极限平衡法在边坡稳定分析中的应用
边坡稳定性分析方法

边坡稳定性分析方法1.1 概述边坡稳定性分析是边坡工程研究的核心问题,一直是岩土工程研究的的一个热点问题。
边坡稳定性分析方法经过近百年的发展,其原有的研究不断完善,同时新的理论和方法不断引入,特别是近代计算机技术和数值分析方法的飞速发展给其带来了质的提高。
边坡稳定性研究进入了前所未有的阶段。
任何一个研究体系都是由简单到复杂,由宏观到微观,由整体到局部。
对于边坡稳定性研究,在其基础理论的前提下,边坡稳定分析方法从二维扩展到三维,更符合工程的实际情况;由于一些新理论和新方法的出现,如可靠度理论和对边坡工程中不确定性的认识,边坡稳定分析方法由确定性分析向不确定性分析发展。
同时,由于边坡工程的复杂性,边坡稳定评价不能依赖于单一方法,边坡的稳定性评价也由单一方法向综合评价分析发展。
1.2 边坡稳定性分析方法边坡稳定性分析方法很多,归结起来可分为两类:即确定性方法和不确定性方法, 确定性方法是边坡稳定性研究的基本方法,它包括极限平衡分析法、极限分析法、数值分析法。
不确定性方法主要有随机概率分析法等。
1.2.1 极限平衡分析法极限平衡法是边坡稳定分析的传统方法,通过安全系数定量评价边坡的稳定性,由于安全系数的直观性,被工程界广泛应用。
该法基于刚塑性理论,只注重土体破坏瞬间的变形机制,而不关心土体变形过程,只要求满足力和力矩的平衡、Mohr-Coulomb准则。
其分析问题的基本思路:先根据经验和理论预设一个可能形状的滑动面,通过分析在临近破坏情况下,土体外力与内部强度所提供抗力之间的平衡,计算土体在自身荷载作用下的边坡稳定性过程。
极限平衡法没有考虑土体本身的应力—应变关系,不能反映边坡变形破坏的过程,但由于其概念简单明了,且在计算方法上形成了大量的计算经验和计算模型,计算结果也已经达到了很高的精度。
因此,该法目前仍为边坡稳定性分析最主要的分析方法。
在工程实践中,可根据边坡破坏滑动面的形态来选择相应的极限平衡法。
刚体极限平衡法在岩质边坡中的应用

近年来,随着城市化进程的加快,岩质边坡工程的重要性也日益突显。
岩石的力学特性决定了岩质边坡的稳定性,而针对岩石的力学特性进行合理的分析和应用,对于保障岩质边坡的安全具有至关重要的意义。
在岩质边坡的稳定性分析中,刚体极限平衡法作为一种常用的分析方法,被广泛应用于岩质边坡工程中。
1. 刚体极限平衡法的基本原理刚体极限平衡法是一种力学分析方法,它将土体或岩体看成一个整体,通过计算力的平衡来判断边坡的稳定性。
刚体极限平衡法的基本原理是,在边坡的滑动面上,内力和外力达到平衡。
根据刚体极限平衡法的原理,可以推导出判断岩质边坡稳定性的计算公式。
这种方法的主要优点是简单易行,适用范围广,且可以快速获得初步的边坡稳定状态。
2. 刚体极限平衡法在岩质边坡中的应用在岩质边坡工程中,刚体极限平衡法的应用主要包括以下几个方面:(1)边坡形态分析根据刚体极限平衡法的原理,可以对岩质边坡的形态进行分析,确定边坡的滑动面和开挖范围。
通过分析边坡的形态,可以有效地预测边坡的稳定性,在设计阶段就可以对边坡进行合理的设计和处理。
(2)边坡稳定性计算刚体极限平衡法可以用于岩质边坡的稳定性计算。
根据岩石材料的力学性质和边坡的形态参数,结合刚体极限平衡法的计算公式,可以快速地对岩质边坡的稳定性进行评估。
通过稳定性计算,可以及时采取相应的支护措施,保证边坡的安全性。
(3)边坡设计优化在岩质边坡工程中,刚体极限平衡法还可以用于边坡设计的优化。
