随机事件的概率测试题

合集下载

概率论与数理统计第一章测试题

概率论与数理统计第一章测试题

第一章 随机事件和概率一、选择题1. 设A, B, C 为任意三个事件, 则与A 一定互不相容的事件为(A )C B A ⋃⋃ (B )C A B A ⋃ (C ) ABC (D ))(C B A ⋃2.对于任意二事件A 和B, 与 不等价的是(A )B A ⊂ (B )A ⊂B (C )φ=B A (D )φ=B A3. 设 、 是任意两个事件, , , 则下列不等式中成立的是( ).A ()()P A P A B < .B ()()P A P A B ≤.C ()()P A P A B > .D ()()P A P A B ≥4. 设 , , , 则( ).A 事件A 与B 互不相容 .B 事件A 与B 相互独立.C 事件A 与B 相互对立 .D 事件A 与B 互不独立5. 设随机事件 与 互不相容, 且 , 则 与 中恰有一个发生的概率等于( ).A p q + .B p q pq +-.C ()()11p q -- .D ()()11p q q p -+-6. 对于任意两事件 与 , ( ).A ()()P A P B - .B ()()()P A P B P AB -+.C ()()P A P AB - .D ()()()P A P A P AB +- 7. 若 、 互斥, 且 , 则下列式子成立的是( ).A ()()P A B P A = .B ()0P B A >.C ()()()P AB P A P B = .D ()0P B A =8. 设 , 则下列结论中正确的是( ).A 事件A 、B 互不相容 .B 事件A 、B 互逆.C 事件A 、B 相互独立 .D A B ⊃9. 设 、 互不相容, , 则下列结论肯定正确的是( ).A A 与B 互不相容 .B ()0P B A >.C ()()()P AB P A P B = .D ()()P A B P A -=10. 设 、 、 为三个事件, 已知 , 则 ( ).A 0.3 .B 0.24 .C 0.5 .D 0.2111. 设A, B 是两个随机事件, 且0<P(A)<1, P(B)>0, , 则必有(A ))|()|(B A P B A P = (B ))|()|(B A P B A P ≠(C ))()()(B P A P AB P = (D ))()()(B P A P AB P ≠12. 随机事件A, B, 满足 和 , 则有(A )Ω=⋃B A (B )φ=AB (C ) 1)(=⋃B A P (D )0)(=-B A P13. 设随机事件A 与B 互不相容, , , 则下面结论一定成立的是(A )A, B 为对立事件 (B ) , 互不相容 (C ) A, B 不独立 (D )A, B 独立14.对于事件A 和B, 设 , P(B)>0, 则下列各式正确的是(A ))()|(B P A B P = (B ))()|(A P B A P = (C ) )()(B P B A P =+ (D ))()(A P B A P =+15. 设事件A 与B 同时发生时, 事件C 必发生, 则(A )1)()()(-+≤B P A P C P (B )1)()()(-+≥B P A P C P(C ) )()(AB P C P = (D ))()(B A P C P ⋃=16. 设A,B,C 是三个相互独立的随机事件, 且0<P(C)<1。

高一数学随机事件及其概率试题

高一数学随机事件及其概率试题

高一数学随机事件及其概率试题1.某环靶由中心圆Ⅰ和两个同心圆环Ⅱ、圆环Ⅲ构成,某射手命中区域Ⅰ、Ⅱ、Ⅲ的概率分别为0.35、0.30、0.25,则该射手射击一次未命中环靶的概率为()A.0.1B.0.65C.0.70D.0.75【答案】A【解析】由对立事件概率计算公式得,射手射击一次未命中环靶的概率为1-(0.35+0.30+0.25)=0.1,故选A。

【考点】本题主要考查对立事件的概念及其概率计算公式。

点评:“射手射击一次未命中环靶”就是“脱靶”。

2.某班委会由4名男生与3名女生组成,现从中选出2人担任正副班长,其中至少有1名女生当选的概率是.【答案】2=21种选法,【解析】∵从7人中选2人共有C72=6种选法从4个男生中选2人共有C4∴没有女生的概率是=,∴至少有1名女生当选的概率1-=。

【考点】本题主要考查古典概型及其概率计算公式。

点评:在使用古典概型的概率公式时,应该注意:(1)要判断该概率模型是不是古典概型;(2)要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。

3.下列事件属于不可能事件的为A.连续投掷骰子两次,掷得的点数和为4B.连续投掷骰子两次,掷得的点数和为8C.连续投掷骰子两次,掷得的点数和为12D.连续投掷骰子两次,掷得的点数和为16【答案】D【解析】骰子点数的最大值为6,两次点数和的最大值为12,不可能为16。

【考点】随机事件、不可能事件点评:解答本题要正确区分和理解随机事件、必然事件和不可能事件。

4.给出下列事件:①同学甲竞选班长成功;②两队球赛,强队胜利了;③一所学校共有998名学生,至少有三名学生的生日相同;④若集合A、B、C,满足AÍB,BÍC,则AÍC;⑤古代有一个国王想处死一位画师,背地里在2张签上都写上“死”字,再让画师抽“生死签”,画师抽到死签;⑥7月天下雪;⑦从1,3,9中任选两数相加,其和为偶数;⑧骑车通过10个十字路口,均遇红灯.其中属于随机事件的有A.4个 B.4个 C.5个 D.6个【答案】C【解析】⑤是必然事件;任意两奇数的和都是偶数,所以⑦是必然事件;①②③⑥⑧为随机事件,故选C。

“概率论与数理统计”测试题参考答案

“概率论与数理统计”测试题参考答案

“概率论与数理统计”测试题参考答案1.设A , B 是两个随机事件,已知P (A ) = 0.6,P (B ) = 0.8,P (A B )=0.2,求:(1))(B A P ;(2))(B A P .解:(1) )(A P =)(1A P -= 0.4)(B A P = )(A P )(A B P =0.4 ⨯0.2 = 0.08 (2) )(B A P =1-)(B A P= 1 - )()(B P B A P =1-8.008.0= 0.92.罐中有12颗围棋子,其中8颗白子,4颗黑子.若从中任取3颗,求:(1)取到3颗棋子中至少有一颗黑子的概率;(2)取到3颗棋子颜色相同的概率.解:设1A =“取到3颗棋子中至少有一颗黑子”,2A =“取到的都是白子”,3A =“取到的都是黑子”,B =“取到3颗棋子颜色相同”,则 (1))(1)(1)(211A P A P A P -=-= 745.0255.01131238=-=-=CC .(2))()()()(3232A P A P A A P B P +=+= 273.0018.0255.0255.031234=+=+CC .3.两台车床加工同样的零件,第一台废品率是1%,第二台废品率是2%,加工出来的零件放在一起。

