD
∴S△AOC=S△BOC ······①
同理可得:
S△BOC=S△AOB ······②
由①②得,S△AOC=S△AOB
又∵△AOC与△AOB底都为AO
∴它们高相等,即:点B和点C到AF的距离相等。

对于△AFB和△AFC,底相同(为AF),高相等(分别为点B和点C到AF的距离)。

∴S△AFB=S△AFC
又对于△AFB和△AFC,高相同(为点A到BC的距离)。

∴它们底相等,即:BF=CF
∴AF为三角形的中线。

方法二:
证:连AO交BC于点F,连DE交AF于点N,
G,H分别为OB、OC的中点,连DG,EH。

连GH交AF于点M。

∵DE为△ABC的中位线
∴DE#1/2BC (#表示平行且等于)
同理,可得:GH#1/2BC
∴DE#GH 即:四边形DEHG为平行四边形。

易证,△ODN≌△OHM,得HM=DN
∵DG为△ABO的中位线
∴DG∥NM,即四边形DGMN为平行四边形
∴DN=GM
∴HM=GM,再由三角形中位线定理得,BF=CF。

∴AF为三角形的中线。

三角形有五颗心,重外垂内和旁心,五心性质很重要,认真掌握莫记混.
重心
三条中线定相交,交点位置真奇巧,交点命名为“重心”,重心性质要明了,
重心分割中线段,数段之比听分晓;长短之比二比一,灵活运用掌握好.
外心
三角形有六元素,三个内角有三边.作三边的中垂线,三线相交共一点.
此点定义为外心,用它可作外接圆.内心外心莫记混,内切外接是关键.
垂心
三角形上作三高,三高必于垂心交.高线分割三角形,出现直角三对整,
直角三角形有十二,构成六对相似形,四点共圆图中有,细心分析可找清.
内心
三角对应三顶点,角角都有平分线,三线相交定共点,叫做“内心”有根源;
点至三边均等距,可作三角形内切圆,此圆圆心称“内心”,如此定义理当然.
五心性质别记混,做起题来真是好。

(注:文档可能无法思考全面,请浏览后下载,供参考。

可复制、编制,期待你的好评与关注)。

相关文档
最新文档