配合物在医学中的应用.

合集下载

金属配合物在生物医学领域的应用研究

金属配合物在生物医学领域的应用研究

金属配合物在生物医学领域的应用研究近年来,金属配合物在生物医学领域的应用逐渐受到人们的关注。

金属配合物是指由金属离子和一个或多个配体通过配位键连接而成的化合物。

它们具有独特的化学性质和生物活性,因此在药物研究、分子影像和生物传感等方面具有广阔的应用前景。

金属配合物作为药物研究领域的重要一环,已经推动了新药开发的进展。

例如,白蛋白结合的铂配合物是一种常用的抗癌药物,其通过与白蛋白结合,延长了药物在体内的半衰期,提高了药物的稳定性和生物利用度。

此外,金属配合物还可以增强药物的靶向性和选择性。

以金属配合物为基础的抗病毒药物研究也取得了一定的成果。

研究人员通过调节金属配合物的结构和性质,设计出了一系列具有高效抗病毒作用的药物,有效地抑制了病毒的生长和复制。

金属配合物在分子影像学中的应用也引起了研究人员的兴趣。

分子影像技术是一种可以观察和描述生物分子在体内活动和分布的方法。

金属配合物能够通过与靶向分子发生特异性配位,提供高对比度的影像信号,从而实现对疾病状态的准确检测。

例如,金属配合物被广泛应用于磁共振成像(MRI)中,通过调节配体的结构和性质,改变金属配合物的弛豫时间,从而实现对特定疾病的早期诊断和治疗监测。

除了在药物研究和分子影像领域的应用,金属配合物在生物传感器的研究中也发挥着重要作用。

生物传感器是一种能够检测和测量生物体内特定化学物质或生物过程的设备。

金属配合物作为传感器的信号增强剂,能够提高传感器的灵敏度和选择性。

研究人员利用金属配合物的热物理性质和发光性能,设计了一系列用于检测生物分子、离子和气体的传感器。

这些传感器在生命科学研究、环境监测和食品质量控制等方面具有重要的应用前景。

然而,金属配合物在生物医学领域的应用还面临着一些挑战和问题。

首先,一些金属配合物在体内可能产生毒副作用,限制了其应用范围。

因此,研究人员需要精心设计金属配合物的结构以提高其安全性和生物相容性。

其次,金属配合物的合成方法和制备工艺也需要进一步改进,以提高其稳定性和纯度,同时减少成本和环境污染。

关于-配合物在药学上应用综述型论文

关于-配合物在药学上应用综述型论文

配合物在药学上的应用摘要主要阐述了配合物在医药方面的研究及其广泛的应用情况关键词配合物药物应用贵金属抗癌药物人类每天除了需要摄入大量的空气、水、糖类、蛋白质及脂肪等物质以外,还需要一定的“生命金属”,它们是构成酶和蛋白的活性中心的重要组成部分。