通过对边坡的形态和岩石的力学性质进行分析,可以利用刚体极限平衡法进行多种设计方案的比较,找到最经济、最安全的边坡设计方案。
3. 刚体极限平衡法在岩质边坡中的局限性虽然刚体极限平衡法在岩质边坡工程中具有重要的应用价值,但是也存在一些局限性。
主要表现在以下几个方面:(1)模型假设的局限性刚体极限平衡法是以岩石材料为刚体来进行分析的,忽略了岩石本身的弹性变形和破坏过程中的变形规律。
在实际工程中,岩石的弹性和塑性变形特性对边坡稳定性具有一定影响,而刚体极限平衡法无法准确地反映出这些影响。
边坡稳定性

6.4.1 边坡稳定性分析方法简述边坡稳定性分析方法很多,目前已形成以下几种:1、极限平衡法。
这是国内外工程界目前广泛应用的最基本方法。
该法将滑体划分若干条块即所谓的条分法,引入摩尔——库伦强度准则,并对条块间作用力方式作出假定,使问题成为静定,根据条块的力或力矩的平衡,建立边坡安全系数表达式(有些是隐式),采用任意形状滑动面的计算模式。
极限平衡法便于工程应用,特别是此法能给出边坡稳定性定量评判值——安全系数F,因而广为工程界接受。
对于已知最危险破坏面的边坡,极限平衡法应用起来s更为方便,但破坏面未知情况下,需要搜索出最危险破坏面,从而求得对应的边坡最小安全系数。
2、极限分析法。
该法的理论基础是塑性力学的上、下限定理,极限分析多采用上限定理解。
应用此法,通常也需要假设潜在破坏面位臵,并将滑体分成若干刚性块,然后构筑一个协调的位移场。
再根据虚功原理求解使结构处于极限平衡的外荷载。
极限分析法最大的困难仍是求极值问题,目前没有得到圆满解决,因此该法应用于实际边坡工程受到很大的限制。
3、有限单元法。
有限元法可全面分析边坡体应力应变,可以处理复杂的边界条件以及材料的非均匀性和各向异性,还可以有效地模拟材料的非线性应力应变关系。
尽管如此,有限单元法并没有成为边坡稳定性分析的首选方法,因为有限元计算成果不能直接给边坡稳定性提供定量评判,不便于工程应用。
另外边坡失稳,大部分单元处于塑性破坏状态,材料的本构关系变得极为复杂,同时存在由于刚度矩阵不稳定、不对称引起的数值分析不稳定问题。
4、离散单元法。
岩质边坡通常由许多不连续面切割成块体,离散单元法基于牛顿第二运动定律模拟块体的运动过程,但是块体的离散不是一件简单的事,一般简化处理带来理想模型与现实的不一致,最终导致计算结果可信度降低。
5、块体理论。
块体理论是基于拓扑学原理,找出关键块体,查明失稳块体的范围大小,寻求支护对策。
块体理论已被成功地用于理想节理岩体边坡稳定性分析。
极限平衡法在边坡稳定分析中的应用

极限平衡法在边坡稳定性分析中的应用摘要从瑞典圆弧法、瑞典条分法和毕肖普法的基本原理出发,对比三者的不同假设,从得出的安全系数数据分析得出结论:三种方法中,毕肖普法得出的稳定性系数最大,瑞典条分法得出的稳定性系数居中,瑞典圆弧法迁出的稳定性系数最小。
关键词瑞典圆弧法瑞典条分法毕肖普法稳定性系数1 概述由于边坡内部复杂的结构和岩石物质的不同,使得我们必须采用不同的分析方法来分析其稳定状态。
因此边坡是否处于稳定状态,是否需要进行加固与治理的判断依据来源于边坡的稳定性分析数据。
目前用于边坡稳定分析的方法有很多,但大体上有两种——极限平衡法和数值法。
数值法有离散元法、边界元法、有限元法等;极限平衡法有瑞典圆弧法、毕肖普法、陆军工程师团法、萨尔玛法和摩根斯坦—普莱斯法等。
极限平衡法依据的是边坡上的滑体或滑体分块的力学平衡原理(即静力平衡原理)来分析边坡在各种破坏模式下的受力状态,以及边坡滑体上的抗滑力和下滑力之间的关系来对边坡的稳定性进行评价的计算方法。
