中考数学练习题_图形的认识与证明
(广东专版)201x年中考数学一轮复习 专题4 图形的认识 4.1 角、相交线与平行线(试卷部分)

2
∴∠CDO=180°-∠C-∠BOC=95°,故选B.
.
2.(2017河北,3,3分)用量角器测量∠MON的度数,下列操作正确的是 ( )
答案 C 用量角器测量一个角的度数时,应将量角器的圆心对准所量角的顶点,量角器的零 刻度线与角的一边重合,那么角的另一边所对应的刻度就是角的度数,故选C.
.
考点二 相交线
.
5.(2016茂名,5,3分)如图,直线a,b被直线c所截,若a∥b,∠1=60°,那么∠2的度数为 ( )
A.120° B.90° C.60° D.30° 答案 C 两条直线平行,同位角相等, 所以∠2=∠1=60°.故选C.
.
6.(2015广东,4,3分)如图,直线a∥b,∠1=75°,∠2=35°,则∠3的度数是 ( ) A.75° B.55° C.40° D.35°
.
2.(2018河南,12,3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数
为
.
答案 140° 解析 ∵EO⊥AB,∴∠EOB=90°,∴∠BOD=90°-∠EOD=40°, ∴∠BOC=180°-∠BOD=180°-40°=140°.
.
3.(2017江西,8,3分)如图1是一把园林剪刀,把它抽象为图2,其中OA=OB,若剪刀张开的角为30°,
考点一 角
1.(2016北京,1,3分)如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为 ( )
A.45° B.55° C.125° D.135° 答案 B 由题图可知,∠AOB=55°.
.
2.(2016湖南长沙,9,3分)下列各图中,∠1与∠2互为余角的是 ( )
答案 B A项,∠1与∠2不互余,故本选项错误; B项,∠1+∠2=90°,即∠1与∠2互余,故本选项正确; C项,∠1与∠2是对顶角,故本选项错误; D项,∠1与∠2是邻补角,故本选项错误.故选B.
石家庄市中考数学 平面图形的认识(二)压轴解答题专题练习(附答案)

石家庄市中考数学平面图形的认识(二)压轴解答题专题练习(附答案)一、平面图形的认识(二)压轴解答题1.如图,长方形中,,为边上一点,将长方形沿折叠( 为折痕),使点与点重合,平分交于,过点作交于点,(1)求证:(2)若,求的度数2.已知 ABC,P 是平面内任意一点(A、B、C、P 中任意三点都不在同一直线上).连接 PB、PC,设∠PBA=s°,∠PCA=t°,∠BPC=x°,∠BAC=y°.(1)如图,当点 P 在 ABC 内时,①若 y=70,s=10,t=20,则 x=________;②探究 s、t、x、y 之间的数量关系,并证明你得到的结论.(2)当点P 在 ABC 外时,直接写出s、t、x、y 之间所有可能的数量关系,并画出相应的图形.3.如图,在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,2),且(a+2)2+ =0,(1)求a,b的值;(2)在坐标轴上存在一点M,使△COM的面积是△ABC的面积的一半,求出点M的坐标.(3)如图2,过点C做CD⊥y轴交y轴于点D,点P为线段CD延长线上一动点,连接OP,OE平分角∠AOP,OF⊥OE,当点P运动时,的值是否会改变?若不变,求其值;若改变,说明理由.4.如图,,,,点D,C,E在同一条直线上.(1)完成下面的说理过程∵,(已知)∴,(垂直的定义).∴ .∴,(________).∴ .(________)又∠B=∠D,∴∠B=∠BCE,∴AB//CD. (________)(2)若∠BAD=150°,求∠E的度数.5.如图1,已知点A,点D在BC上方,过点A,D分别作CD,AB的平行线,两条平行线交于点M(点M在BC下方),且与BC分别交于E,F两点,连结AD。
(1)∠BAM与∠CDM相等吗?请说明理由。
(2)根据题中条件,判断∠AEF,∠DFE,∠BAE三个角之间的数量关系,并说明理由;(3)如图2,Q是AD下方一点,连结AQ,DQ,且∠DAQ= ∠BAD,∠ADQ= ∠ADC,若∠AQD=112°,请直接写出∠BAE的度数。
全国2020年中考数学试题精选50题图形的初步认识与三角形含解析

2020年全国中考数学试题精选50题:图形的初步认识与三角形一、单选题1.(2020·玉林)如图是A,B,C三岛的平面图,C岛在A岛的北偏东35°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西55°方向,则A,B,C三岛组成一个()A. 等腰直角三角形B. 等腰三角形 C. 直角三角形 D. 等边三角形2.(2020·玉林)一个三角形木架三边长分别是75cm,100cm,120cm,现要再做一个与其相似的三角形木架,而只有长为60cm和120cm的两根木条.要求以其中一根为一边,从另一根截下两段作为另两边(允许有余料),则不同的截法有()A. 一种B. 两种 C. 三种 D. 四种3.(2020·玉林)已知:点D,E分别是△ABC的边AB,AC的中点,如图所示.求证:DE∥BC,且DE=BC.证明:延长DE到点F,使EF=DE,连接FC,DC,AF,又AE=EC,则四边形ADCF是平行四边形,接着以下是排序错误的证明过程:①∴DF BC;②∴CF AD.即CF BD;③∴四边形DBCF是平行四边形;④∴DE∥BC,且DE=BC.则正确的证明顺序应是()A. ②→③→①→④B. ②→①→③→④C . ①→③→④→② D. ①→③→②→④4.(2020·河池)如图,在中,CE平分∠BCD,交AB于点E,EA=3,EB=5,ED=4.则CE的长是()A. 5B. 6C. 4D. 55.(2020·河池)观察下列作图痕迹,所作CD为△ABC的边AB上的中线是()A. B. C.D.6.(2020·河池)在Rt△ABC中,∠C=90°,BC=5,AC=12,则sinB的值是()A. B.C.D.7.