当“生命金属”过量或缺少,或污染金属元素在人体大量积累,均会引起生理功能的紊乱而致病,甚至导致死亡。

因此配位化学在医药方面,越来越越显示出其重要作用。

铂类配合物作为抗癌药物的应用20世纪70年代以来,铂配合物抗癌功能的研究在国外引起了极重视。

铂配合物的抗癌活性是基于其对癌细胞的毒性。

现已确定具有顺式结构的[PtA2X2](A为胺类,X为酸根)均显示抑瘤活性,其中顺式二氯、二胺合铂抗癌活性最高。

它不仅能强烈抑制实验动物肿瘤,而且对人体生殖泌尿系统、头颈部及其他软组织的恶性肿瘤有显著疗效,和其他抗癌药联合使用时具有明显的协同作用。

目前,我国已生产“顺铂”供应市场。

由于“顺铂”尚有缓解期短、毒性较大、水溶性较小等缺点,经过化学家们的不懈努力,现已制出了与顺铂抗癌活性相近而毒副作用较小的第二代、第三代抗癌金属配合物药物。

除铂外,其它金属如Ti、Rh、Pd、Ir、Cu、NI、Fe等地某些配合物亦有大小不同的抗癌活性。

可见,金属配合物在探索抗癌新药方面无疑是一个值得大力开拓的领域。

金配合物金作为药物加以研究是从19世纪末期关于氰化金、硫代硫酸金钠、硫代葡萄糖金等地药效研究开始的,但真正应用于临床却还是近几十年的事。

目前,应用最广泛的是金的硫醇类化合物和含磷的金的口服药物用于治疗风湿性关节炎,它还可望作为潜在的杀菌剂被用于治疗牛皮鲜和支气管炎。

介入法把金作为放射性治疗药物,埋入或局部注射到肿瘤组织,以达到杀伤肿瘤细胞的目的,但其安全性及有效性还有待于进一步证实。

最新研究表明金的化合物具有抗癌和抗艾滋病的活性:[Au(damp)X2]显示出抗癌活性,[Au(I)(CN)2-]抑制HIV病毒的增值等。

实验十一-配合物的生成、性质与应用

实验十一-配合物的生成、性质与应用

实验十一-配合物的生成、性质与应用一、实验目的1.了解配合物的形成原理及其相关理论知识;2.掌握配合物的生成、性质和应用;3.学会使用一些化学实验技术,如分离、纯化、结晶等。

二、实验原理1. 配合物的定义配合物是由阳离子、阴离子或分子中心离子(配体)和周围的一个或多个配位体(也称配体)组成的化学物质。

配位体是一种能够向中心离子提供一个或多个共价键(配位键)的化合物或离子。

一般情况下,配位体都是较小的分子,如水分子、氨分子和氯离子等。

2. 配合物的形成原理配合物的形成受到多种因素的影响,主要有以下三方面:1.配位体的性质:配位体通常具有一个或多个孤对电子,可以与中心离子形成配位键。

2.中心离子的性质:中心离子通常具有空的d轨道或f轨道,可以接受来自配位体的电子形成配位键。

3.形成的稳定性:配合物的稳定性取决于配位键的强度、离子的电荷、配位体空间位阻等因素。

3. 配合物的性质配合物具有以下一些特征:1.配合物中心离子的化学性质发生变化。

2.配位体对中心离子的性质有重要影响。

3.配合物常呈现出较强的带电性。

4.配合物的化学性质受配位键性质、离子作用力等因素的影响。

4. 配合物的应用配合物具有广泛的应用,包括:1.工业上用于制造农药、颜料、化学催化剂等。

2.医学上用于治疗疾病,如铁离子配合物用于治疗缺铁性贫血等。

3.生物学上用于研究生物大分子结构和作用机制。

三、实验步骤1. 实验材料和仪器FeCl3·6H2O、KSCN、NaClO、稀盐酸、热水、恒温加热器、移液管、pH试纸、试管等。

2. 实验步骤1.制备混合物:将溶液A(5mL FeCl3·6H2O和4mL稀盐酸)和溶液B(5mL NaClO和4mL稀盐酸)混合,注意不要相互混合,避免产生气体。

2.稀释混合物:将混合溶液加入10mL的水中,形成红褐色混合物。

3.测量pH值:用pH试纸测量溶液的pH值,记录下来。

4.添加配体:加入2滴KSCN溶液,并轻轻摇动管子。

贵金属配合物在医药领域中的应用

贵金属配合物在医药领域中的应用

贵金属配合物在医药领域中的应用一、引言医药领域一直以来都是科学研究和创新的热点。

随着现代医学技术的发展,贵金属配合物在医药领域中的应用逐渐受到重视。

贵金属具有较高的稳定性和生物相容性,配合物化合物的结构和性质可以被精确设计和调控,这为其在药物控制释放、肿瘤治疗和生物成像等方面的应用打开了新的可能性。

本文将全面探讨贵金属配合物在医药领域的应用,着重介绍其在药物传递、抗肿瘤治疗和生物成像领域的最新研究进展。

二、贵金属配合物在药物传递中的应用贵金属配合物由于其独特的结构和性质,在药物传递方面具有很大的潜力。

以下是贵金属配合物在药物传递中的应用案例:1. 靶向性药物传递贵金属配合物可以与药物形成稳定的配合物,通过改变配体结构和配位离子的选择,可以实现药物对特定目标的高度靶向性。

