列方程解决相遇问题
人教版五年级数学下册七用方程解决问题2相遇问题课件北师大2024235

答:经过10分甲比乙多跑1圈。
2021/8/6 星期五
18
【小升初】 8.盒子里装有同样数量的红球和白球,每次取出6个红球和4个白球, 取了若干次后,红球正好取完,白球还有10个。一共取了几次?盒 子里原来有红球多少个? 解:设一共取了x次。
6x-4x=10 x=5
2021/8/6 星期五
7
运用方程法巧解行程问题 一列慢车车身长120m,车速是每秒15m;一列快车车身长132m,车速 是每秒30m。慢车在前面行驶,快车与它同向行驶,从后面追上到完 全超过需要多少秒?
2021/8/6 星期五
8
【示范解答】 解:设从后面追上到完全超过需要x秒。 (30-15)x=132+120
2021/8/6 星期五
3
教材练习六P74T10
1个塑料瓶值多少元?
2021/8/6 星期五
4
【示范解答】 解:设1个塑料瓶值x元。 12×0.1+15x=3
1.2+15x=3 15x=3-1.2 15x=1.8 x=0.12
答:1个塑料瓶值0.12元。
2021/8/6 星期五
5
教材练习六P74T11
15x=252 x=16.8
答:从后面追上到完全超过需要16.8秒。
2021/8/6 星期五
9
【对点训练】 4.甲、乙两人在周长为400m的环形跑道上同时从某地同向而行, 甲每分跑250m,乙每分跑300m,多少分后两人相遇? 解:设x分后两人相遇。
300x-250x=400 x=8
答:8分后两人相遇。
我们可以通过改变问题中的某些信息来提出新的问题。 淘气家到笑笑家的路程是840m,两人同时从家里出发,淘气每分步 行70m,笑笑每分步行50 m。出发后多长时间两人相遇?
列方程解决问题——《相遇问题》

小林家和小云家相距4.5 km。周日早上9:00 两 人分别从家骑自行车相向而行,两人何时相遇?
活动:
独立完成学习单。
画出线段图,找出等量关系,尝
试用方程解决。
km
m
小林骑的路程
小云骑的路程
4.5 km 小林骑的路程+小云骑的路程=4.5 km
250 m=0.25 km 200 m=0.2 km
解:设两人x分钟后相遇。
解:设两人x分钟后相遇。
250x+200x=4500
450x=4500 450x÷450=4500÷450
x=10 答:两人9:10相遇。
方程检验
我每分钟骑350m。
我每分钟骑250m。
小林家和小云家相距4.5 km。周日早上9:00 两 人分别从家骑自行车相向而行,两人何时相遇?
解:设两人x分钟后相遇。 350x+250x=4500பைடு நூலகம்
0.25x+0.2x=4.5
0.45x=4.5 0.45x÷0.45=4.5÷0.45
x=10 答:两人9:10相遇。
方程检验
我每分钟骑350m。
我每分钟骑250m。
小林家和小云家相距4.5 km。周日早上9:00 两 人分别从家骑自行车相向而行,两人何时相遇?
解:设两人x分钟后相遇。 0.35x+0.25x=4.5
或 (350+250)x=4500
【练一练】两个工程队同时开凿一条540 m长的隧道,各从
一端相向施工,甲队每天开凿12米,乙队每天开凿15米。几
天能打通?