由于它概念清晰,容易理解和掌握,且分析后能直接给出反映边坡稳定性的安全系数值,因此极限平衡法是边坡稳定性分析计算中主要的方法,也是在工程实践中应用最多的方法之一。
其中瑞典圆弧法(简称瑞典法或费伦纽斯法)亦称Fellenious法,是边坡稳定分析领域最早出现的一种方法。
这一方法由于引入过多的简化条件和考虑因素的限制 , 它只适用于φ= 0 的情况。
虽然求出的稳定系数偏低 10 % ~20 %。
,但却构成了近代土坡稳定分析条分法的雏形。
而在费伦纽斯之后,许多学者都对条分法进行了改良,产生了许多新的计算方法,使计算的方法日趋完善。
在瑞典圆弧法分析粘性边坡稳定性的基础上,瑞典学者Fellenius 提出了圆弧条分析法,也称瑞典条分法。
Fellenius将土条两侧的条间力的合力近似的看成大小相等、方向相反、作用在同一作用面上,因此提出了不计条间力影响的假设条件。
而每一土条两侧的条间力实际上是不平衡的,但经验表明,在边坡稳定性分析中,当土条宽度不大时,忽略条间力的作用对计算结果并没有显著的影响,而且此法应用的时间很长,积累了丰富的工程经验,一般得到的安全系数偏低,即偏于安全,所以目前的工程建设上仍然常用这种方法。
边坡稳定的极限平衡法

极限平衡法在边坡工程设计中应用广泛,可以帮助工程师确定边坡的安 全系数和稳定性。
极限平衡法基本原理:通过计算土体的抗剪强度和滑动面的抗剪强度,判断边坡的稳 定性
计算参数:包括土体的内聚力、内摩擦角、黏聚力、黏聚力等
计算方法:采用极限平衡法计算公式,如瑞典圆弧法、毕肖普法等
边界元法:适用于非 连续介质问题,求解 速度快,但需要大量 的计算
极限平衡法与边界元法 的比较:极限平衡法适 用于连续介质问题,而 边界元法适用于非连续 介质问题,两者在求解 速度上都有优势,但都 需要大量的计算。
边坡稳定的极限平 衡法的发展趋势和 未来展望
极限平衡法在 边坡稳定分析 中的应用越来
性的弹性体
计算原理:通 过求解土体的 应力、应变和 位移方程,得 到边坡的稳定
安全系数
应用范围:适 用于各种土质 边坡,特别是 那些受水、温 度等因素影响
的边坡
Байду номын сангаас
基本假设:土体为连续、均匀、各向同性的弹性体
计算方法:通过求解土体的静力平衡方程,得到土体的应力状态和变形状态
适用范围:适用于土体变形较小、应力状态较简单的情况 优点:计算简单、易于理解,能够快速得到土体的应力状态和变形状态
越广泛
极限平衡法的 计算方法和软 件不断改进和
完善
极限平衡法与 其他分析方法 相结合,提高 边坡稳定分析 的准确性和可
靠性
极限平衡法在 边坡稳定预警 和防治中的应
用前景广阔
技术进步:随着科技 的发展,极限平衡法 的计算方法和技术将 不断完善和改进。
应用领域拓展:极限平 衡法将在更多领域得到 应用,如地质灾害防治、 土木工程、环境工程等。
极限平衡法与有限元强度折减法对某公路边坡挡土墙稳定性分析

计 算 公式 如 下 。
Mk
K
T
1
×
3 某 公 路 挡 墙 设 计 整 体 稳 定 性 分 析 实例
年提出, 以极 限平衡 理 论为 基础 的条 分法 , 法对 边 该
2 有 限元 强度 折 减 法 的 基 本 原 理
有 限元 强度折 减法 定 义边 坡 的安全 系数为 使使
边坡 刚好 达 到临界 破坏 状态 时对 土体 材料 的抗 剪强
坡 挡土 墙整 体稳 定 性计 算简 图 , 图 1 见 。