(2020·河池)如图,AB是O的直径,CD是弦,AE⊥CD于点E,BF⊥CD于点F.若BF=FE=2,DC=1,则AC的长是()A. B.C.D.8.(2020·铁岭)一个零件的形状如图所示,,则的度数是()A. 70°B. 80°C. 90°D. 100°9.(2020·铁岭)如图,矩形的顶点在反比例函数的图象上,点和点在边上,,连接轴,则的值为()A. B.3 C. 4D.10.(2020·盘锦)我国古代数学著作《九章算术》记载了一道有趣的问题.原文是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何.译为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,水的深度与这根芦苇的长度分别是多少?设芦苇的长度是尺.根据题意,可列方程为()A. B. C.D.11.(2020·盘锦)如图,在中,,,以为直径的⊙O交于点,点为线段上的一点,,连接并延长交的延长线于点,连接交⊙O于点,若,则的长是()A. B.C.D.12.(2020·锦州)如图,在菱形中,P是对角线上一动点,过点P作于点E.于点F.若菱形的周长为20,面积为24,则的值为()A. 4B.C.6 D.13.(2020·锦州)如图,在中,,,平分,则的度数是()A. B.C.D.14.(2020·丹东)如图,在四边形中,,,,,分别以和为圆心,以大于的长为半径作弧,两弧相交于点和,直线与延长线交于点,连接,则的内切圆半径是()A. 4B.C. 2D.15.(2020·丹东)如图,是的角平分线,过点作交延长线于点,若,,则的度数为()C. 125°D. 135°16.(2020·朝阳)如图,在平面直角坐标系中,一次函数的图象与x轴、y轴分别相交于点B,点A,以线段AB为边作正方形,且点C在反比例函数的图象上,则k的值为()A. -12B. -42 C. 42D. -2117.(2020·朝阳)如图,四边形是矩形,点D是BC边上的动点(点D与点B、点C不重合),则的值为()A. 1B.C. 2D. 无法确定18.(2020·雅安)如图,内接于圆,,过点C的切线交的延长线于点.则()A. B.C.D.19.(2020·雅安)如图,在中,,若,则的长为()C.D.20.(2020·绵阳)下列四个图形中,不能作为正方体的展开图的是()A. B. C.D.21.(2020·绵阳)在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠ACD=()A. 16°B. 28°C. 44°D. 45°22.(2020·绵阳)如图,在四边形ABCD中,∠A=∠C=90°,DF∥BC,∠ABC的平分线BE交DF于点G,GH⊥DF,点E恰好为DH的中点,若AE=3,CD=2,则GH=()A. 1B. 2C. 3D. 423.(2020·眉山)如图,四边形的外接圆为⊙O,,,,则的度数为()A. B.C.D.24.(2020·眉山)一副三角板如图所示摆放,则与的数量关系为()A. B. C.D.25.(2020·凉山州)如图,等边三角形ABC和正方形ADEF都内接于,则()A. B.C.D.26.(2020·凉山州)点C是线段AB的中点,点D是线段AC的三等分点.若线段,则线段BD的长为()A. 10cmB. 8cmC. 8cm或10cm D. 2cm或4cm27.(2020·淄博)如图,若△ABC≌△ADE,则下列结论中一定成立的是()A. AC=DEB. ∠BAD=∠CAE C. AB=AE D. ∠ABC=∠AED28.(2020·淄博)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M是曲线部分的最低点,则△ABC的面积是()A. 12B.24 C. 36 D. 48 29.(2020·淄博)如图,在直角坐标系中,以坐标原点O(0,0),A(0,4),B(3,0)为顶点的Rt△AOB,其两个锐角对应的外角角平分线相交于点P,且点P恰好在反比例函数y=的图象上,则k的值为()A. 36B.48 C.49 D. 64 30.(2020·淄博)如图,在四边形ABCD中,CD∥AB,AC⊥BC,若∠B=50°,则∠DCA等于()A. 30°B.35° C. 40°D. 45°二、填空题31.(2020·徐州)在中,若,,则的面积的最大值为________.32.(2020·徐州)如图,在中,,,.若以所在直线为轴,把旋转一周,得到一个圆锥,则这个圆锥的侧面积等于________.33.(2020·徐州)如图,在中,,、、分别为、、的中点,若,则________.34.(2020·徐州)如图,,在上截取.过点作,交于点,以点为圆心,为半径画弧,交于点;过点作,交于点,以点为圆心,为半径画弧,交于点;按此规律,所得线段的长等于________.35.(2020·河池)如图,菱形ABCD的周长为16,AC,BD交于点O,点E在BC上,OE∥AB,则OE的长是________.36.(2020·铁岭)如图,以为边,在的同侧分别作正五边形和等边,连接,则的度数是________.37.(2020·铁岭)如图,在中,,以为圆心,以适当的长为半径作弧,交于点,交于点,分别以为圆心,以大于的长为半径作弧,两弧在的内部相交于点,作射线,交于点,点在边上,,连接,则的周长为________.38.(2020·铁岭)一张菱形纸片的边长为,高等于边长的一半,将菱形纸片沿直线折叠,使点与点重合,直线交直线于点,则的长为________ .39.(2020·盘锦)如图,直线,的顶点和分别落在直线和上,若,,则的度数是________.40.(2020·盘锦)如图,菱形的边长为4,,分别以点和点为圆心,大于的长为半径作弧,两弧相交于两点,直线交于点,连接,则的长为________.三、综合题41.(2020·徐州)如图,,,. ,与交于点.(1)求证:;(2)求的度数.42.(2020·玉林)如图,四边形ABCD中,对角线AC与BD交于点O,且OA=OB=OC=OD=AB.