吉林省白城市2013-2014学年高二上学期期末考试数学(文)试题(二) Word版含答案

合集下载

吉林省白城市2013-2014学年高一上学期期末考试生物试题(二) Word版含答案

吉林省白城市2013-2014学年高一上学期期末考试生物试题(二) Word版含答案

白城市2013—2014年第一学期期末考试高一生物(试卷二)本试卷分第Ⅰ卷和第Ⅱ卷两部分,满分为 100 分,答题时间为 90 分钟。

考生作答时,选择题答案和非选择题答案写在答题纸上。

考试结束后,将答题纸交回。

注意事项:1、答题前,考生务必先将自己的姓名、准考证号、所在学校准确填写,条形码贴在指定位置上。

2、选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦擦干净后,再选涂其它答案标号。

非选择题答案字体工整、清楚。

第Ⅰ卷(选择题40分)一、单项选择题(共40题,每题1分,共40分) 1.原核细胞与真核细胞的主要差异是( )A.有无成形的细胞核B.细胞壁结构不同C.核糖体化学成分不同D.细胞膜结构不同2.显微镜右上方发现一个待观察的红细胞,想要将其移到视野正中央,移动装片的方向是( )A.左上方B.左下方C.右上方D.右下方3.检测生物组织中还原糖、淀粉、蛋白质、脂肪所用的试剂依次是( ) ①双缩脲试剂 ②斐林试剂 ③稀碘液 ④苏丹Ⅲ染液 A.①②③④ B.②①④③ C.①③②④ D.②③①④ 4.下列物质中属于组成蛋白质的氨基酸的是()5.血液中的血红蛋白和肌肉中的蛋白质的结构不相同的原因( ) A. 所含氨基酸的种类不同 B.所含氨基酸的数目不同C.所含氨基酸的排列顺序不同D.所含氨基酸的种类、数目、排列顺序和空间结构都不同6.大豆根尖细胞所含的核酸中,含有碱基A 、C 、T 的核苷酸种类数共有( ) A.4 B.5 C.7 D.8 7.下列有关核酸的叙述正确的是( )A .在细菌中,遗传物质可能是DNA 或RNAB .核酸的基本组成单位是脱氧核苷酸C .鱼体内的遗传物质彻底水解后可得到脱氧核糖、磷酸和含氮碱基装订线学校 班级 姓名 考号D.除病毒外,一切生物都具有核酸8.下列哪项不是细胞内的脂质具有的功能( )A.细胞内良好的储能物质 B.是构成细胞膜等生物膜的重要物质C.减少体内热量散失,维持体温恒定 D.催化体内能源物质分解,利于机体抵御寒冷天气9.下列关于细胞内元素和化合物的叙述,正确的是( )A.组成细胞的主要元素中鲜重含量最多的是碳 B.精瘦肉细胞中含量最多的化合物是蛋白质C.人的一生中自由水/结合水的比值逐渐上升 D.蛋白质、核酸等是以碳链为骨架的大分子10.下列有关细胞中有机物的说法,正确的是( )A.核糖、乳糖、淀粉是叶肉细胞内的重要糖类物质B.花生种子中没有蛋白质,只有脂肪,故常被用做检测脂肪的材料C.淀粉、蛋白质、脂肪在氧化分解时都能释放出能量D.对蛋白质的检测可用斐林试剂,但要现用现配11.如下图表示各种膜的组成成分含量:图示不能说明的是( )A.构成细胞膜的主要成分是蛋白质和脂质B.膜中的脂质和蛋白质含量变化与膜的功能有关C.膜的功能越简单,所含蛋白质的数量越少D.蛋白质在细胞间的信息交流中具有重要作用12.下列哪一项不属于细胞膜的功能()A.控制物质进出细胞B.将胰岛细胞形成的胰岛素,分泌到胰岛细胞外C.提高细胞内化学反应的速率D.作为系统的边界,维持细胞内环境的稳定13.科学家用35S标记的氨基酸培养哺乳动物的乳腺细胞,测量细胞合成并分泌乳腺蛋白过程中各种膜结构的面积变化,结果如下图所示。