( n nR a Hu a od& Big o s u t nG o pC . Ld h ns a H n n4 0 0 ,C ia r eC nt ci ru o ,t.C a gh , u a 1 0 4 hn ) d r o
[ b t c]T i p pr xlrs h a rs fh m t q ibim m t dadte t n t rd c A sr t h a e epoe e e t e el i eul r e o n r gh eu - a s t f u ot i i u h h se
【 图分 类 号 ]u4 6 1 中 1 . 4 [ 献 标识 码 】A 文 【 文章 编 号 】17 一 6o 2 1 )3 0 8 - 4 6 4 o 1 (0 2 0 - 10 0
ห้องสมุดไป่ตู้
S a l y An l ss o h t i i g W a o g wa l p s d t bi t a y i f t e Re n n i a U f r Hi h y S o e Ba e
极限平衡理论的应用分析

极限平衡理论的应用分析极限平衡理论较常用于边坡稳定性分析,因可快速得到一潜在滑动面及其安全系数,但其假设较简单较不考虑岩土实际行为。
本研究根据某一实例,由极限平衡理论的临界滑动面进行分析,接下来根据其安全系数加以讨论,有一定的现实意义。
标签:边坡稳定性极限平衡理论应用分析由于近年来边坡灾害层出不穷,所以在边坡开发前,应审慎评估边坡安全性,因此边坡稳定分析是不可或缺的过程。
一般工程界分析边坡稳定问题,大致可分为极限平衡理论与数值分析法,极限平衡理论为岩土在极限状态下计算力或力矩平衡方法,与岩土组合律无关;另外则为采用岩土应力-应变关系数值分析方法,如有限元素法、有限差分法等。
极限平衡方法用以评估边坡稳定已有相当多年的历史,其主要假设为所考虑的可能滑动土体范围内均达极限塑性状态,以寻求力、力矩或能量平衡。
极限平衡方法所以能为工程界所接受并加以使用,主要是其简易且可得到不错结果。
但该法无法确切反应边坡行为,除非边坡已接近临界状态,即安全系数接近或甚至小于1.0[1]。
随着数值分析方法演进及计算能力提升,极限平衡方法有效性逐渐受到存疑[2]。
本研究使用Pcstabl 程序程序由美国普渡大学Siege 于1974 年所开发,并且不断发展新的功能。
程序中有Bishop、Janbu 及Spencer 等切片分析法可求取边坡安全系数及可能滑动破坏面位置。
此外对于异向性的岩土、地下水位、地表荷重、地震力等均能加以分析,其应用于边坡相关问题分析上相当普遍[3]。
本研究采用Pcstabl5m Janbu切片分析法,此法可解决不规则地形与不同剪力强度土层边坡稳定问题,滑动面可为任意形状,且滑动面上与滑动土体内任意位置应力皆可计算[4]。
实务工程设计常使用极限平衡理论,因可快速求得安全系数与可能滑动面。
而安全系数一般可由力平衡或力矩平衡求得,如式(1)所示。
但由于极限平衡理论假设沿边坡滑动面上的每一点均同时达到极限状态,即滑动面上每一点安全系数均相同,与实际边坡破坏并不相符[5]。
边坡稳定分析方法评述与应用

用 的方 法不 多 。但从 计算 结 果评 价和 应用 而言 ,并 考 虑边 坡 问题 的复 杂性 ,每 类边坡 规 定两种 或 两种
以 上 方 法 供 设 计 者 选 择 。 由 于 边 坡 稳 定 内 在 和 外 部
边 界条 件 的复 杂性 ,建议 制 定规 范条 文时 要求 同时
采 用两 种 方法进 行计 算 ,以增加计 算 结果分 析评 价