例如,铑配合物可与胶原蛋白结合形成稳定的配合物,通过选择性的靶向性传递,可有效提高药物的疗效并减少副作用。

2. 控制释放系统贵金属配合物可以作为控制释放系统的核心组分。

通过设计配合物的结构和功能,可以实现药物的缓慢释放和特定环境下的释放。

例如,金配合物可以通过调节在酸性和碱性条件下的配体与金离子的配位形式,实现逐渐释放药物,提高药物的疗效和持续性。

3. 基因传递贵金属配合物在基因传递领域也被广泛应用。

金、银、铂等贵金属配合物可通过与DNA结合形成稳定的配合物,实现基因的传递和表达。

利用这种方法,可以实现基因治疗的靶向性和高效性。

三、贵金属配合物在抗肿瘤治疗中的应用贵金属配合物在抗肿瘤治疗中的应用是当前研究的一个热点。

以下是贵金属配合物在抗肿瘤治疗中的应用案例:1. 化疗药物增敏贵金属配合物可以与常用的化疗药物形成协同增敏效应。

例如,铂配合物与DNA结合形成稳定的配合物,可以阻碍DNA的修复和复制,增强化疗药物对肿瘤细胞的杀伤作用。

这种配合物的应用可以减少化疗药物的剂量和副作用,提高治疗效果。

2. 光动力疗法光动力疗法是一种新型的抗肿瘤治疗方法。

配位化合物在医学药学方面的应用

配位化合物在医学药学方面的应用

配位化合物在医学药学方面的应用《配位化合物在医学药学方面的应用》一、引言配位化合物在医学药学领域的应用日益受到人们的重视。

配位化合物具有独特的分子结构和化学性质,在药物设计、药效评价以及疾病治疗中发挥重要作用。

本文将就配位化合物在医学药学方面的应用进行深入探讨,并分享个人观点和理解。

二、配位化合物在药物设计中的作用1.药物靶点的选择配位化合物通过与生物大分子发生特定的配位作用,能够选择性地结合于药物靶点,从而发挥药物的治疗作用。

铂类配合物通过与DNA中的鸟嘌呤发生配位结合,抑制了DNA的复制和转录,进而实现对肿瘤细胞的治疗效果。

2.药物的稳定性和生物利用度配位化合物具有较高的稳定性和生物利用度,可改善药物的药效学性质,延长药物在体内的半衰期,并减少药物的毒性和副作用。

三、配位化合物在药效评价中的应用1.活性配位化合物的筛选配位化合物可以通过结构活性关系的研究,辅助筛选具有潜在药效活性的化合物。

通过对配位化合物结构与活性的定量关系分析,可以帮助药物设计师更好地优化药物分子结构,提高药效活性。

2.配位化合物的生物分布和代谢途径研究在药物开发的过程中,配位化合物的生物分布和代谢途径研究也至关重要。

通过对配位化合物在体内的分布、代谢和排泄情况进行分析,可以为药物剂型的设计、给药途径的选择提供依据。

四、配位化合物在疾病治疗中的应用1.配位化合物抗肿瘤药物的研究与应用铂类配合物的抗肿瘤活性已广泛应用于临床,而近年来,新型的金属配位化合物也受到了研究者的关注。

铑配合物基于其抗肿瘤的活性机制和分子结构特点,被认为是未来肿瘤治疗的有前景的候选药物。

2.配位化合物在神经系统疾病治疗中的潜在应用金属配合物在治疗神经系统疾病方面也具有广阔的应用前景。

锰、铁等金属配合物被广泛研究并应用于帕金森病等神经系统疾病的治疗。

3.配位化合物在抗菌药物研发中的作用金属配合物作为抗菌剂也受到了研究者的关注。

一些锂、铍和钼系列的金属配合物显示出优异的抗菌活性,为抗菌药物的研发提供了新的思路和途径。