(1)求证:四边形ABCD是正方形;(2)若H是边AB上一点(H与A,B不重合),连接DH,将线段DH绕点H顺时针旋转90°,得到线段HE,过点E分别作BC及AB延长线的垂线,垂足分别为F,G.设四边形BGEF的面积为s1,以HB,BC为邻边的矩形的面积为s2,且s1=s2.当AB=2时,求AH的长.43.(2020·玉林)如图,AB是⊙O的直径,点D在直径AB上(D与A,B不重合),CD⊥AB,且CD=AB,连接CB,与⊙O交于点F,在CD上取一点E,使EF=EC.(1)求证:EF是⊙O的切线;(2)若D是OA的中点,AB=4,求CF的长.44.(2020·河池)如图(1)如图(1),已知CE与AB交于点E,AC=BC,∠1=∠2.求证:.(2)如图(2),已知CD的延长线与AB交于点E,AD=BC,∠3=∠4.探究AE与BE的数量关系,并说明理由.45.(2020·铁岭)在等腰和等腰中,,,将绕点逆时针旋转,连接,点为线段的中点,连接.(1)如图1,当点旋转到边上时,请直接写出线段与的位置关系和数量关系;(2)如图2,当点旋转到边上时,(1)中的结论是否成立?若成立,请写出证明过程,若不成立,请说明理由.(3)若,在绕点逆时针旋转的过程中,当时,请直接写出线段的长.46.(2020·铁岭)如图,四边形内接于是直径,,连接,过点的直线与的延长线相交于点,且.(1)求证:直线是的切线;(2)若,,求的长.47.(2020·盘锦)如图,是的直径,是的弦,交于点,连接,过点作,垂足为,.(1)求证:;(2)点在的延长线上,连接.①求证:与相切;②当时,直接写出的长.48.(2020·盘锦)如图,两点的坐标分别为,将线段绕点逆时针旋转90°得到线段,过点作,垂足为,反比例函数的图象经过点.(1)直接写出点的坐标,并求反比例函数的解析式;(2)点在反比例函数的图象上,当的面积为3时,求点的坐标.49.(2020·锦州)已知和都是等腰直角三角形,.(1)如图1:连,求证:;(2)若将绕点O顺时针旋转,①如图2,当点N恰好在边上时,求证:;②当点在同一条直线上时,若,请直接写出线段的长.50.(2020·阜新)如图,正方形和正方形(其中),的延长线与直线交于点H.(1)如图1,当点G在上时,求证:,;(2)将正方形绕点C旋转一周.①如图2,当点E在直线右侧时,求证:;②当时,若,,请直接写出线段的长答案解析部分一、单选题1.【答案】 C【解析】【解答】解:如图,过点C作CD∥AE交AB于点D,∴∠DCA=∠EAC=35°,∵AE∥BF,∴CD∥BF,∴∠BCD=∠CBF=55°,∴∠ACB=∠ACD+∠BCD=35°+55°=90°,∴△ABC是直角三角形.故答案为:C.【分析】如图,过点C作CD∥AE交AB于点D,可得∠DCA=∠EAC=35°,根据AE∥BF,可得CD∥BF,可得∠BCD=∠CBF=55°,进而得△ABC是直角三角形.2.【答案】 B【解析】【解答】解:长120cm的木条与三角形木架的最长边相等,则长120cm的木条不能作为一边,设从120cm的木条上截下两段长分别为xcm,ycm(x+y≤120),由于长60cm的木条不能与75cm的一边对应,否则x、y有大于120cm,当长60cm的木条与100cm的一边对应,则,解得:x=45,y=72;当长60cm的木条与120cm的一边对应,则,解得:x=37.5,y=50.答:有两种不同的截法:把120cm的木条截成45cm、72cm两段或把120cm的木条截成37.5cm、50cm两段. 故答案为:B.【分析】分类讨论:长120cm的木条与三角形木架的最长边相等,则长120cm的木条不能作为一边,设从120cm的一根上截下的两段长分别为xcm,ycm(x+y≤120),易得长60cm的木条不能与75cm的一边对应,所以当长60cm的木条与100cm的一边对应时有;当长60cm的木条与120cm的一边对应时有,然后分别利用比例的性质计算出两种情况下得x和y的值.3.【答案】 A【解析】【解答】证明:延长DE到点F,使EF=DE,连接FC,DC,AF,∵点D,E分别是△ABC的边AB,AC的中点,∴AD=BD,AE=EC,∴四边形ADCF是平行四边形,∴CF AD.即CF BD,∴四边形DBCF是平行四边形,∴DF BC,∴DE∥BC,且DE=BC.∴正确的证明顺序是②→③→①→④,故答案为:A.【分析】证出四边形ADCF是平行四边形,得出CF AD.即CF BD,则四边形DBCF是平行四边形,得出DF BC,即可得出结论.4.【答案】 C【解析】【解答】解:∵CE平分∠BCD,∴∠BCE=∠DCE,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AB∥CD,∴∠BEC=∠DCE,∴∠BEC=∠BCE,∴BC=BE=5,∴AD=5,∵EA=3,ED=4,在△AED中,,即,∴∠AED=90°,∴CD=AB=3+5=8,∠EDC=90°,在Rt△EDC中,.故答案为:C.【分析】利用平行四边形的性质,可证得AB=CD,AD=BC,AB∥CD,再利用角平分线的定义及平行线的性质可以推出∠BEC=∠BCE,利用等角对等边,就可求出BC的长,即可得到AD的长;再利用勾股定理的逆定理证明△ADE是直角三角形,由此可证△DEC是直角三角形,利用勾股定理求出CE的长。
2022数学中考试题汇编图形认识初步-自定义类型