高二上学期期末考试数学(文)试题及答案 (4)

高二上学期期末考试数学(文)试题及答案 (4)

学年第一学期阶段性考试 高二数学(文科)试卷第Ⅰ卷一、选择题:本大题共12小题。

每小题5分,在每小题给出的四个选项中,只有一项符合题目要求. 1.已知命题2015log ,:2=∈∀x R x p ,则p ⌝为( )A .2015log ,2=∉∀x R xB .2015log ,2≠∈∀x R xC .2015log ,020=∈∃x R xD .2015log ,020≠∈∃x R x2.为了检查某超市货架上的奶粉是否含有三聚氰胺,要从编号依次为1到50的袋装奶粉中抽取5袋进行检验,用系统抽样方法确定所选取的5袋奶粉的编号可能是( )A .5,10,15,20,25B .2,4,8,16,32C .5,6,7,8,9D .6,16,26,36,46 3.如果一个家庭有两个小孩,则两个孩子是一男一女的概率为( ) A .14 B .13 C .12 D .234.双曲线1222=-y x 的渐近线方程为( ) A. 02=±y x B. 02=±y x C .02=±y x D .02=±y x5.甲、乙两名学生五次数学测验成绩(百分制)如图所示. ①甲同学成绩的中位数大于乙同学成绩的中位数; ②甲同学的平均分与乙同学的平均分相等; ③甲同学成绩的方差大于乙同学成绩的方差. 以上说法正确的是( ) A .①②B .②③C .①③D .①②③6.用秦九韶算法求多项式7234)(234++++=x x x x x f 的值,则)2(f 的值为( ) A .98 B .105 C .112 D .119 7.运行如右图的程序后,输出的结果为( ) A .6053 B .54 C .65 D .76 8.已知椭圆221164x y +=过点)1,2(-P 作弦且弦被P 平分,则此弦 所在的直线方程为( )7 90 1 38 90 1 289甲乙ENDS PRINT WEND i i i i S S i WHILE S i 1))1(/(1601+=+*+=<==A .032=--y xB .012=--y xC .042=--y xD .042=+-y x9.已知)(x g 为函数)0(1232)(23≠--=a ax ax ax x f 的导函数,则它们的图象可能是( )A .B .C .D .10.已知倾斜角为︒45的直线l 过抛物线x y 42=的焦点,且与抛物线交于B A ,两点,则OAB ∆(其中O 为坐标原点)的面积为( ) A .2B .22C .23D .811.已知(),()f x g x 都是定义在R 上的函数,且满足以下条件:①()()xf x ag x =⋅(0,a >1)a ≠且;②()0g x ≠;③)(')()()('x g x f x g x f ⋅<⋅. 若(1)(1)5(1)(1)2f fg g -+=-,则实数a 的值为 ( )A .21 B .2 C .45 D .2或21 12.如图,直线m x =与抛物线y x 42=交于点A ,与圆4)1(22=+-x y 的实线部分(即在抛物线开口内 的圆弧)交于点B ,F 为抛物线的焦点,则ABF ∆的 周长的取值范围是( ) A .()4,2 B .()6,4 C .[]4,2 D . []6,4第Ⅱ卷二、填空题:本大题共四小题,每小题5分.13.将十进制数)10(2016化为八进制数为 . 14.已知变量x 与y 的取值如下表:x 23 5 6y 7a -8 a +9 12从散点图可以看出y 对x 呈现线性相关关系,则y 与x 的线性回归直线方程a bx y+=ˆ必经过的定点为 .15.已知P 为圆4)2(:22=++y x M 上的动点,)0,2(N ,线段PN 的垂直平分线与直线PM 的交点为Q ,点Q 的轨迹方程为 .16.已知函数xxe x f =)(,现有下列五种说法:①函数)(x f 为奇函数;②函数)(x f 的减区间为()-1∞,,增区间为()1+∞,;频率组距50 55 60 65 70 75 80体重(kg)O0.070.060.050.040.030.020.01③函数)(x f 的图象在0x =处的切线的斜率为1; ④函数)(x f 的最小值为1e-. 其中说法正确的序号是_______________(请写出所有正确说法的序号).三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)设命题p :12>-x ;命题q :0)1()12(2≥+++-a a x a x .