配合物在医药领域的应用

配合物在医药领域的应用

配合物在医药领域的应用
配合物是由配体和金属离子组成的化合物。

在医药领域,配合物的应用越来越广泛。

以下是一些常见的应用:
1. 金属配合物药物
金属配合物药物是指含有金属离子的药物。

这些药物可以通过配位作用与生物分子相互作用,从而发挥治疗作用。

例如,铂类化合物是一种常用的抗癌药物,其主要作用是通过与DNA结合,阻止癌细胞的增殖。

2. 配合物成像剂
配合物成像剂是一种在医学成像中广泛应用的化合物。

这些成像剂包含有放射性核素的金属配合物,通过与目标分子结合,可以用于放射性核素显像、正电子发射计算机断层扫描等医学成像技术。

3. 金属离子药物输送剂
金属离子药物输送剂是指含有金属离子的化合物,可以用于输送其他药物。

这些化合物可以通过靶向作用,将药物输送到需要治疗的区域,从而提高药物的效果。

4. 配合物催化剂
配合物催化剂是指含有金属离子的化合物,在化学反应中起催化作用。

这些催化剂可以用于制备药物中的关键中间体,从而提高药物的产率和纯度。

总之,配合物在医药领域的应用非常广泛,可以用于药物治疗、医学成像、药物输送等方面。

随着配合物的研究不断深入,相信会有
更多的应用被发现。

锌配合物发光的原理及应用

锌配合物发光的原理及应用

锌配合物发光的原理及应用1. 引言在无机化学中,配合物是由中心金属离子和周围的配体离子或分子通过化学键结合而形成的化合物。

配合物在生物医药、光电材料等领域具有广泛的应用。

本文将探讨锌配合物的发光原理及其在实际应用中的潜力。

2. 锌配合物的发光原理锌配合物能够发光的原因是由于其分子结构中存在着能够吸收和放射光子的能级跃迁能力。

一般来说,锌配合物的发光原理可以分为两类:有机锌配合物的发光原理和无机锌配合物的发光原理。

2.1 有机锌配合物的发光原理有机锌配合物的发光原理主要与配体的共轭结构有关。

在有机锌配合物中,通常会选择含有苯环或其他芳香环的配体。

这些芳香环能够通过共轭结构形成π-π*跃迁能级,从而吸收高能量的紫外光。

当电子从基态跃迁到激发态后,再经过非辐射跃迁,电子会回到基态并释放出光子,产生可见光的发射。

2.2 无机锌配合物的发光原理无机锌配合物的发光原理与配体中的活性原子有关。

锌配合物中常见的有机配体包括氨、水和一些有机酸盐。

这些配体能够与锌离子形成稳定的络合物。

在络合物中,锌离子与配体中的活性原子发生相互作用,激发活性原子电子的能级。

当电子返回到基态时,会释放出光子产生发光。

3. 锌配合物发光的应用锌配合物的发光特性使得其在许多领域中得到了广泛的应用。

以下列举了锌配合物发光在不同领域的具体应用:3.1 生物荧光标记锌配合物可以用作生物荧光标记剂,在生物医学领域中具有重要的应用。

通过选择合适的配体和锌离子,可以制备出稳定性高、荧光强度好的生物标记物。

这些标记物可以用于细胞成像、蛋白质研究等领域,为生物学研究提供了有力的工具。

3.2 发光材料锌配合物可以作为发光材料,广泛应用于光电显示器件、LED照明等领域。

通过选择不同的配体和锌离子可以调控发光颜色和发光强度,满足不同应用的需求。

锌配合物的高光稳定性和可调控性使其成为一种理想的发光材料。

3.3 光谱分析锌配合物发光具有特征性的光谱信号,可以用于光谱分析。