2022数学中考试题汇编图形认识初步一、选择题1.(2022·四川省自贡市)九年级2班计划在劳动实践基地内种植蔬菜,班长买回来8米长的围栏,准备围成一边靠墙(墙足够长)的菜园,为了让菜园面积尽可能大,同学们提出了围成矩形、等腰三角形(底边靠墙)、半圆形这三种方案,最佳方案是( )A. 方案1B. 方案2C. 方案3D. 方案1或方案22.(2022·北京市)下面几何体中,是圆锥的为( )A. B. C. D.3.(2022·河北省)①~④是由相同的小正方体粘在一起的几何体,若组合其中的两个,恰是由6个小正方体构成的长方体,则应选择( )A. ①③B. ②③C. ③④D. ①④4.(2022·四川省自贡市)如图,将矩形纸片ABCD绕边CD所在直线旋转一周,得到的立体图形是( )A.B.C.D.5.(2022·江苏省常州市)下列图形中,为圆柱的侧面展开图的是( )A. B.C. D.6.(2022·山东省临沂市)如图所示的三棱柱的展开图不可能是( )A.B.C.D.7.(2022·黑龙江省大庆市)已知圆锥的底面半径为5,高为12,则它的侧面展开图的面积是( )A. 60πB. 65πC. 90πD. 120π8.(2022·黑龙江省绥化市)下列图形中,正方体展开图错误的是( )A.B.C.D.9.(2022·台湾)如图为一个长方体的展开图,且长方体的底面为正方形.根据图中标示的长度,求此长方体的体积为何?( )A. 144B. 224C. 264D. 30010.(2022·四川省广元市)如图是某几何体的展开图,该几何体是( )A. 长方体B. 圆柱C. 圆锥D. 三棱柱11.(2022·四川省内江市)如图是正方体的表面展开图,则与“话”字相对的字是( )A. 跟B. 党C. 走D. 听12.(2022·湖北省恩施土家族苗族自治州)如图是一个正方体纸盒的展开图,将其折叠成一个正方体后,有“振”字一面的相对面上的字是( )A. “恩”B. “乡”C. “村”D. “兴”13.(2022·四川省遂宁市)如图是正方体的一种展开图,那么在原正方体中与“我”字所在面相对的面上的汉字是( )A. 大B. 美C. 遂D. 宁14.(2022·山东省烟台市)如图,是一个正方体截去一个角后得到的几何体,则该几何体的左视图是( )A.B.C.D.15.(2022·山东省聊城市)如图,该几何图形是沿着圆锥体的轴切割后得到的“半个”圆锥体,它的左视图是( )A.B.C.D.16.(2022·贵州省贵阳市)如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是( )A. B. C. D.17.(2022·台湾省)缓降机是火灾发生时避难的逃生设备,如图是厂商提供的缓降机安装示意图,图中呈现在三楼安装缓降机时,使用此缓降机直接缓降到一楼地面的所需绳长(不计安全带).若某栋建筑的每个楼层高度皆为3公尺,则根据如图的安装方式在该建筑八楼安装缓降机时,使用此缓降机直接缓降到一楼地面的所需绳长(不计安全带)为多少公尺?( )A. 21.7B. 22.6C. 24.7D. 25.618.(2022·江苏省)下列说法:①过两点有且只有一条直线;②射线比直线少一半;③单项式32πx2y的系数是32;④绝对值不大于3的整数有7个;⑤若a+b=1,且a≠0,则x=1一定是方程ax+b=1的解.其中正确的个数为( )A. 1B. 2C. 3D. 419.(2022·山东省)下列说法,正确的是( )A. 若ac=bc,则a=bB. 两点之间的所有连线中,线段最短C. 相等的角是对顶角D. 若AC=BC,则C是线段AB的中点20.(2022·山东省威海市)图1是光的反射规律示意图.其中,PO是入射光线,OQ是反射光线,法线KO⊥MN,∠POK是入射角,∠KOQ是反射角,∠KOQ=∠POK.图2中,光线自点P射入,经镜面EF反射后经过的点是( )A. A点B. B点C. C点D. D点21.(2022·甘肃省临夏回族自治州)若∠A=40°,则∠A的余角的大小是( )A. 50°B. 60°C. 140°D. 160°22.(2022·湖北省潜江)如图,AB//CD,直线EF分别交AB,CD于点E,F.∠BEF的平分线交CD于点G.若∠EFG=52°,则∠EGF=( )A. 128°B. 64°C. 52°D. 26°二、填空题ab2,则高为______.23.(2022·山东省)已知长方体的体积为3a3b5,若长为ab,宽为3224.(2022·湖南省常德市)如图是一个正方体的展开图,将它拼成正方体后,“神”字对面的字是______.25.(2022·广西壮族自治区桂林市)如图,点C是线段AB的中点,若AC=2cm,则AB=______cm.26.(2022·广西壮族自治区百色市)如图摆放一副三角板,直角顶点重合,直角边所在直线分别重合,那么∠BAC的大小为______°.27.(2022·广西壮族自治区玉林市)已知:α=60°,则α的余角是______°.28.(2022·江苏省连云港市)已知∠A的补角为60°,则∠A=______°.29.(2022·体验省)在同一平面内,已知∠AOB=30°,∠BOC与∠AOB互余,且OE平分∠AOC,则∠AOE=______度.三、解答题30.(2022·山东省)如图,圆柱的高是3cm,当圆柱的底面半径rcm由小到大变化时,圆柱的体积Vcm3也随之发生了变化.(1)在这个变化中,自变量是______,因变量是______;(2)写出体积V与半径r的关系式;(3)当底面半径由1cm到10cm变化时,通过计算说明圆柱的体积增加了多少cm3.31.(2022·山东省)如图所示,已知线段AB,点P是线段AB外一点.按要求画图,保留作图痕迹;(1)作射线PA,作直线PB;(2)延长线段AB至点C,使得AC=2AB.32.(2022·江苏省)已知数轴上两点A、B对应的数分别为−2,4,点P为数轴上一动点,其对应的数为x.(1)若点P到点A、点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为7?若存在,请直接写出x的值.若不存在,请说明理由?(3)若点P以1个单位/s的速度从点O向右运动,同时点A以5个单位/s的速度向左运动,点B以20个单位/s的速度向右运动,在运动过程中,M、N分别是AP、OB的中的值是否发生变化?请说明理由.点,问:AB−OPMN33.(2022江苏省)阅读材料并回答问题:数学课上,老师给出了如下问题:如图1,∠AOB=90°,OC平分∠AOB.若∠COD=65°,请你补全图形,并求∠BOD的度数.同学一:以下是我的解答过程(部分空缺)解:如图2,∵∠AOB=90°,OC平分∠AOB,∴∠BOC=∠AOC=______ °.∵∠COD=65°,∴∠BOD=∠BOC+∠______ =______ °.同学二:“符合题目要求的图形还有一种情况.”请你完成以下问题:(1)将同学一的解答过程空缺部分补充完整,能正确求出图2中∠BOD的度数.