甲队开凿的长度
乙队开凿的长度
甲队
乙队
540 m
甲队开凿的长度+乙队开凿的长度=540 m
解:设x天能打通。
五年级解方程式练习题相遇问题

五年级解方程式练习题相遇问题解方程式练习题——五年级相遇问题解方程式是数学中的重要内容之一,对于五年级的学生来说,解方程式的练习可以帮助他们增强数学思维能力和解决实际问题的能力。
在本文中,我们将探讨一个有趣的解方程式练习题——相遇问题。
假设有两个人从不同的地方同时出发,其中一个人每小时走3千米,另一个人每小时走5千米。
那么问他们相遇需要多少时间?为了解决这个问题,我们可以设定一个未知数,例如用x表示相遇时间(小时)。
根据题目信息,我们可以列出如下的方程:3x + 5x = 相遇距离其中,3x表示第一个人走的距离,5x表示第二个人走的距离。
因为他们相遇时到达的地方是相同的,所以他们走的距离之和等于相遇的距离。
根据这个方程,我们可以得到:8x = 相遇距离现在问题变成了求相遇距离,而我们可以通过速度乘以时间来计算距离。
从题目中我们可以得知,他们相遇需要的时间为x小时,所以相遇距离可以表示为3x或5x。
将这个表达式代入方程中,我们有:8x = 3x 或 8x = 5x带入表达式后,我们可以解得:8x = 3x8x - 3x = 5x5x = 0换一个方程:8x = 5x8x - 5x = 3x3x = 0通过观察可得,两个方程的解都是x = 0。
然而,在实际情况中,相遇应该不会在出发的瞬间发生,所以这个解不符合实际。
因此,我们需要考虑其他可能的解。
现在我们将方程改为:8x = 3x + 5这个方程式表示相遇距离是相对于第一个人多出来的5千米。
通过解这个方程,我们可以得到正解。
3x - 8x = -5-5x = -5x = 1因此,他们需要1小时才会相遇。
总结起来,通过解方程式,我们得出了他们相遇需要1小时的结论。
这个练习题不仅考察了解方程式的能力,还培养了学生的逻辑思维和解决实际问题的能力。
通过类似的练习,五年级学生可以更好地掌握解方程式的方法和应用。
解方程式作为数学中重要的内容,可以通过生活中的实际问题来进行练习和应用。
列方程解决实际问题之相遇问题教案

列方程解决实际问题之相遇问题教案一、教学目标:1. 让学生理解相遇问题的基本概念,并能用数学语言描述相遇问题。
2. 培养学生运用方程解决实际问题的能力,提高学生的数学思维。
3. 通过对相遇问题的探讨,培养学生合作、交流的能力,提高学生的团队意识。
二、教学内容:1. 相遇问题的定义及示意图。
2. 相遇问题的数量关系:相遇路程= 甲的路程+ 乙的路程。
3. 相遇问题的方程解答方法。
三、教学重点与难点:1. 教学重点:相遇问题的基本概念、数量关系及方程解答方法。
2. 教学难点:相遇问题的数量关系转化及方程的建立。
四、教学方法:1. 采用问题驱动法,引导学生主动探究相遇问题的解决方法。
2. 利用多媒体演示相遇问题,直观地展示问题解决过程。
3. 分组讨论,让学生在合作中学习,共同解决问题。
五、教学过程:1. 导入:通过一个生活中的相遇问题,引发学生对相遇问题的兴趣。
2. 新课导入:介绍相遇问题的定义、示意图及数量关系。
3. 案例分析:分析具体相遇问题,引导学生运用方程解答。
4. 方法讲解:讲解相遇问题的方程解答方法,引导学生理解并掌握。
5. 实践操作:学生分组讨论,运用所学方法解决实际问题。
7. 课堂练习:布置相关练习题,巩固所学知识。
8. 课后作业:布置一道综合性较强的相遇问题,提高学生的应用能力。
9. 课堂反馈:课后收集学生练习情况,了解学生掌握程度,为下一步教学做好准备。
六、教学准备:1. 教学课件:制作包含相遇问题定义、示意图、数量关系和方程解答方法的课件。
2. 练习题库:准备一系列不同难度的相遇问题练习题。
3. 分组标签:为了方便学生分组讨论,准备小组标签。
4. 教学笔和板书:用于在黑板上书写关键信息和解题步骤。
七、教学步骤:1. 回顾与导入:通过简短的复习上一节课的内容,引导学生回顾相遇问题的基本概念和数量关系。
2. 实例演示:利用课件展示一个具体的相遇问题实例,让学生观察并描述问题情景。
3. 问题提出:向学生提出问题,要求他们用方程来解决这个相遇问题。
五年级下册数学课件-列方程解决问题(相遇问题)-沪教版

探究二、沪宁高速公路全长约270千米,一辆轿车和一辆 客车分别从上海和南京两地同时出发,相向而行。轿车 平均每小时行100千米,客车平均每小时行80千米,经过 几小时两车在途中相遇?