螯合铁和络合铁

螯合铁和络合铁

螯合铁和络合铁螯合铁和络合铁是两种化合物,都含有铁离子,并与其他化合物形成稳定的配合物。

它们在生物学、医学和工业领域具有广泛的应用和重要的意义。

螯合铁是指铁离子与有机分子中的一个或多个原子以均匀分布的方式发生配位作用而形成的络合物。

这些有机分子中的原子可以是氧、氮、硫等。

由于螯合配合物中配体分子与金属离子之间的键能较大,所以螯合配合物在溶液中具有较高的稳定性。

螯合铁在医学中被广泛应用于金属螯合治疗和诊断。

例如,某些疾病如铁过载症、放射性铁转运病等可以通过螯合铁配合物来进行治疗。

这些配合物可以与体内过剩的铁离子结合,增加溶解度,促进铁的排除。

此外,螯合铁配合物还可以用于MRI(磁共振成像)的增强剂,可以增强信号并提高图像的清晰度。

络合铁是指铁离子与配体发生络合反应形成的稳定的配合物。

络合反应是指金属离子与配体分子之间发生配位键形成,从而形成化学键。

络合铁在工业领域具有广泛的应用。

例如,络合铁常用于催化剂和催化反应中。

铁离子对于氧化还原反应具有良好的催化活性,并且络合反应可以增强铁离子的稳定性,从而延长催化剂的使用寿命。

此外,络合铁在水处理、废水处理和金属离子的分离等方面也有应用。

络合铁配合物可以与金属离子形成络合物,从而使金属离子变得可溶于水,并能通过其他方法进行分离和回收。

螯合铁和络合铁在生物学和医学中也具有重要的应用。

铁是生物体中重要的微量元素,参与多种生物活性反应。

螯合铁可以提高铁的溶解度和生物利用率,从而促进铁的吸收和利用。

在医学中,螯合铁配合物被广泛应用于缺铁性贫血和其他铁代谢障碍的治疗。

而对于某些病原体如细菌和病毒,络合铁可以作为一种抗菌和抗病毒的药物,通过与病原体中的铁结合,使其无法正常生长和复制。

综上所述,螯合铁和络合铁都是重要的化合物,具有广泛的应用和重要的意义。

它们在生物学、医学和工业领域的应用为我们带来了许多新的治疗和分析方法。

通过进一步的研究和发展,相信螯合铁和络合铁将会在更多的领域发挥其重要的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

配位化合物在医学中的应用配位化合物是一类广泛存在、组成较为复杂、在理论和应用上都十分重要的化合物。

目前对配位化合物的研究已远远超出了无机化学的范畴。

它涉及有机化学、分析化学、生物化学、催化动力学、电化学、量子化学等一系列学科。

随着科学的发展,在生物学和无机化学的边缘已形成了一门新兴的学科生物无机化学。

新学科的发展表明,配位化合物在生命过程中起着重要的作用。

除此之外,配位化合物广泛应用于生化检验、药物分析、环境监测等方面。

本文对配位化合物理论的发展及其在医学、药学中的重要作用和应用作简单的论述。

1 配位化合物及其理论的发展1. 1 配位化合物的组成配位化合物( coordination compound, 简称配合物, 旧称络合物) 是指独立存在的稳定化合物进一步结合而成的复杂化合物。

从组成上看,配位化合物是由可以给出孤对电子对或多个不定域电子的一定数目的离子或分子(统称为配位体)和具有接受孤电子对或多个不定域电子空位的原子或离子(统称中心原子)按一定组成和空间构型所形成的化合物。