已知第一台加工的零件是第二台加工的零件的3倍,求任意取出的零件是合格品的概率.解:设A i :“是第i 台车床加工的零件”(,)i =12,B :“零件是合格品”.由全概公式有 P B P A P B A P A P B A ()()()()()=+1122 显然43)(1=A P ,41)(2=A P ,99.0)(1=AB P ,P B A ().2098=,故9875.098.04199.043)(=⨯+⨯=B P4.一袋中有9个球,其中6个黑球3个白球.今从中依次无放回地抽取两个,求第2次抽取出的是白球的概率. 解:设如下事件:i A :“第i 次抽取出的是白球”(2,1=i ) 显然有93)(1=A P ,由全概公式得)()()()()(1211212A A P A P A A P A P A P += 3183328231=⨯+⨯=5.设)4,3(~N X ,试求⑴)95(<<X P ;⑵)7(>X P .(已知,8413.0)1(=Φ9987.0)3(,9772.0)2(=Φ=Φ)解:⑴)3231()23923235()95(<-<=-<-<-=<<X P X P X P1574.08413.09987.0)1()3(=-=Φ-Φ= ⑵)23723()7(->-=>X P X P)223(1)223(≤--=>-=X P X P0228.09772.01)2(1=-=Φ-= 6.设随机变量X 的概率密度函数为⎩⎨⎧≤≤=其它10)(2x Ax x f求(1)A ;(2))(X E ;(3))(X D .解: (1)由1331d d )(11312=====⎰⎰∞+∞-A xAx Ax x x f ,得出3=A(2) =)(X E 4343d 3d )(1412==⋅=⎰⎰∞+∞-xx x x x x xf(3)=)(2X E 5353d 315212==⋅⎰xx x x80316953))(()()(22=-=-=X E X E X D7.设随机变量X ~ N (3,4).求:(1)P (1< X < 7);(2)使P (X < a )=0.9成立的常数a . (8413.0)0.1(=Φ,9.0)28.1(=Φ,9973.0)0.2(=Φ). 解:(1)P (1< X < 7)=)23723231(-<-<-X P=)2231(<-<-X P =)1()2(-Φ-Φ= 0.9973 + 0.8413 – 1 = 0.8386 (2)因为 P (X < a )=)2323(-<-a X P =)23(-Φa = 0.9所以28.123=-a ,a = 3 + 28.12⨯ = 5.568.从正态总体N (μ,9)中抽取容量为64的样本,计算样本均值得x = 21,求μ的置信度为95%的置信区间.(已知 96.1975.0=u ) 解:已知3=σ,n = 64,且nx u σμ-= ~ )1,0(N因为 x = 21,96.121=-αu,且735.064396.121=⨯=-nuσα所以,置信度为95%的μ的置信区间为: ]735.21,265.20[],[2121=+---nux nux σσαα.9.某切割机在正常工作时,切割的每段金属棒长服从正态分布,且其平均长度为10.5 cm ,标准差为0.15cm .从一批产品中随机地抽取4段进行测量,测得的结果如下:(单位:cm )10.4,10.6,10.1,10.4 问:该机工作是否正常(05.0=α, 96.1975.0=u )?解:零假设5.10:0=μH .由于已知15.0=σ,故选取样本函数nx U σμ-=~)1,0(N经计算得375.10=x ,075.0415.0==nσ,67.1075.05.10375.10=-=-nx σμ由已知条件96.121=-αu,且2196.167.1αμσμ-=<=-nx故接受零假设,即该机工作正常.10.某钢厂生产了一批轴承,轴承的标准直径20mm ,今对这批轴承进行检验,随机取出16个测得直径的平均值为19.8mm ,样本标准差3.0=s ,已知管材直径服从正态分布,问这批轴承的质量是否合格?(检验显著性水平α=005.,131.2)15(05.0=t ) 解:零假设20:0=μH .由于未知σ2,故选取样本函数 T x snt n =--μ~()1已知8.19=x ,经计算得075.043.016==s ,667.2075.0208.19=-=-n sx μ由已知条件131.2)15(05.0=t ,)15(131.2667.205.0t nsx =>=-μ故拒绝零假设,即不认为这批轴承的质量是合格的.。

初中数学青岛版九年级下册第6章 事件的概率6.1 随机事件-章节测试习题(1)

初中数学青岛版九年级下册第6章 事件的概率6.1 随机事件-章节测试习题(1)