一
样 。本 文 对 《 利 水 电 工 程 边 坡 设 计 规 范 》 S 3 6 2 0 ) 定 的 常 用 极 限 平 衡 稳 定 方 法 进 行 评 价 , 水 (L 8 — 07 规
提 出 不 同类 别 边 坡 的适 用 计 算 方 法 和 使 用 中 应 注 意 的 问 题 , 设计 者 参 考 。 供
稳 定分 析方 法 的适应 条 件和技 术 特点 及其应 用 注意
事 项进行 阐述 。
( )对 条 问力 所做 出 的假设 不 同 。 2 ( )所 考虑 的力 和力 矩 平衡 条件 不 同 。 3 这 些 近似假 定 和平衡 条 件 的不够 ,就 是各 种极 限平衡 方法 引起 不 同误差 的原 因 。理 论 和工程 实践
标 准 化
边 坡 稳 定 分 析 方 法 评 述 与 应 用
21 0 0年 第 1期
边 坡 稳 定 分析 方法 评 述 与应 用
王 新 奇 孙 胜 利 赵 洪岭
( 河勘 测规 划设 计有 限公 司, 州 黄 郑 40 0 ) 5 0 3
【 摘
要 】 稳 定 分 析 是 边 坡 设 计 中 非 常 重 要 的工 作 , 坡 岩 土 体 材 料 、 质 构 造 等 不 同 , 用 的稳 定 分 析 方 法 也 不 边 地 适
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
极限平衡法在边坡稳定性分析中的应用摘要从瑞典圆弧法、瑞典条分法和毕肖普法的基本原理出发,对比三者的不同假设,从得出的安全系数数据分析得出结论:三种方法中,毕肖普法得出的稳定性系数最大,瑞典条分法得出的稳定性系数居中,瑞典圆弧法迁出的稳定性系数最小。
关键词瑞典圆弧法瑞典条分法毕肖普法稳定性系数1 概述由于边坡内部复杂的结构和岩石物质的不同,使得我们必须采用不同的分析方法来分析其稳定状态。
因此边坡是否处于稳定状态,是否需要进行加固与治理的判断依据来源于边坡的稳定性分析数据。
目前用于边坡稳定分析的方法有很多,但大体上有两种——极限平衡法和数值法。
数值法有离散元法、边界元法、有限元法等;极限平衡法有瑞典圆弧法、毕肖普法、陆军工程师团法、萨尔玛法和摩根斯坦—普莱斯法等。
极限平衡法依据的是边坡上的滑体或滑体分块的力学平衡原理(即静力平衡原理)来分析边坡在各种破坏模式下的受力状态,以及边坡滑体上的抗滑力和下滑力之间的关系来对边坡的稳定性进行评价的计算方法。
由于它概念清晰,容易理解和掌握,且分析后能直接给出反映边坡稳定性的安全系数值,因此极限平衡法是边坡稳定性分析计算中主要的方法,也是在工程实践中应用最多的方法之一。
其中瑞典圆弧法(简称瑞典法或费伦纽斯法)亦称Fellenious法,是边坡稳定分析领域最早出现的一种方法。
这一方法由于引入过多的简化条件和考虑因素的限制 , 它只适用于φ= 0 的情况。
虽然求出的稳定系数偏低 10 % ~20 %。
,但却构成了近代土坡稳定分析条分法的雏形。
而在费伦纽斯之后,许多学者都对条分法进行了改良,产生了许多新的计算方法,使计算的方法日趋完善。
在瑞典圆弧法分析粘性边坡稳定性的基础上,瑞典学者Fellenius 提出了圆弧条分析法,也称瑞典条分法。
Fellenius将土条两侧的条间力的合力近似的看成大小相等、方向相反、作用在同一作用面上,因此提出了不计条间力影响的假设条件。
而每一土条两侧的条间力实际上是不平衡的,但经验表明,在边坡稳定性分析中,当土条宽度不大时,忽略条间力的作用对计算结果并没有显著的影响,而且此法应用的时间很长,积累了丰富的工程经验,一般得到的安全系数偏低,即偏于安全,所以目前的工程建设上仍然常用这种方法。