中心原子大多是位于周期表中部的过渡元素。

配位体中可作为配原子的总共约有14种元素,它们主要是位于周期表的A、A、A族及H-和有机配体中的C原子,这些元素是: H、C、O、F、P、S、Cl、As、Se、Br、Sb、Te 、I[ 1]。

1. 2 配位化合物理论的发展配位化合物理论的发展经历了一个漫长的过程。

国外最早的文献记载是在1704年,普鲁士染料厂的工人迪巴赫( Dies-bach) 把兽皮或牛血、Na2CO3在铁锅中煮, 得到一种兰色染料普鲁士蓝( Fe4[ Fe( CN)6]3)[ 2]。

虽然如此,人们通常还是认为配位化合物始自1798年法国坦撒特( Tassert)对六氨合钴( )氯化物的研究[ 1]:他在CoCl2溶液中加入氨水没有得到Co(OH) 3, 而得到了桔黄色的结晶, 起初认为是一种复合物( CoCl36NH3) ,但他在该桔黄色结晶的溶液中加入碱后得不到氨的气体,也检查不出Co3+存在,可见钴与氨是紧密结合在一起的,而加入AgNO3后却得到了AgCl沉淀,证明Cl-是游离的。

因为当时的原子价理论不能解释这类化合物,故称之为复杂化合物。

Tassert的报道引起了许多科学家的兴趣,为此,许多科学家想通过大量实验力求给配合物以科学的解释,直至1893年瑞士化学家维尔纳( Werner) 配位理论的创立, 对配位化合物的立论才有明确的解释。

他首先提出中心原子既有符合价键理论的主价,又有额外的副价,因而解释了配合物内界的形成。

但是关于配合物中化学键的价键理论则是1930年鲍林(Linus Pauling)在用X射线测定了配合物结构的基础上提出的。

价键理论认为[ 2],配合物的中心原子与配位体之间以配位键结合,配体至少应含有1对孤对电子,而中心原子则必须有空的价电子轨道。

例如[ Cu( en)2]2+配离子中2个乙二胺分子中的每个- NH2的N 原子可提供1对孤对电子,填充到Cu2+的空轨道中,形成4个配位键。

成键时,中心原子所提供的空轨道必须首先进行杂化,形成杂化的空轨道接受配位体所提供的孤对电子,而形成-配价键。

由于杂化轨道的类型不同( sp, sp3, dsp2sp3d2, d2sp3) ,杂化轨道的空间构型也不同(直线形、正四面体、平面正方形、八面体) ,因而,配合物具有不同的空间构型。

价键理论虽然能够定性地解释许多配合物的空间构型和磁性,但对于配合物的颜色及光谱特征无法解释,该疑问却在1932 年范弗莱克(Van Vlack JH ) 提出的配合物的晶体场理论得以解释。

该理论认为[ 2],受配体电场的影响,中心原子最外层的d轨道发生能级分裂,原来能量相同的5个d轨道分裂成能量不同的2组或2组以上的轨道。

如果分裂的d轨道中没有充满电子,当吸收某些波长的可见光后,可发生d电子从能量低的d轨道向能量高的d轨道跃迁,产生的d- d跃迁所需的能量就是分裂能,其能量差(激发能)一般相当于被吸收的可见光的能量,从而使配合物呈现被吸收光的补光。

由于配合物不同,分裂能的大小也不同,所以不同的配合物呈现出不同的颜色。

2 配位化合物在生物体中的重要意义2. 1 生物体内结合酶都是金属螯合物[ 3]生命的基本特征之一是新陈代谢,生物体在新陈代谢过程中,几乎所有的化学反应都是在酶的作用下进行的,故酶是一种生物催化剂。