章节测试题1.【答题】下列事件中不是随机事件的是()A. 打开电视机正好正播《极限挑战》B. 从书包中任意拿一本书正好是英语书C. 掷两次骰子,骰子向上的一面的点数之积为14D. 射击运动员射击一次,命中靶心【答案】C【分析】根据随机事件的定义解答即可.【解答】解:根据骰子的点数可得两个数相乘不可能为14,则骰子向上的一面的点数之积为14是不可能事件,选C.2.【答题】下列事件是必然事件的是()A. 今年6月20日双柏的天气一定是晴天B. 2008年奥运会刘翔一定能夺得110米跨栏冠军C. 在学校操场上抛出的篮球会下落D. 打开电视,正在播广告【答案】C【分析】根据必然事件的定义解答即可.【解答】解: A.今年6月20日双柏的天气一定是晴天是随机事件,不符合题意;B.2008年奥运会刘翔一定能夺得110米跨栏冠军项是随机事件,不符合题意;C.在学校操场上抛出的篮球会下落是必然事件,符合题意;D.打开电视,正在播广告,是随机事件,不符合题意.选C.3.【答题】下列事件发生的概率为0的是()A. 随意掷一枚均匀的硬币两次,至少有一次反面朝上B. 今年冬天黑龙江会下雪C. 随意掷两个均匀的骰子,朝上面的点数之和为1D. 一个转盘被分成6个扇形,按红、白、白、红、红、白排列,转动转盘,指针停在红色区域【答案】C【分析】根据不可能事件的定义解答即可.【解答】A. 随意掷一枚均匀的硬币两次,至少有一次反面朝上,是随机事件,故错误;B. 今年冬天黑龙江会下雪,是随机事件,故错误;C. 随意掷两个均匀的骰子,朝上面的点数之和为1,是不可能事件,故概率为0,正确;D. 一个转盘被分成6个扇形,按红、白、白、红、红、白排列,转动转盘,指针停在红色区域,是随机事件,故错误,选C.4.【答题】在下列事件中,是必然事件的是()A. 买一张电影票,座位号一定是偶数B. 随时打开电视机,正在播新闻C. 将△ACB绕点C旋转50°得到△A′C′B′,这两个三角形全等D. 阴天就一定会下雨【答案】C【分析】根据必然事件的定义解答即可.【解答】选项A,任意买一张电影票,座位号是偶数,是随机事件;选项B,随时打开电视机,正在播新闻,是随机事件;选项C,将△ACB绕点C旋转50°得到△A′C′B′,这两个三角形全等,是必然事件;选项D,阴天就一定会下雨,是随机事件;选C.5.【答题】下列事件中,属于不可能事件的是()A. 射击运动员射击一次,命中9环B. 今天是星期六,明天就是星期一C. 某种彩票中奖率为10%,买十张有一张中奖D. 在只装有10个红球的布袋中摸出一球,这个球一定是红球【答案】B【分析】根据不可能事件的定义解答即可.【解答】A选项中,因为“射击运动员射击一次,命中9环”是“随机事件”,所以不能选A.;B选项中,因为“今天是星期六,明天就是星期一”是“不可能事件”,所以可以选B.;C选项中,因为“某种彩票中奖率为10%,买十张有一张中奖”是“随机事件”,所以不能选C.;D选项中,因为“在只装有10个红色球的布袋中摸出一球,这个球一定是红球”是“必然事件”,所以不能选D.选B.6.【答题】一个黑色不透明的袋子里装有除颜色外其余都相同的7个红球和3个白球,那么从这个袋子中摸出一个红球的可能性和摸出一个白球的可能性相比()A. 摸出一个红球的可能性大B. 摸出一个白球的可能性大C. 两种可能性一样大D. 无法确定【答案】A【分析】根据随机事件的可能性解答即可.【解答】因为红球的个数比白球的个数多,所以从这个袋子中摸出一个红球的可能性比摸出一个白球的可能性要大,选A.7.【答题】下列事件是不可能事件的是()A. 买一张电影票,座位号是奇数B. 从一个只装有红球的袋子里摸出白球C. 三角形两边之和大于第三边D. 明天会下雨【答案】B【分析】根据不可能事件的定义解答即可.【解答】A.买一张电影票,座位号是奇数是随机事件,故A错误;B.从一个只装有红球的袋子里摸出白球是不可能事件,故B正确;C.三角形两边之和大于第三边是必然事件,故C错误;D.明天会下雨是随机事件,故D错误;选B.8.【答题】下列事件中,属于随机事件的是()A. 买1张彩票,中500万大奖B. 通常温度降到0 ℃以下,纯净的水结冰C. 367人中有2人是同月同日出生D. 从装有黑球、白球的袋里摸出红球【答案】A【分析】根据随机事件的定义解答即可.【解答】A.买1张彩票,中500万大奖是随机事件;B.通常温度降到0 ℃以下,纯净的水结冰是必然事件;C. 367人中有2人是同月同日出生是必然事件;D.从装有黑球、白球的袋里摸出红球是不可能事件.选A.9.【答题】下列说法中,正确的是()A. “明天降雨的概率是80%”表示明天有80%的时间在降雨B. “抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上C. “彩票中奖的概率是1%表示买100张彩票一定有1张会中奖D. 在同一年出生的367名学生中,至少有两人的生日是同一天【答案】D【分析】根据概率的意义解答即可.【解答】解:A、“明天降雨的概率是80%”表示明天有降雨的可能性,故错误;B、“抛一枚硬币正面朝上的概率是0.5”表示抛一枚硬币正面朝上与反面朝上的机会是一样的,故错误;C、“彩票中奖的概率是1%”表示在设计彩票时,有1%的机会中奖,但不一定买100张彩票一定有1张会中奖,故错误;D、在同一年出生的367名学生,而一年中至多有366天,因而至少有两人的生日是同一天.选D.10.【答题】下列事件中是必然事件的是()A. 小明买一张体育彩票中奖B. 某人的体温是100 ℃C. 抛掷一枚骰子朝上的面的点数是偶数D. 我们小组的十三位同学中至少有两位同学是同月出生的【答案】D【分析】根据必然事件的定义解答即可.