若p ⌝是q ⌝的必要不充分条件,求实数a 的取值范围.18.(本小题满分12分)某校对高二年段的男生进行体检,现将高二男生的体重()kg 数据进行整理后分成6组,并绘制部分频率分布直方图(如图所示).已知第三组[)65,60的人数为200.根据一般标准,高二男生体重超过65kg 属于偏胖,低于55kg 属于偏瘦.观察图形的信息,回答下列问题:(1)求体重在[)6560,内的频率,并补全频率分布直方图;(2)用分层抽样的方法从偏胖的学生中抽取6人对日常生活习惯及体育锻炼进行调查,则各组应分别抽取多少人?(3)根据频率分布直方图,估计高二男生的体重的中位数与平均数.19. (本小题满分12分)(1)执行如图所示的程序框图,如果输入的[]3,1-∈t ,若输出的s 的取值范围记为集合A ,求集合A ;(2)命题p :A a ∈,其中集合A 为第(1)题中的s 的取值范围;命题q :函数a x ax x x f +++=2331)(有极值; 若q p ∧为真命题,求实数a 的取值范围.20.(本小题满分12分)已知双曲线C :)00(12222>>=-,b a by a x .(1)有一枚质地均匀的正四面体玩具,玩具的各个面上分别写着数字1,2,3,4.若先后两次投掷玩具,将朝下的面上的数字依次记为b a ,,求双曲线C 的离心率小于5的概率;(2)在区间[]61,内取两个数依次记为b a ,,求双曲线C 的离心率小于5的概率.21.(本小题满分12分)已知椭圆C:)0(12222>>=+b a by a x 的中心在坐标原点O ,对称轴在坐标轴上,椭圆的上顶点与两个焦点构成边长为2的正三角形. (1)求椭圆C 的标准方程;(2)若斜率为k 的直线l 经过点)0,4(M ,与椭圆C 相交于A ,B 两点,且21>⋅OB OA ,求k 的取值范围.22. (本小题满分12分)已知函数)(2ln )(2R a x xa x a x f ∈++-=. (1)当1=a 时,求曲线)(x f y =在点))1(,1(f 处的切线方程;(2)当0>a 时,若函数()f x 在[1,]e 上的最小值记为)(a g ,请写出)(a g 的函数表达式.高二数学(文科)试卷参考答案一、DDCD BBCD ABAB二、13.)8(3740 14.()9,4 15.)0(1322<=-x y x 16.③④ 三、17.解:由p :12>-x 解得1<x 或3>x .……………………………… 3分由q :0)1()12(2≥+++-a a x a x 得[]0)1()(≥+--a x a x ,解得a x ≤或1+≥a x .……………………………… 6分∵p ⌝是q ⌝的必要不充分条件,∴p 是q 的充分不必要条件. …………………… 8分 ∴⎩⎨⎧≤+≥311a a ,则21≤≤a .∴实数a 的取值范围是[]21,.……………………………… 10分 18.解:(1)体重在[)65,60内的频率2.05)01.002.003.007.003.0(1=⨯++++-=04.052.0==组距频率 补全的频率分布直方图如图所示. ……………4分 (2)设男生总人数为n ,由2.0200=n,可得1000=n 体重超过kg 65的总人数为30010005)01.002.003.0(=⨯⨯++在[)70,65的人数为1501000503.0=⨯⨯,应抽取的人数为33001506=⨯, 在[)70,65的人数为1001000502.0=⨯⨯,应抽取的人数为23001006=⨯, 在[)80,75的人数为501000501.0=⨯⨯,应抽取的人数为1300506=⨯. 所以在[)70,65 ,[)75,70,[]80,75三段人数分别为3,2,1.…………………… 8分 (3)中位数为60kg 平均数为(52.50.0357.50.0762.50.0467.50.0372.50.0277.50.01)561.75⨯+⨯+⨯+⨯+⨯+⨯⨯=(kg)…12分19.解:(1)由程序框图可知,当11<≤-t 时,t s 2=,则[)2,2-∈s . 当31≤≤t 时,()322+--=t s组距kg)O0.0.0.0.0.0.0.∵该函数的对称轴为2=t ,∴该函数在[]21,上单调递增,在[]3,2上单调递减. ∴2,3min max ==s s ∴[]3,2∈s综上知,[]3,2-∈s ,集合[]3,2-=A ……………………………… 4分 (1)函数a x ax x x f +++=2331)(有极值,且12)(2'++=ax x x f , 0)('=x f 有两个不相等的实数根,即04)2(2>-=∆a 解得1-<a 或1>a即命题p :1-<a 或1>a .