目前发现的 2 000多种酶中[ 4],很多是1个或几个微量的金属离子与生物高分子结合成的牢固的配合物。

若失去金属离子,酶的活性就丧失或下降,若获得金属离子,酶的活性就恢复。

2. 1. 1 锌生物体内的锌参与许多酶的组成, 使酶表现出活性,近年报道含锌酶已增加到200多种[ 5]。

生物体内重要代谢物的合成和降解都需要锌酶的参与,可以说锌涉及生命全过程。

如DNA聚合酶、RNA 合成酶、碱性磷酸酶、碳酸酐酶、超氧化物歧化酶等,这些酶能促进生长发育,促进细胞正常分化和发育,促进食欲。

当人体中的锌缺乏时,各种含锌酶的活性降低,胱氨酸、亮胱氨酸、赖氨酸的代谢紊乱;谷胱甘肽、DNA、RNA的合成含量减少,结缔组织蛋白的合成受到干扰,肠粘液蛋白内氨基酸己糖的含量下降,可导致生长迟缓、食欲不振、贫血、肝脾肿大、免疫功能下降等不良后果。

2. 1. 2 铜铜在机体中的含量仅次于铁和锌, 是许多金属酶的辅助因子,如细胞色素氧化酶、超氧化物歧化酶、酪氨酸酶、尿酸酶、铁氧化酶、赖氨酰氧化酶、单胺氧化酶、双胺氧化酶等。

铜是酪氨酸酶的催化中心,每个酶分子中配有2个铜离子,当铜缺乏时,酪氨酸酶形成困难,无法催化酪氨酸酶转化为多巴氨氧化酶从而形成黑色素。

缺铜患者黑色素形成不足,造成毛发脱色症[ 6];缺铜也是引起白癜风的主要原因。

超氧化物歧化酶( SOD)的组成中含有铜,在代谢过程中产生的O-2对人体危害较大,在SOD的催化作用下,可使O-2生成H2O2,其作用机制为[ 6]:SOD2+ -SOD++ O2 Cu + O2 CuSOD Cu+ + O2- + 2H+ SOD Cu2+ + H2O2产生的H2O2在过氧化氢酶的作用下分解为H 2O和O2,从而消除O-2 的积累。

2. 1. 3 硒硒是构成谷胱甘肽过氧化物酶的组成成分,参与辅酶Q和辅酶A的合成,谷胱甘肽过氧化物酶能催化还原谷胱甘肽,使其变为氧化型谷胱甘肽,同时使有毒的过氧化物还原成无害、无毒的羟基化合物,使H2O2分解,保护细胞膜的结构及功能不受氧化物的损害。

硒的配合物能保护心血管和心脏处于功能正常状态。

硒缺乏可引起白肌病、克山病和大骨节病[ 7]。

2. 1. 4 钴维生素B12又名钴胺素, 是含有钴离子的复杂非高分子配合物,有很强的生血功能,对恶性贫血有良好的疗效。

所以又叫抗恶性贫血维生素。

维生素B12不是单一的一种化合物,根据钴离子配位烃基的基团不同,可组成B12族的各种维生素,如羟钴素、水钴素、硝钴素、甲钴素等。

2. 2 生物体内许多蛋白质是金属螯合物铁在生物体内含量最高,是血红蛋白和肌红蛋白组成成分( 在体内参与氧的贮存运输, 维持正常的生长、发育和免疫功能)。

铁在血红蛋白、肌红蛋白和细胞色素分子中都以Fe2+与原卟啉环形成配合物的形式存在。

血红蛋白中的亚铁血红素的结构特征是血红蛋白与氧合血红蛋白之间存在着可逆平衡: Hb+ O2=HHb+ H2O, 血红蛋白起到氧的载体作用。

另一类铁与含硫配位体键合的蛋白质称为铁硫蛋白,也称非血红蛋白。

所有铁硫蛋白中的铁都是可变价态。

所以铁的主要功能是电子传递体,它们参与生物体的各种氧化还原作用。

锰以Mn3+的形式存在于输锰蛋白质中,大部分以结合态的金属蛋白质存在于肌肉、骨骼、肝脏和血液中,主要参与造血过程,影响血的运输和代谢。

3 配位化合物在药学方面的应用3. 1 金属配合物作为药物中药配位化学认为[ 8] :中药有效化学成分不是单纯的有效成分,也不是单纯的微量元素,而是有机成分与微量元素组成的配位化合物。