【解答】解: A. 小明买一张体育彩票中奖,是随机事件,故该选项错误;B. 某人的体温是100 ℃,是不可能事件,故该选项错误;C. 抛掷一枚骰子朝上的面的点数是偶数,是随机事件,故该选项错误;D. 我们小组的十三位同学中至少有两位同学是同月出生的,是必然事件,故该选项正确.选D.11.【答题】下列事件中属于随机事件的是()A. 任意画一个圆都是中心对称图形B. 掷两次骰子,向上一面的点数差为6C. 从圆外任意一点引两条切线,所得切线长相等D. 任意写的一个一元二次方程有两个不相等的实数根【答案】D【分析】根据随机事件的定义解答即可.【解答】A、是必然事件;B、是不可能事件;C、是必然事件;D、是随机事件,选D.12.【答题】下列事件中是不可能事件的是()A. 三角形内角和小于180°B. 两实数之和为正C. 买体育彩票中奖D. 抛一枚硬币2次都正面朝上【答案】A【分析】根据不可能事件的定义解答即可.【解答】根据三角形的内角和定理,可知:“三角形内角和等于180°”,故是不可能事件;根据实数的加法,可知两实数之和可能为正,可能是0,可能为负,故是可能事件;根据买彩票可能中奖,故可知是可能事件;根据硬币的特点,抛一枚硬币2次有可能两次都正面朝上,故是可能事件.选A.13.【答题】下列事件是必然事件的是()A. 通常加热到100℃,水沸腾B. 抛一枚硬币,正面朝上C. 明天会下雨D. 经过城市中某一有交通信号灯的路口,恰好遇到红灯【答案】A【分析】根据必然事件的定义解答即可.【解答】解: A.通常加热到100℃,水沸腾,是必然事件,故A选项符合题意;B.抛一枚硬币,正面朝上,是随机事件,故B选项不符合题意;C.明天会下雨,是随机事件,故C选项不符合题意;D.经过城市中某一有交通信号灯的路口,恰好遇到红灯,是随机事件,故D选项不符合题意.选A.14.【答题】下列事件中属于随机事件的是()A. 任意画一个圆都是中心对称图形B. 掷两次骰子,向上一面的点数差为6C. 从圆外任意一点引两条切线,所得切线长相等D. 任意写的一个一元二次方程有两个不相等的实数根【答案】D【分析】根据随机事件的定义解答即可.【解答】A、是必然事件;B、是不可能事件;C、是必然事件;D、是随机事件,选D.15.【答题】下列事件中,是确定性事件的是()A. 买一张电影票,座位号是奇数B. 射击运动员射击一次,命中10环C. 明天会下雨D. 度量三角形的内角和,结果是【答案】D【分析】根据确定事件的定义解答即可.【解答】A选项:买一张电影票,座位号是奇数,也可能是偶数,故是随机事件,故此选项错误;B选项:射击运动员射击一次,命中10环,也可能是9、7、6、5、4、3、2、1、0环,故是随机事件,故此选项错误;C选项:明天会下雨,也可能不会下,故是随机事件,故此选项错误;D选项:度量三角形的内角和,结果是360°,是不可能事件,故是确定事件,故此选项正确.选D.16.【答题】下列事件是必然事件的是()A. 明天气温会升高B. 随意翻到一本书的某页,这页的页码是奇数C. 早晨太阳会从东方升起D. 某射击运动员射击一次,命中靶心【答案】C【分析】根据必然事件的定义解答即可.【解答】解:A、明天气温会升高是随机事件;B、随意翻到一本书的某页,这页的页码是奇数是随机事件;C、早晨太阳会从东方升起是必然事件;D、某射击运动员射击一次,命中靶心是随机事件,选C.方法总结:必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.17.【答题】下列事件是必然事件的是()A. 抛掷一枚硬币四次,有两次正面朝上B. 打开电视频道,正在播放《今日在线》C. 射击运动员射击一次,命中十环D. 方程x²-x=0必有实数根【答案】D【分析】根据必然事件的定义解答即可.【解答】解: A.抛掷一枚硬币四次,有两次正面朝上,随机事件,故本选项错误;B.打开电视频道,正在播放《今日在线》,随机事件,故本选项错误;C.射击运动员射击一次,命中十环,随机事件,故本选项错误;D.因为在方程x²-x=0中△=1﹣0=1>0,必然事件,故本选项正确.选D.18.【答题】抛掷一个质地均匀且六个面上依次刻有1-6的点数的正方体型骰子,抛掷后,观察向上的一面的点数,下列情况属必然事件的是()A. 出现的点数是偶数B. 出现的点数不会是0C. 出现的点数是2D. 出现的点数为奇数【答案】B【分析】根据必然事件的定义解答即可.【解答】解:因为正方体型骰子质地均匀且有六个面,抛掷落地后,每一个面都有可能朝上,但一定不可能出现0.选B.19.【答题】下列事件中,属于必然事件的是()A. 打开电视,正在播放《新闻联播》B. 抛掷一次硬币正面朝上C. 袋中有3个红球,从中摸出一球是红球D. 阴天一定下雨【答案】C【分析】根据必然事件的定义解答即可.【解答】解:A、打开电视,正在播放《新闻联播》是随机事件,因为也可能播放其它内容;B、抛掷一次硬币正面朝上是随机事件,也可能反面朝上;C、袋中有3个红球,从中摸出一球是红球,是必然事件,因为袋子中只有红球,无论怎么摸,只能摸出红球;D、阴天一定下雨是随机事件,也可能只阴天不下雨.选C.20.【答题】下列事件中,属于随机事件的是()A. 通常水加热到100℃时沸腾B. 测量孝感某天的最低气温,结果为﹣150℃C. 一个袋中装有5个黑球,从中摸出一个是黑球D. 篮球队员在罚球线上投篮一次,未投中【答案】D【分析】根据随机事件的定义解答即可.【解答】解:结合所学的随机事件与必然事件的意义,A必然发生,是必然事件;B一定不会发生,是必然事件;C一定会发生,是必然事件;D 罚球投篮一次未投中是可能发生的,属于随机事件.选D.。