……………………………… 8分q p ∧为真命题,则⎩⎨⎧≤≤->-<3211a a 或a ,解得3112≤<-<≤-a 或a ;∴实数a 的取值范围是[)(]2,113--⋃,.……………………………… 12分20.解:双曲线的离心率22221ab ac a c e +===. 因为5e <a b ab 20422<<∴<∴.……………………………… 2分 (1) 因玩具枚质地是均匀的,各面朝下的可能性相等,所以基本事件),(b a 共有16个:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).设“双曲线C 的离心率小于5”为事件A ,则事件A 所包含的基本事件为(1,1),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)共有12个. 故双曲线C 的离心率小于5的概率为431612)(==A P .…………………………… 7分(2) ∵[][]6,1,6,1∈∈b a∴⎪⎩⎪⎨⎧<<≤≤≤≤a b b a 206161 所以以a 为横轴,以b 为纵轴建立直角坐标系,如图所示,21422155=⨯⨯-⨯=阴影S ,由几何概型可知,双曲线C 的离心率小于5的概率为2521=P .……………………………… 12分21.解:(1)∵椭圆的上顶点与两个焦点构成边长为2的正三角形,32,22222=-=∴==∴c a b a c∴椭圆C 的标准方程为13422=+y x .……………………………… 4分 (2) 设直线l 的方程为)4(-=x k y ,设A (x 1,y 1),B (x 2,y 2)联立⎩⎨⎧=+-=1243)4(22y x x k y ,消去y 可得(0126432)43(2222=-+-+k x k x k∵直线l 与椭圆C 相交于A ,B 两点,∴0>∆由0)1264)(43(4)32(2222>-+-=∆k k k 解得412<k 设),(11y x A ,),(22y x B则34322221+=+k k x x ,3412642221+-=k k x x ……………………………… 7分211643324431264)1(16)(4)1()4()4(2222222221221221212121>++-+-+=++-+=--+=+=⋅k k k k k k k k x x k x x k x k x k x x y y x x OB OA解得196272>k ∴41196272<<k所以k 的取值范围是211433143321<<-<<-k 或k .……………………………… 12分22.解:(1)∵)(2ln )(2R a x x a x a x f ∈++-=,∴12)(22'+--=xa x a x f 当1=a 时,121)(,2ln )(2'+--=++-=xx x f x x x x f 2)1(,3)1('-===f k f曲线)(x f y =在点))1(,1(f 处的切线方程为)1(23--=-x y 即052=-+y x .……………………………… 3分(2)222222'))(2(212)(x a x a x x a ax x x a x a x f +-=--=+--=0,0>>x a ,由0)('>x f 得a x 2>,由0)('<x f 得a x 20<<)(x f ∴在(]a 2,0上为减函数,在()+∞,2a 上为增函数.……………………………… 5分①当210120≤<≤<a 即a 时,)(x f 在[]e ,1上为增函数. 12)1()(2+==∴a f a g 在(]a 2,0上为减函数,在()+∞,2a 上为增函数.…………… 7分②当22121ea e 即a <<<<时,)(x f 在[]a 2,1上为减函数,在(]e a ,2上为增函数. a a a a f a g 3)2ln()2()(+-==∴……………………………… 9分③当22ea e 即a ≥≥时,)(x f 在[]e ,1上为减函数. e ea a e f a g ++-==∴22)()(……………………………… 11分综上所述,⎪⎪⎪⎩⎪⎪⎪⎨⎧≥++-<<+-≤<+=)2(2)221(3)2ln()210(12)(22e a e e a a e a a a a a a a g ……………………………… 12分。