1955年,毕肖普(Bishop)在瑞典法基础上提出了——毕肖普法。
这一方法仍然保留了滑裂面的形状为圆弧形和通过力矩平衡条件求解的特点,与瑞典条分法相比,毕肖普法是在不考虑条块间切向力的前提下,满足力多边形闭合条件,就是说虽然在公式中水平作用力并未出现,但实际上条块间隐含的有水平力的作用。
毕肖普法由于考虑到了条块间水平力的作用,因此得到的安全系数较瑞典条分法略高一些。
各种计算方法的出发点基本上都是假定土体是理想塑性材料,不考虑土体本身的应力-应变关系,将土体作为刚体按极限平衡的原则进行受力分析。
本文就极限平衡法中应用较广的瑞典圆弧法、瑞典条分法和毕肖普法在边坡稳定分析中的应用进行比较,得出毕肖普法的稳定性系数更高的结论。
2 瑞典圆弧法、毕肖普法和瑞典条分法的基本理论 2.1 瑞典法 2.1.1 滑面的形状瑞典法使用圆弧滑裂面。
2.1.2 对多余未知力的假定该法不考虑土条两侧的作用力,不满足每一土条的力及力矩的平衡,仅满足整体力矩的平衡。
∑∑=)()(生的滑动力矩第一土条在滑裂面上产抗滑力矩每一土条在滑裂面上的Fs (1)式中F s 表示稳定性系数。
Pi 及 Pi + 1是作用于土条两侧的条间力合力。
由摩尔—库伦准则 , 滑裂面上的平均抗剪强度为:'tg )('φστu c f-+= (2)式中 c ′ 为有效内聚力;φ′ 为有效内摩擦角; u 为孔隙压力。
土底切向阻力 T i 为:si F 'tg )('φττi i si i i sfi i l u Ni F l c l F l T -+=== (3)取土底法向力平衡,得:N i = W i cos αi (4)因为i sin αR x i =,得: ()[]∑∑-+=iiiii ii iii s W tg l u l W l c F αφαsin 'cos ' (5)2.2 毕肖普法 2.2.1 原理毕肖普法提出的土坡稳定系数的含义是整个滑动面上土的抗剪强度tf 与实际产生剪应力T 的比,即K =tf/t ,并考虑了各土条侧面间存在着作用力,其原理与方法如下:假定滑动面是以圆心为O ,半径为R 的滑弧,从中任取一土条i 为分离体,其分离体的周边作用力为:土条重Wi 引起的切向力Ti 和法向反力Ni ,并分别作用于底面中心处;土条侧面作用法向力Ei 、Ei +1和切向力Xi 、Xi +1。
根据静力平衡条件和极限平衡状态时各土条力对滑动圆心的力矩之和为零等,可得毕肖普法求土坡稳定系数的普遍公式。
毕肖普忽略了条间切向力,即Xi+1-Xi =0,这样就得到了国内外广泛使用的毕肖普简化式。
由于推导中只忽略了条间切向力,比瑞典条分法更为合理,与更精确的方法相比,可能低估安全系数(2~7)%。
所以它的特点是:(1)满足整体力矩平衡条件;(2)满足各条块力的多边形闭合条件,但不满足条块的力矩平衡条件;(3)假设条块间作用力只有法向力没有切向力;(4)满足极限平衡条件。
2.2.2 滑面的形状毕肖普简化法使用圆弧滑裂面。
2.2.3 对多余未知力的假定该法考虑了土条两侧条间力的作用,满足整体力矩及每一土条的垂直力的平衡,但不满足每一土条的水平力平衡。
ττf s F =(6)取每一土条竖直方向力的平衡 , 得:N i cos αi = W i + X i – X i+1 – T i sin α i (7)式中 X i 和 X i + 1为土条条间力竖向分力。