必修二《随机事件的概率》测试题

必修二《随机事件的概率》测试题

必修二《随机事件的概率》测试题6.任取一个三位正整数N ,则对数2log N 是一个正整数的概率是( C )的长,则该矩形面积大于202cm 的概率为( C )9.在区间[],ππ-内随机取两个数分别记为a ,b ,则使得函数222()2f x x ax b π=+-+有零点的概率为( B )为事件n C (2≤n ≤5,n ∈N ),若事件n C 的概率最大,则n 的所有可能值为( D )A .3B .4C .2和5D .3和4二 填空题(每小题5分,共25分)11.从一副混合后的扑克牌(去掉大,小王后)中随机抽取1张,事件A 为“抽果这家单位的接收人员将在上午9:30—10:30之间离开单位,那么他在离开单位前能拿到文件的概率为7 8 .三解答题18. (本题满分12分) 为加强高中生的实践能力的培养,教育部门举办了高中生智能机器人比赛,该竞赛分为预赛和决赛两个阶段,参加决赛的队伍按照抽签方式决定出场顺序,通过预赛,选拔出甲乙丙三支队伍参加决赛。

(1)求决赛中甲乙两支队伍恰好排在前两位的概率;(2)求决赛中甲乙两支队伍出场顺序相邻的概率。

12(1)(2)33答案: 19.(本题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。

如果当天卖不完,剩下的玫瑰花作垃圾处理。

(1)若花店一天购进17枝玫瑰花,求当天的利润Y (单位:元)关于当天需求量n (单位:枝,n N ∈)的函数解析式;①假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;②若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量的概率,求当天的利润不少于75元的概率。

答案:(1)1085,1785,17n n y n -<⎧=⎨≥⎩(2)76.4(3)0.720. (本题满分13分) 如图,已知AB 是半圆O 的直径,AB=8,M,N,P 是将半圆圆周四等分的三个分点。

中考数学模拟测试试题随机事件与概率无答案

中考数学模拟测试试题随机事件与概率无答案

随机事件与概率一、选择题1.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是()A.B.C.D.2.有一副扑克牌,共52张(不包括大、小王),其中梅花、方块、红心、黑桃四种花色各有13张,把扑克牌充分洗匀后,随意抽取一张,抽得红心的概率是()A.B.C.D.3.甲、乙、丙三个箱子原本各装有相同数量的球,已知甲箱内的红球占甲箱内球数的,乙箱内没有红球,丙箱内的红球占丙箱内球数的.小蓉将乙、丙两箱内的球全倒入甲箱后,要从甲箱内取出一球,若甲箱内每球被取出的机会相等,则小蓉取出的球是红球的机率为何?()A.B.C.D.4.如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是()A.B.C.D.5.如图,在边长为1的正方形网格中,从A1,A2,A3中任选一点A n(n=1,2,3),从B1,B2,B3,B4中任选一点B m(m=1,2,3,4),与点O组成Rt△A n B m O,则tan∠A n B m O=1的概率是()A.B.C.D.6.如图是某市7月1日至10日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择7月1日至7月8日中的某一天到达该市,并连续停留3天,则此人在该市停留期间有且仅有1天空气质量优良的概率是()A.B.C.D.二、填空题7.在一个不透明的袋子中装有若干个除颜色外形状大小完全相同的球,如果其中有3个白球,且摸出白球的概率是,那么袋子中共有球个.8.布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是.9.同时掷两枚硬币,两枚硬币全部正面朝上的概率为.10.任意抛掷一枚均匀的骰子一次,朝上的点数大于4的概率等于.11.如图,一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),则指针指向红色的概率为.12.100件外观相同的产品中有5件不合格,现从中任意抽取1件进行检测,抽到不合格产品的概率是.13.若5件外观相同的产品中有1件不合格,现从中任意抽取1件进行检测,则抽到不合格产品的概率是.14.如图,是一副普通扑克牌中的13张黑桃牌,将它们洗匀后正面向下放在桌子上,从中任意抽取一张,则抽出的牌点数小于9的概率为.15.三张扑克牌中只有一张黑桃,三位同学依次抽取,第一位同学抽到黑桃的概率为.16.任意掷一枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6),朝上的面的数字大于2的概率是.17.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是.18.五张分别写有﹣1,2,0,﹣4,5的卡片(除数字不同以外,其余都相同),现从中任意取出一张卡片,则该卡片上的数字是负数的概率是.19.一只不透明的袋子中装有1个白球和3个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,则摸出红球的概率为.20.在一个不透明的盒子里装有白球和红球共14个,其中红球比白球多4个,所有球除颜色不同外,其它方面均相同,摇匀后,从中摸出一个球为红球的概率为.21.有6张背面完全相同的卡片,每张正面分别有三角形、平行四边形、矩形、正方形、梯形和圆,现将其全部正面朝下搅匀,从中任取一张卡片,抽中正面画的图形是中心对称图形的概率为.22.桶里原有质地均匀、形状大小完全一样的6个红球和4个白球,小红不慎遗失了其中2个红球,现在从桶里随机摸出一个球,则摸到白球的概率为.23.从1,2,3,4,5,6,7,8,9这九个自然数中,任取一个数是奇数的概率是.24.在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有3个红球且摸到红球的概率为,那么口袋中球的总个数为.25.如图,有五张背面完全相同的纸质卡片,其正面分别标有数:6,,,﹣2,.将它们背面朝上洗匀后,从中随机抽取一张卡片,则其正面的数比3小的概率是.26.给出下列函数:①y=2x﹣1;②y=;③y=﹣x2.从中任取一个函数,取出的函数符合条件“当x>1时,函数值y随x增大而减小”的概率是.27.若我们把十位上的数字比个位和百位上数字都小的三位数,称为“V”数,如756,326,那么从2,3,4这三个数字组成的无重复数字的三位数中任意抽取一个数,则该数是“V”数的概率为.28.在一个不透明的盒子中放入标号分别为1,2,…,9的形状、大小、质地完全相同的9个球,充分混合后,从中取出一个球,标号能被3整除的概率是.三、解答题29.一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是,求从袋中取出黑球的个数.30.某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?。