(2)判断同学二的说法是否正确,若不正确,请说明理由;若正确,请你在图1中画出另一种情况对应的图形,并求∠BOD的度数.1.【答案】C【解析】解:方案1:设AD=x米,则AB=(8−2x)米,则菜园面积=x(8−2x)=−2x2+8x=−2(x−2)2+8,当x=2时,此时菜园最大面积为8米 2;方案2:当∠BAC=90°时,菜园最大面积=12×4×4=8米 2;方案3:半圆的半径=8π,∴此时菜园最大面积=π×(8π)22=32π米 2>8米 2;故选:C.2.【答案】B【解析】解:A是圆柱;B是圆锥;C是三棱锥,也叫四面体;D是球体,简称球;故选:B.3.【答案】D【解析】解:由题意知,组合后的几何体是长方体且由6个小正方体构成,∴①④符合要求,故选:D.4.【答案】A【解析】解:根据“点动成线,线动成面,面动成体”,将矩形纸片ABCD绕边CD所在直线旋转一周,所得到的立体图形是圆体.故选:A.5.【答案】D【解析】解:根据题意,把圆柱的侧面沿它的一条母线剪开展在一个平面上,得到其侧面展开图是对边平行且相等的四边形;又有母线垂直于上下底面,故可得是长方形.故选:D.6.【答案】D【解析】解:如图所示的三棱柱的展开图不可能是,故选:D.7.【答案】B【解析】解:圆锥侧面展开图扇形的半径为:√52+122=13,其弧长为:2×π×5=10π,×10π×13=65π.∴圆锥侧面展开图的面积为:12故选:B.8.【答案】D【解析】解:由展开图的知识可知,四个小正方形绝对不可能展开成田字形,故D选项都不符合题意.故选:D.9.【答案】B【解析】解:设展开图的长方形的长为a,宽为b,12=3b,2b+a=22,解得a=14,b=4,∴长方体的体积为:4×4×14=224,故选:B.10.【答案】B【解析】解:由两个圆和一个长方形可以围成圆柱,故选:B.11.【答案】C【解析】解:由正方体表面展开图的“相间、Z端是对面”可知,“话”与“走”是对面,故答案为:C.12.【答案】D【解析】解:由正方体表面展开图的“相间、Z端是对面”可知,“振”与“兴”是对面,故选:D.13.【答案】B【解析】解:由图可知,我和美相对,爱和宁相对,大和遂相对,故选:B.14.【答案】A【解析】解:从左边看,可得如下图形:故选:A.15.【答案】B【解析】解:从左边看该几何体它是一个斜边在左侧的三角形,故选:B.16.【答案】B【解析】解:用一个平行于圆锥底面的平面截圆锥,截面的形状是圆,故选:B.17.【答案】A【解析】解:该建筑八楼安装缓降机时,使用此缓降机直接缓降到一楼地面的所需绳长=3×7−(1,6−0.4−0,5)=21.7(公尺),故选:A.18.【答案】C【解析】解:①过两点有且只有一条直线,正确;②射线比直线少一半,两种图形都没有长度,故错误;③单项式32πx2y的系数是32π,故此选项错误;④绝对值不大于3的整数有7个,正确;⑤若a+b=1,且a≠0,则x=1一定是方程ax+b=1的解,正确.故选:C.19.【答案】B【解析】解:A、若ac=bc(c≠0),则a=b,故此选项错误;B、两点之间的所有连线中,线段最短,说法正确,故此选项正确;C、相等的角是对顶角,说法错误,应是对顶角相等,故此选项错误;AB,则点C是D、若AC=BC,则点C是线段AB的中点,说法错误,应是若AC=BC=12线段AB的中点,故此选项错误;故选:B.20.【答案】B【解析】解:根据直线的性质补全图2并作出法线OK,如下图所示:根据图形可以看出OB是反射光线,故选:B.21.【答案】A【解析】解:∵∠A=40°,∴∠A的余角为:90°−40°=50°,故选:A.22.【答案】B【解析】解:∵AB//CD,∴∠FEB=180°−∠EFG=128°,∵EG平分∠BEF,∠BEF=64°,∴∠BEG=12∵AB//CD,∴∠EGF=∠BEG=64°.故答案选:B.23.【答案】2ab2【解析】解:根据题意得:3a3b5÷ab÷32ab2=3a2b4÷32ab2=2ab2.答:这个长方体的高是2ab2.故答案为:2ab2.24.【答案】月【解析】解:由图可得,“神”字对面的字是“月”,故答案为:月.25.【答案】4【解析】解:根据中点的定义可得:AB=2AC=2×2=4cm,故答案为:4.26.【答案】135【解析】解:根据题意可得,∠BAC=90°+45°=135°.故答案为:135.27.【答案】30【解析】解:90°−60°=30°,故答案为:30.28.【答案】120【解析】解:∵∠A的补角为60°,∴∠A=180°−60°=120°,故答案为:120.29.【答案】15°或30°【解析】解:∵∠AOB=30°,∠BOC与∠AOB互余,∴∠BOC=60°.如图1所示:∠AOC=∠AOB+∠BOC=90°,∵OE平分∠AOC,∴∠AOE=45°.如图2所示:∠AOC=∠BOC−∠AOB=30°,∵OE平分∠AOC,∴∠AOE=15°.故答案为:15°或30°.30.【答案】r V【解析】解:(1)在这个变化过程中,自变量是r,因变量是V.故答案为:r,V;31.【答案】解:(1)如图,射线PA,PB即为所求;(2)图形如图所示.【解析】本题考查作图−复杂作图,直线,射线,线段的定义等知识,解题的关键是理解直线,射线,线段的定义,属于中考常考题型.(1)根据射线的定义画出图形即可;(2)根据要求画出图形即可.=1;32.【答案】解:(1)若点P到点A,点B的距离相等,则x=−2+42∴点P对应的数是1;(2)存在满足条件的P点.若点P到点A、点B的距离之和为7,则有|x+2|+|x−4|=7,解得:x=4.5或−2.5;(3)AB−OP的值不发生变化.MN理由:设运动时间为t分钟.则OP=t,OA=5t+2,OB=20t+4,AB=OA+OB=25t+6,AP=OA+OP=6t+2,AM=12AP=1+3t,OM=OA−AM=5t+2−(1+3t)=2t+1,ON=12OB=10t+2,∴MN=OM+ON=12t+3,∴AB−OPMN =25t+6−t12t+3=2,∴在运动过程中,M、N分别是AP、OB的中点,AB−OPMN的值不发生变化.33.【答案】45COD110【解析】解:(1)如图2,∠AOB=90°,OC平分∠AOB.∴∠BOC=∠AOC=45°.∵∠COD=65°.∴∠BOD=∠BOC+∠COD=110°.故答案为:45,COD,110°.(2)正确,∵∠AOB=90°,OC平分∠AOB.∴∠BOC=∠AOC=45°.∵∠COD=65°.∴∠BOD=∠BOC−∠COD=20°.。