轿车 100千米/时 上海 轿车行的路程+客车行的路程= 两地的路程 ?小时 270千米 轿车、客车的速度和×相遇时间= 两地的路程 80千米/时 客车 南京
探究三、沪宁高速公路全长约270千米,一辆轿车 和一辆客车分别从上海和南京两地同时出发,相 向而行。轿车平均每小时行100千米,经过1.5小 时两车在途中相遇,客车平均每小时行多少千米?
沪宁高速公路全长约270千米,一辆轿车和一辆客 车分别从上海和南京两地同时出发,相向而行。 轿车平均每小时行100千米,经过1.5小时两车在 途中相遇,客车平均每小时行多少千米?
客车 南京
? 千米
轿车 100千米/时 上海 80千米/时 客车 南京
?小时
270千米
轿车 100千米/时 上海
1.5小时 270千米
?千米/时 客车
南京
轿车、客车的速度和 × 相遇时间=两地的路程 轿车行的路程 + 客车行的路程=两地的路程
练一练:
小亚和小巧同时从相距路程为960米的两地出发,相向 而行,小亚平均每分钟走58米,小巧平均每分钟走62米, 几分钟后两人在途中相遇?
沪宁高速公路全长约270千米,一辆轿车和一辆客车 分别从上海和南京两地同时出发,相向而行。轿车 平均每小时行100千米,客车平均每小时行80千米, 经过几小时两车在途中相遇?
探究二、沪宁高速公路全长约270千米,一辆轿车和 一辆客车分别从上海和南京两地同时出发,相向而 行。轿车平均每小时行100千米,客车平均每小时行 80千米,经过几小时两车在途中相遇?
列方程解决问题(四)---相遇问题3.3

返回
返回Leabharlann 练习(3)甲乙两队合修一条长4200千米的公路。甲队平均每天修 200米,乙队每天修180米,甲队先修,两天后乙队才开工。 乙队开工几天后两队能把这条路修完?
(4200-200×2)÷(200+180) =3800÷380
=10(天) 答:乙队开工10天后两队能把这条路修完。
返回
练习
(4)轿车以60千米/时的速度,吉普车以80千米/时的速度 分别从东、西两站出发,相对行驶,轿车先从东城开出一些时 间后,吉普车才从西城开出,当轿车行驶8小时后,两车在两 站的中点相遇,轿车比吉普车早开出几小时? 解:设轿车比吉普车早开出X小时。 80(8-X)=60×8, 640-80X=480, 80X=160, X=2. 答:轿车比吉普车早开出2小时。
用方程法解: 用算术法解: (470-3.2×76)÷(3.2-0.5)
解:设客车平均每小时行x千米。
(3.2-0.5)x+3.2×76=470, =(470-243.2)÷2.7 2.7x=470-243.2,=226.8÷2.7 2.7x=226.8, =84(千米) x=226.8÷2.7, 答:客车平均每小时行84千米。 x=84.