由摩尔—库伦准则及式 Ti , 求得土底总法向力为:aii i i 11sin 'tg sin ')(m F l u F l c X X W N s i i s i i i i i i ⎥⎦⎤⎢⎣⎡+--+=+αφα (8) 式中 sii F m αφαs i n 'tg cos i ai +=考虑到各土条对滑裂面圆心的力矩之和应当为零 , 有:()[]{}∑∑∑+-+-+=+Re QWX X b u Wb c m F iii ii i i i iiis αφsin 'tg '1i 1ai(9)同时,毕肖普法假定条间力的合力是水平的,则可简化成:()[]∑∑∑+-+=Re QWb u Wb c m F iiii i iiis i i aisin 'tg '1αφ (10)2.3 瑞典条分法瑞典条分法适用于圆弧形破坏滑动面的边坡稳定性分析。
该条分法将滑动土体竖直分成若干个土条,把土条看成是刚体,分别求出作用于各个土条上的力对圆心的滑动力矩,然后由滑动力矩抗滑力矩=s F 得出土坡的稳定安全系数。
2.3.1 滑面的形状瑞典条分法使用圆弧滑裂面。
2.3.2 对多余未知力的假定不考虑条块间的相互作用。
2.3.3 力学分析滑体任一条块上的作用力有:条块自重i i i i h b W γ=;滑面上的抗剪力Ti 和法向力 N i 。
根据土条 i 的静力平衡条件有:i cos αi i W N = (11)设安全系数为 Fs ,根据库伦强度理论有:si i i fi si F N l c T F T itan 1ϕ+=⨯=(12)整个滑动土体对圆心 O 取力矩平衡得:()∑=-⨯0sin i i i i iR T R Wα (13)将式 式(11) 代入 式(12)后再将式 (12) 代入式 (13) 得如下瑞典条分法计算公式:()∑∑+=isin tan cos αϕαiii i ii s WW lc F (14)当已知土条 i 在滑动面上的孔隙水应力μi 时,瑞典条分法的公式(14)可改写为如下有效应力进行分析的公式:()[]∑∑-+=ii i sin 'tan cos αϕαμii i i ii s Wb W lc F (15)3 工程实例有一1:2的均质坡面,内摩擦角φ=35°,内聚力c =2N ,容重γ=1.75,饱和容重γm =1.9,取土条数为20,孔压系数μ分别为0、0.2、0.4、0.6,由瑞典法、条分法和毕肖普法试算稳定性系数。
3.1 计算结果瑞典法、条分法和毕肖普法计算安全系数结果表3.2 结果分析在计算结果中,毕肖普法计算结果总大于条分法,而条分法总大于瑞典法,反映到H 因子式中,即()∑>-+01i i i tg E E α。
①在相同的中心角条件下随着孔压的增大三者差异增大。
②在相同的孔压条件下随着中心角的增大三者差异也增大。
③在相同的孔压条件下,随着中心角的增大瑞典法总体上逐渐减小,条分法和毕肖普法则逐渐增大。
④在相同孔压条件下,中心角的改变对瑞典法的影响较毕肖普法大。
在相同的中心角条件下,孔压的改变对瑞典法的影响也较毕肖普法大。
4 结论通过工程实例的数据计算得出的安全系数数据可以看出,瑞典圆弧法、瑞典条分法和毕肖普法这三种方法中,毕肖普法的稳定性系数是三者中最高的,而瑞典圆弧法的稳定性系数最低,瑞典条分法居中。
参考文献:[1] 胡辉、姚磊华、董梅,《瑞典圆弧法和毕肖普法评价边坡稳定性的比较》,《路基工程》,2007年第6期,110-112页。
[2]张朋举,《城子水库大坝坝坡稳定性分析》,《华北水利水电学院毕业论文》,第10页。