人教版九年级数学上册《25.1随机事件与概率》同步测试题带答案

人教版九年级数学上册《25.1随机事件与概率》同步测试题带答案

人教版九年级数学上册《25.1随机事件与概率》同步测试题带答案1.“明天是晴天”这个事件是( )A.确定事件B.不可能事件C.必然事件D.不确定事件2.下列事件是必然事件的是( )A.抛出的篮球不会下落B.射击运动员射击一次,命中10环C.早晨太阳从东方升起D.任意掷一枚硬币,落地后正面向上3.从装有红球、白球、黑球的不透明袋子中任意摸出一个球,该球是红球,这个事件是( )A.必然事件B.随机事件C.不可能事件D.以上事件都有可能4.书架上有2本数学书、1本物理书.从中任取1本书是物理书的概率为( )A.14B.13C.12D.235.有形状、大小、材料完全相同的黑筷、白筷、红筷各5双,混杂在一个黑色的布袋里,要保证从中摸取不同颜色的筷子共两双,则至少要摸出( )只筷子.A.12B.13C.14D.156.掷两枚质地均匀的骰子,下列事件是随机事件的是( )A.点数的和为1B.点数的和为5C.点数的和大于12D.点数的和小于137.一个不透明口袋中装有除颜色不同外其它都完全相同的小球,其中白球2个,红球3个,黄球5个,将它们搅匀后从袋中随机摸出1个球,则摸出黄球的概率是( )A.12B.13C.15D.1108.在学校科技宣传活动中,某科技活动小组将3个标有“北斗”,2个标有“天眼”,5个标有“高铁”的小球(除标记外其它都相同)放入盒中,小红从盒中随机摸出1个小球,并对小球标记的内容进行介绍,下列叙述正确的是( )A.摸出“北斗”小球的可能性最大B.摸出“天眼”小球的可能性最大C.摸出“高铁”小球的可能性最大D.摸出三种小球的可能性相同9.“同时抛掷两枚普通的骰子,落地后向上一面的点数之和为11”是___________(填“必然事件”“不可能事件”或“随机事件”)10.某班从三名男生(含小强)和五名女生中选四名学生参加学校举行的“中华古诗文朗诵大赛”,当女生选_________名参加时,男生小强被选中是必然事件.11.小明从《红星照耀中国》,《红岩》,《长征》,《钢铁是怎样炼成的》四本书中随机挑选一本,其中拿到《红星照耀中国》这本书的概率为______.12.有5张仅有编号不同的卡片,编号分别是1,2,3,4,5.从中随机抽取一张,编号是偶数的概率等于______.13.掷两枚普通的正方体骰子,把两个骰子的点数相加,请问下列事件中哪些是必然发生的,哪些是不可能发生的,哪些是可能发生的?并说明原因.(1)和为1;(2)和为4;(3)差为6;(4)和小于1414.在一个不透明的盒子里装有6个红球,10个白球,若干个黑球,每个球除颜色外都相同,若从中任意摸出一个白球的概率是1 3 .(1)求任意摸出一个球是黑球的概率.(2)小明从盒子里取出a个黑球(其他颜色球的数量没有改变),使得从盒子里任意摸出一个球是红球的概率为14,请求出a的值.参考答案1.【答案】D解析:“明天是晴天”这个事件是随机事件,属于不确定事件故选:D.2.【答案】C解析:A、抛出的篮球不会下落,是不可能事件,故本选项不符合题意;B、射击运动员射击一次,命中10环是随机事件,故本选项不符合题意;C、早晨太阳从东方升起,是必然事件,故本选项符合题意;D、任意掷一枚硬币,落地后正面向上,是随机事件,故本选项不符合题意;故选:C.3.【答案】B解析:从装有红球、白球、黑球的不透明袋子中任意摸出一个球,该球是红球,这个事件是随机事件故选:B.4.【答案】B解析:一共有3本书,从中任取1本书共有3种结果选中的书是物理书的结果有1种∴从中任取1本书是物理书的概率13=. 故选:B.5.【答案】B解析:如果前面一直摸出某一种颜色的筷子,共10只筷子,此时袋内只有两种颜色的筷子,另外摸出一双即可,如果又摸两只仍为不同颜色,再摸一只便可组成一双,此时共摸出102113++=只,则至少摸出13只筷子.故选:B.6.【答案】B解析:投掷两枚质地均匀的骰子点数之和的范围在212~之间(包括2,12),可知点数的和为5是随机事件.点数的和为1,点数的和大于12是不可能事件,点数的和小于13是必然事件,故B 正确.故选:B.7.【答案】A 解析:从口袋中任意摸出一个球是黄球的概率=512+3+52. 故选A.8.【答案】C解析:盒中小球总量为:32510++=(个) 摸出“北斗”小球的概率为:310摸出“天眼”小球的概率为:摸出“高铁”小球的概率为:因此摸出“高铁”小球的可能性最大.故选C.21105=51102=9.【答案】随机事件解析:同时投掷两枚普通的骰子,落地后向上一面的点数之和可能是11,所以是随机事件.故答案为:随机事件.10.【答案】1解析:当女生选1名时,男生小强被选中是必然事件.故答案为1.11.【答案】14/0.25解析:随机挑选一本书共有4种等可能的结果,其中拿到《红星照耀中国》这本书的结果有1种∴14 P故答案为:1 4 .12.【答案】25/0.4解析:从编号分别是1,2,3,4,5的卡片中,随机抽取一张有5种可能性,其中编号是偶数的可能性有2种可能性∴从中随机抽取一张,编号是偶数的概率等于2 5故答案为:2 5 .13.【答案】见解析解析:(1)最小的和为2,故和为1属于不可能事件(2)和可能为2和12之间的任意一个数,故和为4属于可能事件(3)差最大为5,故差为6属于不可能事件(4)和最大为12,故和小于14属于必然事件.14.【答案】(1)715(2)6解析:(1)∵红球6个,白球10个,黑球若干个,从中任意摸出一个白球的概率是1 3∴盒子中球的总数为:110303÷=(个)故盒子中黑球的个数为:3061014--=(个)∴任意摸出一个球是黑球的概率为:147 3015=.(2)∵任意摸出一个球是红球的概率为1 4∴盒子中球的总量为:16244÷=(个)∴可以将盒子中的黑球拿出30246-=(个)∴6a=.。