初三数学几何知识点综合题练习

中考数学几何考点训练【图形的初步认识】考点1 圆和扇形(概念、弧长、面积)例1:圆周长的计算(1)已知圆的半径增大2倍,它的周长增大倍(2)一个圆的半径是7厘米,另一个圆的半径是5厘米,他们周长相差(3)如果圆切掉了它的四分之三,那么现在它的周长是原来的(4)如图,已知外圈的周长是内圈的4倍,外圆的周长是120cm,求阴影部分的宽度。
(5)一个人要从A点到B点(如图),他可以按①号箭头所表示的路线走,也可以按照②号箭头所表示的路线走。
哪条路线近?为什么?(6)如图,有四根底面直径都是0.5米的圆形管子,被一根铁丝紧紧的捆在一起,试求铁丝的长度。
例2:弧长与圆心角1、下列说法中,正确的个数有()个。
(1)弧的长度仅由弧所在圆的半径大小决定。
(2)两条弧的长度相等,则它们所对的圆心角也一定相等。
(3)圆心角扩大4倍而所在圆的半径缩小为原来的14,那么原来的弧长不变。
(4)在一个圆中,如果圆心角是周角的15,那么圆心角所对的弧长是圆周长的15。
A.0B.1C.2D.42、用一个放大镜照一个扇形时,不被放大的部分是()A 圆心角B 半径C 圆心角所对的弧长D 扇形的面积3、下列叙述中,正确的个数是()个(1)半圆是一条弧;(2)圆心角相等,所对弧的长也相等;(3)顶点在圆内的角叫做圆心角A 0B 1C 2D 34、一根铁丝,若把它弯成圆形,可得一个半径为10厘米的圆,如果将其弯成圆心角为90°的一条弧,那么这条弧所在圆的半径是_________厘米。
5、如图,有一个边长为2厘米的等边三角形,现将三角形沿水平线滚动,B点从开始到结束的位置,它所经过的路线的总长度是多少厘米?例4:圆和扇形的面积1、一个扇形的半径等于另一个圆的直径,且扇形面积等于圆的面积的2倍,则扇形的圆心角是。
2、等腰梯形的面积是54平方厘米,上底是6厘米,下底是12厘米,若要在这个等腰梯形内剪下一个面积最大的圆,这个梯形还剩下()平方厘米3、求下图阴影部分面积。
河北省中考数学系统复习 第四单元 图形的初步认识与三角形 方法技巧训练(一)与角平分线有关的基本模型

②角平分线的两端过角的顶点取相等的两条线段构造全等三角形
如图6,BO是∠ABC的平分线,在BA,BC上取线段BE=BF,则△BEO≌△BFO.
解题通法:遇到角平分线时,我们通常过角平分线上的一点向两边作垂线或在角平分线的两端取相等的线段构造全等三角形.
与角平分线有关的图形与辅助线
1.角平分线+平行线→等腰三角形
如图4,BD是∠ABC的平分线,点O是BD上一点,OE∥BC交AB于点E,则△BOE是等腰三角形.
解题通法:遇到角平分线及平行线,除了可以得到角度的关系,还可以得到一个等腰三角形.
图4 图5 图6 图7
2.与角平分线有关的辅助线
①过角平分线上的点作角两边的垂线
方法技巧训练(一) 与角平分线有关的基本模型
三角形中角平分线的夹角的计算
类型1 两个内角平分线的夹角
如图1,在△ABC中,∠ABC,∠ACB的平分线BE,CF相交于点G,则∠BGC=90°+ ∠A.
图1 图2 图3
解题通法:三角形两内角的平分线的夹角等于90°与第三个内角的一半的和.
类型2 一个内角平分线和一个外角平分线的夹角
A.10 cmB.28 cmC.20 cmD.18 cm
3.如图,矩形ABCD中,AB=4 cm,BC=8 cm,如果将该矩形沿对角线BD折叠,那么图中阴影部分的面积(B)
A.8 cm2B.10 cm2C.15 cm2D.20 cm2
4.(2018·某某)如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=(B)
A.30° B.35° C.45° D.60°
2019中考第一阶段复习考点过关练习:图形初步认识

2019中考第一阶段复习考点过关练习:图形初步认识一、选择题1、如图所示的一块长方体木头,想象沿虚线所示位置截下去所得到的截面图形是()2、如图是一个空心圆柱体,从左边看得到的图形是()3、“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是()A.两点确定一条直线 B.直线比曲线短C.两点之间直线最短 D.两点之间线段最短4、如图所示,某同学的家在A处,星期日她到书店去买书,想尽快赶到书店B,请你帮助她选择一条最近的路线( )A.A→C→D→B B.A→C→F→B C.A→C→E→F→B D.A→C→M→B5、如图所示,点P到直线l的距离是()A.线段PA的长度 B.线段PB的长度 C.线段PC的长度 D.线段PD的长度6、如图,线段AB=10cm,点C为线段AB上一点,BC=3cm,点D,E分别为AC和AB的中点,则线段DE的长为()7、下列说法:(1)两点之间线段最短;(2)两点确定一条直线;(3)同一个锐角的补角一定比它的余角大90°;(4)A、B两点间的距离是指A、B两点间的线段;其中正确的有()A.一个B.两个C.三个D.四个8、把10°36″用度表示为()A.10.6° B.10.001° C.10.01° D.10.1°9、如图,一条公路修到湖边时,需拐弯绕道而过,如果第一次拐的角=120°,第二次拐的角是150°,第三次拐的角是,这时的道路恰好和第一次拐弯之前的道路平行,则是A. 120°B. 130°C. 140°D. 150°10、如图,已知直线和相交于点,是直角,平分,,则的大小为A. B.C. D.11、观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图6中挖去三角形的个数为()A.121 B.362 C.364 D.729二、填空题12、如图是由16个棱长为2厘米的小正方体搭成的,求它的表面积13、如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,应剪去(填序号).14、已知线段AB=10cm,点D是线段AB的中点,直线AB上有一点C,并且BC=2 cm,则线段DC= .15、如图,图中共有_______条线段,它们分别是__________________。