72米/分 小亚
小亚行 的路程 小胖行 的路程
78米/分 小胖
1800米
④(1800-9.6×78)÷72-9.6 (
小亚行的路程 ÷小亚的速度
)
小亚行的时间 -小亚后行的时间 = 小亚先行的时间
练习
(1)甲乙两人骑自行车分别从相距95千米的两地出 发相向而行。甲先行8千米后乙再出发,乙出发3小 时后两人在途中相遇,已知甲的速度是16千米/时 ,求乙的速度。
探究一 变式练习(只列式不计算)
五年级数学上册教案-5.2.4 列方程解决相遇问题11-人教版

五年级数学上册教案-5.2.4 列方程解决相遇问题11-人教版一、教学目标1. 让学生理解相遇问题的基本概念,掌握列方程解决相遇问题的方法。
2. 培养学生运用方程解决问题的能力,提高学生的逻辑思维能力。
3. 培养学生合作学习的能力,增强学生解决实际问题的意识。
二、教学内容1. 相遇问题的基本概念2. 列方程解决相遇问题的方法3. 相遇问题的应用三、教学重点与难点1. 教学重点:掌握列方程解决相遇问题的方法。
2. 教学难点:理解相遇问题的基本概念,运用方程解决实际问题。
四、教学过程1. 导入新课通过讲述两个小孩从相距一定距离的两地同时出发,相向而行,经过一段时间后相遇的故事,引出相遇问题的基本概念。
2. 探究新知(1)引导学生理解相遇问题的基本概念,如相遇点、相遇时间等。
(2)讲解列方程解决相遇问题的方法,如设定未知数、列方程、解方程等。
(3)通过例题演示,让学生学会运用方程解决相遇问题。
3. 巩固练习设计一些相遇问题的练习题,让学生独立完成,巩固所学知识。
4. 小组讨论将学生分成小组,讨论如何运用方程解决相遇问题,培养学生的合作学习能力。
5. 课堂小结对本节课所学内容进行总结,强调重点知识。
6. 课后作业布置一些相遇问题的作业,让学生课后巩固所学知识。
五、教学反思本节课通过讲解相遇问题的基本概念和列方程解决相遇问题的方法,让学生掌握了解决相遇问题的能力。
在教学过程中,要注意引导学生理解相遇问题的基本概念,培养学生的逻辑思维能力。
同时,通过小组讨论,让学生学会合作学习,提高解决问题的能力。
在课后作业中,要注重作业的质量,让学生在完成作业的过程中巩固所学知识。
总之,本节课的教学目标基本实现,但仍需在今后的教学中不断完善,以提高学生的数学素养。
需要重点关注的细节是“列方程解决相遇问题的方法”。
这个部分是解决相遇问题的关键,它要求学生能够理解问题的本质,正确设定未知数,建立数学模型,并解方程得出答案。
以下是对这个重点细节的详细补充和说明:一、理解相遇问题的本质相遇问题通常涉及到两个或多个移动的物体,它们在同一时间从不同的地点出发,以不同的速度向某个方向移动,最终在某个点相遇。
相遇问题公式解方程

相遇问题公式解方程在日常生活中,我们常会遇到相遇问题,比如两个人从不同的地方出发,以不同的速度行驶,那么他们将在何时相遇?这个问题可以用数学公式解决。
首先,我们来看一个简单的相遇问题。
假设小明和小张一起从同一点出发,小明以5米每秒的速度向东行走,小张以3米每秒的速度向南行走。
如果他们要在一个十字路口相遇,那么他们应该何时出发?我们可以画一个平面直角坐标系,以出发点为原点,小明向东为正x 轴方向,小张向南为正y轴方向。
由于他们要在十字路口相遇,因此他们的x坐标和y坐标相同。
设t为小明和小张同时出发的时间,那么小明和小张的坐标分别为x=5t 和y=3t。
由于他们要在相同的坐标相遇,因此有5t=3t。
解这个方程,可以得到t=1.5秒。
因此,小明和小张应该在同时出发的1.5秒后到达十字路口,并在那里相遇。
接下来,我们来看一个稍微复杂一些的相遇问题。
假设小李和小王分别从A地和B地同时出发,小李以4米每秒的速度向B地行驶,小王以6米每秒的速度向A地行驶。
如果他们要在距离A地3000米的C点相遇,那么他们应该何时出发?我们同样可以画一个平面直角坐标系,以A为原点,x轴向B方向,y轴向上。
设t为两人同时出发的时间,设C点的坐标为(x,y)。
则小李的坐标为(x+4t,y),小王的坐标为(x,y+6t)。
由于他们要在点C相遇,因此应有∣x+4t∣+∣y+6t−3000∣=0。
注意到∣x+4t∣和∣y+6t−3000∣分别表示小李和小王离点C的距离,因此这个方程的意义是两人距离点C的距离之和为0,也就是两人在C点相遇。
将∣x+4t∣+∣y+6t−3000∣化为分段函数的形式,可以得到两个方程:x+4t+y+6t−3000=0−x−4t+y+6t−3000=0解这两个方程,可以得到x=1200,y=900,代入其中一个方程,解得t=150秒。
因此,小李和小王应该在同时出发的150秒后到达C点,并在那里相遇。
总结一下,相遇问题本质上是解方程的问题,只需要建立坐标系,设定变量,列出方程,然后解方程,就可以求出相遇的时间、地点等信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:设甲车平均每小时行x千米。 87×7+7x=1463 609+7x=1463 7x=1463-609 7x= 854 x=854÷7 x=122
新乐市实验学校
甲、乙两列火车分别同时从北京和上海开出, 相向而行。经过7小时相遇。甲车平均每小时行多 少千米?