概率论综合测试题a卷

概率论综合测试题a卷

综合测试题A 卷一、填空题(每小题4分,共20分)1、设A,B,C 为随机事件,1()()(),()()0,4P A P B P C P AB P BC ===== 1(),8P AC =则A,B,C 至少出现一个的概率为 . 2、袋中有7 只红球,5只白球,不放回地陆续取3只,则顺序为红、白、红的概率p = .3、在n 阶行列式的展开式中任取一项,此项不含第一行、第一列元素11a 的概率为8,9则此行列式的阶数n = .4、设一批产品中一、二、三等品各占60%,30%,10%,现从中任取一件,结果不是三等品,则取到的是一等品的概率为 .5、设两个相互独立的事件A B 和都不发生的概率为1,9A 发生B 不发生的概率与B 发生A 不发生的概率相等,则()P A = .二、选择题(每小题4分,共20分)1、设,A B 是样本空间S 中的随机事件,则()()A B A B 表示 [ ]. (A) 不可能事件 (B) ,A B 恰有一个发生(C) 必然事件 (D) ,A B 不同时发生2、对于任意二事件A 和B ,与A B B =不等价的是[ ] . (A) A B ⊂ (B) B A ⊂ (C) AB =∅ (D) AB =∅3、设,A B 为任意两个事件,且,()0,A B P B ⊂>,则下列选项必然成立的是 [ ].(A) ()()P A P A B < (B) ()()P A P A B ≤(C) ()()P A P A B > (D) ()()P A P A B ≥4、设n 张奖券中含m 张有奖奖券,k 个人购买,每人一张,其中至少有1个人中奖的概率是[ ].(A) k n m C (B) 1k n m k n C C -- (C) 11k m n m k n C C C -- (D) 1i k m k i nC C =∑ 5、设,,A B C 三个事件两两相互独立,则,,A B C 相互独立的充要条件是 [ ].(A) A BC 与独立 (B) AB A C 与独立 (C) AC BC 与独立 (D) AB AC 与独立 三、解答题(60分)1、(6分)有n 个人,每个人都以同样的概率1N被分配在N (n N ≤)个房间,试求“某个指定房间中恰有()m m N ≤个人”这一事件A 的概率.2、(12分)某国经济可能面临三个问题:1A =“高通胀”, 2A =“高失业”, 2A =“低增长”,假设123P()0.12,P()0.07,P()0.05A A A ===12P()0.13,A A =13P()A A =0.14,23P()0.10A A =,123()0.01,P A A A =求:(1)该国不出现高通胀的概率;(2)该国同时面临高通胀、高失业的概率;(3)该国出现滞涨(即低增长且高通胀)的概率;(4)该国出现高通胀、高失业但却高增长的概率;(5)该国至少出现两个问题的概率;(6)该国最多出现两个问题的概率.3、(8分)一个家庭中有两个小孩,(1)已知其中有一个是女孩,求另一个也是女孩的概率;(2)已知第一胎是女孩,求第二胎也是女孩的概率.4、(12分)玻璃杯成箱出售,每箱20只,设各箱含0,1,2只次品的概率分别为0.8,0.1和0.1,一顾客欲买一箱玻璃杯,而顾客开箱随机地查看4只;若无次品则买下,否则退回.试求:(1)顾客买此箱玻璃杯的概率;(2)在顾客买的这箱玻璃杯中,确实没有次品的概率.5、(14分) 设有来自三个地区的各10名,15名,和25名考生的报名表,其中女生的报名表分别为3份,7份,5份,随机地取一个地区的报名表,从中先后抽出两份.(1) 求先抽到的一份是女生表的概率;(2) 已知后抽到的一份是男生表,求先抽到的一份是女生表的概率.四、(8分)设,A B 使任意二事件,其中A 的概率不等于0和1,证明:()()P B A P B A =是事件,A B 独立的充分必要条件.综合测试题B 卷一、填空题(20分)1、设事件,,A B C 都是某个随机试验中的随机事件,事件E 表示,,A B C 至少有一个发生,则对E 的构造正确的有 个.(A) AB C (B) ABC Ω- (C) ()[()]A B C C A B -- (D) ABC ABC ABC2、设A,B 为随机事件, ()0.7,()0.3,P A P A B =-=则P()=AB .3、一间宿舍内住有6位同学,求他们之中恰好有4个人的生日在同一月份的概率为.4、在区间(0, 1)中随机地取两个数, 则两数之差的绝对值小于21的概率为__________. 5、事件,A B 相互独立,已知()0.4,()0.7,P A P A B ==则()P B A = .二、选择题(20分) 1、以A 表示事件 “甲种产品畅销,乙种产品滞销”,则其对立事件A 为[ ] .(A) “甲种产品滞销,乙种产品畅销” (B) “甲、乙两种产品均畅销”(C) “甲种产品滞销” (D) “甲种产品滞销或乙种产品畅销”2、假设,B A ⊂则下列命题正确的是 [ ].(A )()1()P AB P A =- (B ) ()()()P A B P A P B -=-(C ) ()()P B A P B = (D )()()P A B P A =3、设,A B 为随机事件,且()0,()1,P B P A B >=则必有 [ ].(A) ()()P AB P A > (B) ()()P A B P B > (C) ()()P A B P A = (D) ()()P A B P B =4、从数1,2,3,4中任取一个数,记为X ,再从1,,X 中任取一个数,记为Y ,则 {2}P Y == [ ].(A )14 (B )1348 (C )38 (D )35485、将一枚硬币独立地掷两次:1{}A =掷第一次出现正面,2{A =掷第二次出现 }正面,3{}A =正、反面各出现一次,4{}A =正面出现两次,则事件 [ ]. (A) 123A A A ,,相互独立 (B) 234A A A ,,相互独立(C) 123A A A ,,两两独立 (D) 234A A A ,,两两独立三、计算题(60分)1、(10分)设,A B 是两个事件,且()()0.9,()0.5,P A P B P A B +=+=求:()().P AB P AB +2、(10分)口袋中有两个5角,三个2角,五个1角的硬币共10枚,从中任取5枚,求总值超过1元的概率.3、(10分)甲、乙两人独自地向同一目标射击一次,其命中率分别为0.60.5和,现已知目标被击中,求它是甲射中的概率.4、(10分)无线电通讯中,由于随机干扰,当发出信号“A ”时,收到“A ”、“不清”和“B ”的概率分别是0.7,0.20.1和;当发出信号“B ”时,收到“B ”、“不清”和“A ”的概率分别是0.9,0.10.和 假设发报台发出信号A 与B 的频繁程度是3:2,问收到“不清”时,求原发信号是“A ”的概率5、(12分)在n 只袋中有4个白球,6个黑球,而另一袋中有5个白球5个黑球,今从这1n +只袋中任选一袋,从中随即取出两球,都是白球,在这种情况下,有5个黑球和3个白球留在选出的袋中的概率是17,求.n 四、(8分)设,,A B C 三事件相互独立,证明:,,AB AB A B 分别与C 相互独立.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第26章 随机事件的概率
姓名_____________
一、选择题:
1. 设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,从中任意取出1只,是二等品的概率是( )A .121 B.61 C.41 D.12
7 2. 某电视台举行歌手大奖赛,每场比赛都有编号1~10号,共10道综合素质测试题供选手随机抽取作答,在某场比赛中,前两位选手分别抽走了2号题,7号题,第3位选手抽到8号题的概率是( )A .101 B .91 C .81 D .7
1 3. 下列说法正确的是( )
A . 在同一年出生的400人中至少有两人的生日相同
B . 一个游戏的中奖率是1%,买100张奖券,一定会中奖
C . 一副扑克牌中,随意提取一张是红桃K
D . 一个袋中装有3个红球、5个白球,任意摸出一个球是红球的概率是5
3 4. 某快餐店用米饭加不同炒菜配制了一批盒饭,配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒,每盒盒饭的大小、外形都相同,从中任选一盒,不含辣椒的概率是( )
A .87
B .76
C .81
D .7
1 二、填空题:
5. 同时掷两颗大小不同的骰子,则点数和为5的概率是_________
6. 从一副拿掉大、小王的扑克牌中,任抽取一张则抽到红心的概率是_________抽到黑桃的概率为_____抽到红心3的概率为______
7. 从小明、小亮、小丽3名同学中选1人当语文课代表,选中小丽的概率为_______,小丽不被选中的概率为_________
8. 英文“概率”是这样写的“Probability ”,若从中任意抽出一个字母,则(1)抽到字母b 的概率为___(2)抽到字母w 的概率为____
三、解答题:
9. 小王制定一个玩飞行棋的游戏规则为:抛掷两枚均匀的正四面体骰子(四面依次标上数字1、2、3、4),掷得点数之和为5时才“可以起飞”,请你根据该规则计算“可以起飞”
的概率(要求用树状图或列表法求解)。