王键等[ 9]发现芦丁对癌细胞无杀伤作用, CuSO4液对癌细胞仅有轻微杀伤作用,但芦丁铜( ) 配合物杀伤作用却很强。

对黄芩苷金属配合物的研究表明[ 8],黄芩苷锌的抗炎、抗变态反应作用均强于黄芩苷。

有些具有治疗作用的金属离子因其毒性大、刺激性强、难吸收性等缺点而不能直接在临床上应用。

但若把它们变成配位化合物就能降低毒性和刺激性,利于吸收,如柠檬酸铁配合物可以治疗缺铁性贫血;酒石酸锑钾不仅可以治疗糖尿病,而且和维生素B12等含钴螯合物一样可用于治疗血吸虫病; 博莱霉素自身并无明显的亲肿瘤性,与钴离子配合后则活性增强;阿霉素的铜、铁配合物较之阿霉素更易被小肠吸收,并透入细胞。

在抗菌作用方面, 8-羟基喹啉和铜、铁各自都无抗菌活性,它们之间的配合物却呈明显的抗菌作用;镁、锰的硫酸盐和钙、铁的氧化物可使四环素(螯合剂)对金黄色葡萄球菌、大肠杆菌的抗菌活性大增;在抗风湿炎症方面,抗风湿药物,如阿司匹林及水杨酸的衍生物等,与铜配合后可增加疗效。

铁的配合物如[ Fe ( 3、4、7、8-四甲基邻二氮菲)3]3+具有抗病毒作用,近年来发现的顺式铂钯配合物具有抗癌作用,如[ Pt ( NH3)2Cl2]和[ Pb(NH3) 2Cl2] 进入癌细胞后释放 Cl-进攻 DNA 上的碱基,从而抑制DNA的复制,阻止癌细胞的分裂,在此基础上发展的第2、第3代抗癌铂配合物,如二氯二羟基二(异丙胺)合铂( )、环丁烷 1. 1-二羧二氨合铂( )、二卤茂金属等,副作用小,疗效更显著。

3. 2 配位体作为螯合药物解毒剂在生物体内的有毒金属离子和有机毒物不同,因为它们不能被器官转化或分解为无毒的物质。

有些作为配位体的螯合剂能有选择地与有毒的金属或类金属(如砷、汞)形成水溶性螯合物,经肾排出而解毒。

因此,此类螯合剂称为解毒剂。

例如: D-青霉胺、半胱霉酸、金精三羧酸在机体内可分别结合Ca2+、Ba2+,形成水溶性配合物排出体外; 2, 3-二巯基丙醇可从机体内排除汞、金、镉、铅、饿、锑、砷等离子; EDTA是分析化学中应用很广的配合滴定剂,在机体内可排出钙、铅、铜、铝、金离子,其中最为有效的是治疗血钙过多和职业性铅中毒,例如Ca - EDTA治疗铅中毒,是利用其稳定性小于Pb- EDTA, Ca - EDTA中的Ca2+可被Pb2+取代而成为无毒的、可溶性的Pb- EDTA 配合物经肾排出。

对于放射性核素, 如 DT-PA, EHDP 等螯合剂具有良好的亲和性, 尤其表现在对阿系、镧系金属元素有良好的促排效果。

3. 3 配合物作抗凝血剂和抑菌剂在血液中加入少量EDTA或柠檬酸钠,可螯合血液中的Ca2+,防止血液凝固,有利于血液的保存。

相关文档
最新文档