2019年中考数学复习图形的初步认识与三角形方法技巧训练(三)相似三角形的常见基本模型练习

方法技巧训练(三) 相似三角形的常见基本模型模型1 X 字型及其变形(1)如图1,对顶角的对边平行,则△ABO∽△DCO;(2)如图2,对顶角的对边不平行,且有另一对角相等,则△ABO∽△CDO.图1 图21.(2018·恩施)如图,在正方形ABCD 中,G 为CD 边的中点,连接AG 并延长交BC 边的延长线于点E ,对角线BD 交AG 于点F ,已知FG =2,则线段AE 的长度为(D )A .6B .8C .10D .122.如图,已知AB 是⊙O 的直径,弦CD 与直径AB 相交于点F.若∠BAC=30°,BC =4,cos ∠BAD=34,CF =103,求BF的长.解:连接BD.∵AB 是⊙O 的直径, ∴∠ACB=∠ADB=90°.在Rt △ACB 中,∠BAC=30°, ∴AB=2BC =2×4=8.由勾股定理,得AC =82-42=4 3.在Rt △ADB 中,cos ∠BAD=34=ADAB ,∴34=AD8,∴AD =6. ∴BD=82-62=27.∵∠BDC=∠BAC,∠DFB=∠AFC, ∴△DF B∽△AFC. ∴BF CF =BD CA ,即BF 103=2743,解得BF =5219.模型2 A 字型及其变形(1)如图1,公共角的对边平行,则△ADE∽△ABC;(2)如图2,公共角的对边不平行,且有另一对角相等,则△ADE∽△ABC;(3)如图3,公共角的对边不平行,两个三角形有一条公共边,且有另一对角相等,则△ACD∽△ABC.常见的结论有:AC 2=AD·AB.,图1) ,图2) ,图3)3.如图,正五边形ABCDE 的对角线AD 与BE 相交于点G ,AE =2,求EG 的长.解:在⊙O 的内接正五边形ABCDE 中,∠AEB=∠ABE=∠EAG=36°, ∴∠BAG=∠AGB=72°, ∴AB=BG =AE =2.∵∠AEG=∠AEB,∠EAG=∠EBA, ∴△AEG∽△BEA.∴AE 2=EG·EB,即22=EG·(EG +2).解得EG =-1+5或-1-5(不合题意,舍去). ∴EG=5-1.模型3 双垂直型直角三角形被斜边上的高分成的两个直角三角形与原三角形相似,即△ACD∽△ABC∽△CBD.4.(2018·南通)正方形ABCD 的边长AB =2,E 为AB 的中点,F 为BC 的中点,AF 分别与DE ,BD 相交于点M ,N ,则MN 的长为(C )A .556 B .253-1 C .4515 D .335.(2018·娄底改编)如图,已知半圆O 与四边形ABCD 的边AD ,AB ,BC 都相切,切点分别为D ,E ,C ,半径OC =1,求AE·BE 的值.解:连接OE.∵半圆O 与四边形ABCD 的边AD ,AB ,BC 都相切,切点分别为D ,E ,C , ∴OE⊥AB,A D⊥CD,BC⊥CD,∠OAD=∠OAE,∠OBC=∠OBE. ∴AD∥BC.∴∠DAB+∠ABC=180°. ∴∠OAB+∠OBA=90°. ∴∠AOB=90°.∵∠OAE+∠AOE=90°,∠AOE+∠BOE=90°, ∴∠EAO=∠EOB.∵∠AE O =∠OEB=90°,∴△AEO∽△OEB. ∴AE OE =OE BE,即AE·BE=OE 2=OC 2=1.模型4 一线三等角型(1)如图1,AB⊥BC,CD⊥BC,AP⊥PD,垂足分别为B ,C ,P ,且三个垂足在同一直线上,则有△ABP∽△PCD;(此图又叫作“三垂图”)图1 图2(2)如图2,∠B=∠APD=∠C,且B ,P ,C 在同一直线上,则①△ABP∽△PCD;②连接AD ,当点P 为BC 的中点时,△ABP∽△PCD∽△APD.6.如图,矩形纸片ABCD ,将△AMP 和△BPQ 分别沿PM 和PQ 折叠(AP>AM ),点A 和点B 都与点E 重合;再将△CQD 沿DQ 折叠,点C 落在线段EQ 上点F 处.(1)判断△AMP,△BPQ,△CQD 和△FDM 中有哪几对相似三角形?(不需说明理由)(2)如果AM =1,sin ∠DMF=35,求AB 的长.解:(1)有三对相似三角形:△AMP∽△BPQ∽△CQD .(2)设AP =x ,由折叠的性质,得BP =AP =EP =x.∴AB=DC =2x. 由△AMP∽△BPQ,得AM BP =AP BQ,∴BQ=x 2.由△AMP∽△CQD,得AP CD =AMCQ ,∴CQ=2.AD =BC =BQ +CQ =x 2+2,MD =AD -AM =x 2+2-1=x 2+1.在Rt △FDM 中,sin ∠DMF=35,DF =DC =2x ,∴2x x 2+1=35. 解得x 1=3,x 2=13(不合题意,舍去).∴AB=2x =6.7.如图,在△ABC 中,AB =AC ,点P ,D 分别是BC ,AC 边上的点,且∠APD=∠B.(1)求证:AC·CD=CP·BP ;(2)若AB =10,BC =12,当PD∥AB 时,求BP 的长.解:(1)证明:∵AB=AC ,∴∠B=∠C. ∵∠APD=∠B, ∴∠APD=∠B=∠C.∵∠APC=∠BAP+∠B,∠APC=∠APD+∠CPD, ∴∠BAP=∠CPD. ∴△ABP∽△PCD. ∴BP CD =AB PC. ∴AB·CD=PC·BP. ∵AB=AC ,∴AC·CD=CP·BP.(2)∵PD∥AB,∴∠APD=∠BAP. ∵∠APD=∠C,∴∠BAP=∠C. ∵∠B=∠B, ∴△BAP∽△BCA. ∴BA BC =BP BA . ∵AB=10,BC =12, ∴1012=BP 10. ∴BP=253.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C