我找的等量关系是:
解:设甲车平均每小时行x千米。 7x=1463 -87×7 7x=1463-609 7x= 854 x=854÷7 x=122 答:甲车平均每小时行122千米
16x=1200-80
x=1120÷16
x=70
答:李村平均每天修70米。
新乐市实验学校
3. 解方程
17+2x=29 2x=29-17
x=12÷2 x=6 9x-2=2.5 9x=2.5+2 x=4.5÷9
13×7+4x=127 4x=127-91
x=36÷4 x=9 3x-0.9=0.6×4 3x=2.4+0.9 x=3.3÷3
新乐市实验学校
甲、乙两列火车分别同时从北京和上海开出, 相向而行。经过7小时相遇。甲车平均每小时行多 少千米?
找出等量关系,再试着 列方程解答。
我找的等量关系是:
甲车7小时行的路程+乙车7小时行的路程
=1463千米
新乐市实验学校
甲、乙两列火车分别同时从北京和上海开出, 相向而行。经过7小时相遇。甲车平均每小时行多 少千米?
新乐市实验学校
列方程解决稍复杂 的相遇问题
三 方程(第五课时)
新乐市实验学校
甲乙两列火车分别同时从北京和上海开出, 相向而行。甲车每小时行122千米,乙车每小时 行87千米,经过7小时相遇。北京到上海的路程 是多少千米?
方法一:用两车的速度和×相遇时间 (122+87)×7=1463(千米) 方法二:把两车相遇时各走的路程相加 122 ×7 到其他等 量关系吗?
新乐市实验学校
甲、乙两个工程队同 时从两端开凿一条隧道, 计划32天完成。甲队计划 每天完成7米,乙队每天 需要完成多少米?
解:设乙队每天需要完成x米。
7×32+32x=480
32x=480-224 x=256÷32
x=8
答:乙队每天需要完成8米。
新乐市实验学校
练一练
1. 每袋大米重50千克,每袋面粉重25千克。这辆车 上已装了48袋大米,还能装多少袋面粉? 解:设还能装x袋面粉。
通过今天的学习,大家有什 么收获?
新乐市实验学校
• 作业
3吨=3000千克
50×48+25x=3000
25x=3000-2400
x=600÷25
x=24
新乐市实验学校
2. 张村和李村合修一条道路,他们各从本村一端开始 同时施工,16天完成。完工时,张村比李村多修了 80米。张村平均每天修75米,李村平均每天修多少 米? 解:设李村平均每天修x米。 16x+80=75×16
x=0.5
x=1.1
新乐市实验学校
4. 甲、乙两艘轮船沿同一航线同时从上海开往青岛。
经过18小时后,甲船落在乙船后面57.6千米。甲
船平均每小时行32.5千米,乙船平均每小时行多 少千米?
解:乙船平均每小时行x千米。
18x-57.6=32.5×18 x=35.7 答:乙船每小时行35.7千米。
新乐市实验学校