10. 九年级1班将竞选出正、副班长各1名,现有甲、乙两位男生和丙、丁两位女生参加竞选.(1)男生当选班长的概率是 ;
(2)请用列表或画树状图的方法求出两位女生同时当选正、副班长的概率.
11. 初三年(1)班要举行一场毕业联欢会,规定每个同学同时转动下图中①、②两个转盘(两个转盘分别被二等分和三等分),若两个转盘停止后指针所指的数字之和为奇数,则这个同学要表演唱歌节目;若数字之和为偶数,则要表演其他节目.试求出这个同学表演唱歌节目的概率(要求用画树状图或列表方法求解).
12. 不透明的口袋中装有白、黄、蓝三种除颜色外其余都相同的小球,其中白球1个,黄球2个,蓝球1个,第一次任意摸出一个球不放回,第二次再从中随机摸出一个球,求两次都摸到黄球的概率。

转盘② 转盘①
13.将背面相同,正面分别标有数字1234
,,,的四张卡片洗匀后,背面朝上放在桌面上.(1)从中随机抽取一张卡片,求该卡片正面上的数字是偶数的概率;
(2)先从中随机抽取一张卡片(不放回
...),将该卡片正面上的数字作为十位上的数字;再随机抽取一张,将该卡片正面上的数字作为个位上的数字,则组成的两位数恰好是4的倍数的概率是多少?请用树状图或列表法加以说明.
14.甲、乙、丙三名学生各自随机选择到A、B两个书店购书.
(1)求甲、乙两名学生在不同书店购书的概率;
(2)求甲、乙、丙三名学生在同一书店购书的概率.
15.不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中
红球2个(分别标有1号、2号),蓝球1个。

若从中任意摸出一个球,它是蓝球的概率为1 4 .
(1)求袋中黄球的个数;(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格的方法,求两次摸到不同颜色球的概率.
16.一个不透明的口袋里装有红、黄、绿三种颜色的球(除颜色不同外其余都相同),其中
红球有2个,黄球有1个,从中任意摸出1球是红球的概率为1
2

(1)试求袋中绿球的个数;
(2)第1次从袋中任意摸出1球(不放回),第2次再任意摸出1球,请你用画树状图或列表格的方法,求两次都摸到红球的概率.
17.小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:
(1)计算“3点朝上”的频率和“5点朝上”的频率.(4分)
(2)小颖说:“根据实验,一次实验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么?(4分)(3)小颖和小红各投掷一枚骰子,用列表或画树状图的方法求出两枚骰子朝上的点数之和为3的倍数的概率.(4分)
18.某中学九年级共有6个班,要从中选出两个班代表学校参加一项重大活动,九(1)班是先进班,学校指定该班必须参加,另外再从九(2)班到九(6)班选出一个班,九(4)班有同学建议用如下方法选班:从装有编号为1,2,3的三个白球的A袋中摸出一个球,再从装有编号也为1,2,3的三个红球的B袋中摸出一个球(两袋中球的大小、形状与质地完全一样),摸出的两个球编号之和是几就派几班参加.(1)请用列表或画树状图的方法列举出摸出的两球编号的所有可能出现的结果;(2)如果采用这一建议选班,对五个班是一
样公平的吗?请说明理由.
19.某商场搞摸奖促销活动:商场在一只不透明的箱子里放了三个相同的小球,球上分别写有“10元”、“20元”、“30元”的字样.规定:顾客在本商场同一日内,每消费满100元,就可以在这只箱子里摸出一个小球(顾客每次摸出小球看过后仍然放回箱内搅匀),商场根据顾客摸出小球上所标金额就送上一份相应的奖品.现有一顾客在该商场一次性消费了235元,按规定,该顾客可以摸奖两次,求该顾客两次摸奖所获奖品的价格之和超过40元的概率.
20.一枚质量均匀的正方体骰子,六个面上分别标有数字1,2,3,4,5,6,连续抛掷两次.
(1)用列表法或树状图表示出朝上的面上的数字所有可能出现的结果;
(2)记两次朝上的面上的数字分别为p,q,若把p,q分别作为点A的横坐标和纵坐标,
求点A(p,q)在函数
12
y
x
的图象上的概率.。

相关文档
最新文档