中考复习图形的认识与证明
一、选择题:
1.如图,AB ∥CD ,AD 和BCO ,∠A =35 º,∠AOB =75 º,则∠C 等于( ) A .35 º B .75 º C .70º D .80º
2.如图,直线l 截两平行直线a 、b ,则下列式子不一定成立的是( ) A .∠1=∠5 B .∠2=∠4
C .∠3=∠5
D . 5=∠2
3.如图,直线a ∥b ,点B 在直线b 上,且AB ⊥BC 。
∠1=55º,则∠2的度数为( )
A 、35º
B 、45º
C 、55º
D 、125º
4.如图,△ABC 中,AB =AC ,∠A =30º,DE 垂直平分AC ,则∠BCD 的度数为( )
A 、80º
B 、75º
C 、65º
D 、45º
5.以下列长度的三条线段为边,能组成三角形的是( ) A 、1cm ,2cm ,8cm B 、2 cm ,2 cm ,4 cm C 、3cm ,4cm ,5cm D 、4 cm ,8 cm ,2 cm
6.射线BA 、CA 交于点A ,连结BC ,已知AB =AC ,∠B =40º,那么x 的值是( ) A 、40 B 、60 A
b 1 2
C B
a
5
43
21
l
b
a
7.对角线互相垂直平分的四边形一定是( ) A 、矩形 B 、菱形 C 、等腰梯形 D 、直角梯形 8.五边形的内角和为( )
A . 360︒
B .540︒
C .720︒
D .900︒
9.如图,在平行四边形ABCD 中,E 是AB 延长线上的一点,若∠A =60°,则∠1的度数为( ) A .120° B .60°
C .45°
D .30°
10.如图,一个四边形花坛ABCD ,被两条线段MN 、EF 分成四个部分,分别种上红、黄、紫、白四种花卉,种植面积依次是S 1、S 2、S 3、S 4、,若MN ∥AB ∥DC ,EF ∥BC ∥AD ,则有( ) A .1
4S
S =
B .1
423S
S S S +=+ C .1423S S S S = D .都不对
二、填空题:
11.已知:∠A =30°,则∠A 的补角是_____度.
12.如下图,直线a 、b 被直线l 所截,如果a ∥b ,∠1=120º,那么∠2=___度。
13.如图是一副三角尺拼成图案,则∠AEB =_________°. 14.若∠α=43°,则∠α的余角的大小是 。
15.如图,∠ABC=50º ,AD 垂直平分线段BC 于点D ,∠ABC
的平分线BE 交AD 于点E ,连结EC ,则∠AEC 的度数是 .
16.如图,在△ABC 中BE 平分∠ABC ,DE ∥BC ,∠ABE=35°,则∠DEB=______°,∠ADE=_______°。
17.在△ABC 中,∠A =80º,∠B =60º,则∠C =____。
a
1 2
b
l
D
A D E E
C
D
1 B C
A
D
E
18.在△ABC 中,D 、E 分别是AB 、AC 的中点,BC =10,则DE =____。
19.五边形的内角和等于___度。
20.如图,E 、F 是□ABCD 对角线BD 上的两点,
请你添加一个适当的条件:______,使四边形AECF 是平行四边形。
21.如图,四边形ABCD 中,AB ∥CD ,要使四边形ABCD 为平行四边形,则应添加的条件是____(添加一个条件即可)
22.菱形的周长为20cm ,一条对角线长为8cm ,则菱形的面积为____cm 2。
23.依次连接四边形各边中点所得的四边形是___。
24.在如图所示的四边形中,若去掉一个50º的角得到一个五边形,则∠1∠2= 度. 三、解答题:
25.已知:如图,∠1=∠2,BD =BC 。
求证:∠3=∠4。
4
3
1 2 D
A
B C
1 2
50°
26.如下图,AC 、BD 相交于点O 。
(1)若△ABC ≌△DCB ,请写出一个与点A 有关的正确结论:______________。
(2)若∠A =∠D ,则再补充一个条件 ,可使得△AOB ≌△DOC .
27.如图,BAC ABD ∠=∠,请你添加一个条件: ,(只添一个即可),使OC OD =,并加以证明。
D
O
C
B
A
28.(06宁德)如图,在△ABD 和△ACD 中,有四个判断:①AB =AC ;②∠1=∠2;③∠B =∠C ;④BD =CD 。
请你从中选出三个判断,其中两个作为题设、一个作为结论,组成一个真命题...。
(要求写出已知、求证及证明过程) 已知: 求证: 证明:
29.两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B 、C 、E 在同一条直线上,连结DC .
(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);
(2)证明:DC BE ⊥.
图1
图2
30.如图,E、F分别是平行四边形ABCD的对角线BD所在直线上两点,DE=BF,请你以F为一个端点,和图中已标有字母的某一点连成一条新的线段,猜想并证明它和图中已有的某一条线段相等(只需研究一组线段相等既可)(1)连结______;(2)猜想______
(3)证明(说明:写出证明过程中的重要依据)
31.已知:如图,在□ABCD中,E、F分别是AB、CD的中点。
求证:(1)△AFD≌△CEB;
(2)四边形AECF是平行四边形。
32.如图,四边形ABCD 是正方形,G 是BC 上任意一点(点G 与B 、C 不重合),AE DG 于E ,CF ∥AE 交DG 于F 。
(1)在图中找出一对全等三角形,并加以证明。
(2)求证:AE =FC +EF 。
33.如图,矩形ABCD 中,AC 与BD 交于O 点,BE ⊥AC 于E ,CF ⊥BD 于F .求证:BE =CF .
34.如图,E 是正方形ABCD 的边DC 上的一点,过点A 作FA ⊥AE 交CB 的延长线于点F , 求证:DE=BF
F
E
D
C
B
A
35.如图,矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE于F,连结DE,求证:DF=DC.。