吉林省白城市2024-2025学年高二上学期10月期中考试数学试题含答案

吉林省白城市2024-2025学年高二上学期10月期中考试数学试题含答案

白城市2024-2025学年度高二上学期期中考试数学试卷(答案在最后)一、单项选择题(本大题共8小题,每题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知空间三点()1,0,3A ,()1,1,4B -,()2,1,3C -,若//AP BC ,且AP =uu u v 则点P 的坐标为()A.()4,2,2-B.()2,2,4-C.()4,2,2-或()2,2,4- D.()4,2,2--或()2,2,4-【答案】C 【解析】【分析】设P 点坐标,由//AP BC可解出P 坐标,再用空间向量模长公式即可.【详解】设(),,P x y z ,则()1,,3AP x y z =--uu u r ,()3,2,1BC =--uu u r,因为//AP BC ,所以()3,2,AP BC λλλλ==--uu u r uu u r ,1323x y z λλλ-=⎧⎪=-⎨⎪-=-⎩,3123x y z λλλ=+⎧⎪=-⎨⎪=-+⎩,所以()31,2,3P λλλ+--+,又AP =uu u v=解得1λ=或1λ=-,所以()4,2,2P -或()2,2,4-,故选:C2.已知圆221:(2)(3)1C x y -+-=和圆222:(3)(4)9C x y -+-=,,M N 分别是圆12,C C 上的动点,P 为x轴上的动点,则PM PN +的最小值为()A.4-B.1-C.6-D.【答案】A 【解析】【分析】求出圆1C 关于x 轴的对称圆的圆心坐标A ,以及半径,然后求解圆A 与圆2C 的圆心距减去两个圆的半径和,即可求出||||PM PN +的最小值.【详解】圆1C 关于x 轴的对称圆的圆心坐标()2,3A -,半径为1,圆2C 的圆心坐标为(3,4),半径为3,∴若M '与M 关于x 轴对称,则PM PM '=,即||||||||PM PN PM PN '+=+,由图易知,当,,P N M '三点共线时||||PM PN '+取得最小值,∴||||PM PN +的最小值为圆A 与圆2C 的圆心距减去两个圆的半径和,∴()()222||3132344524AC --=-+---=-.故选:A.3.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP 面积的取值范围是A.[]26, B.[]48, C.22 D.2232⎡⎣【答案】A 【解析】【详解】分析:先求出A ,B 两点坐标得到AB ,再计算圆心到直线距离,得到点P 到直线距离范围,由面积公式计算即可详解: 直线x y 20++=分别与x 轴,y 轴交于A ,B 两点()()A 2,0,B 0,2∴--,则AB 2= 点P 在圆22x 22y -+=()上∴圆心为(2,0),则圆心到直线距离120222d ++=故点P 到直线x y 20++=的距离2d的范围为则[]2212,62ABP S AB d ==∈ 故答案选A.点睛:本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题.4.在四面体ABCD 中,E 为AD 的中点,G 为平面BCD 的重心.若AG 与平面BCE 交于点F ,则AF AG=()A.12B.23C.34D.45【答案】C 【解析】【分析】根据共线定理及空间向量线性运算可得结果.【详解】如图:连接DG 交BC 于H ,则H 为BC 中点,连接,,AH EH AG ,因为AG ⊂平面AHD ,EH ⊂平面AHD ,设AG EH K = ,则,K EH K AG ∈∈,又EH ⊂平面BCE ,所以K ∈平面BCE ,故K 为AG 与平面BCE 的交点,又因为AG 与平面BCE 交于点F ,所以F 与K 重合,又E 为AD 的中点,G 为平面BCD 的重心,因为点A ,F ,G 三点共线,则()23AF mAG m AD DG m AD DH ⎛⎫==+=+ ⎪⎝⎭()21323DB DC m AD m AD AB AD AC AD ⎛⎫+⎡⎤=+⨯=+⨯-+- ⎪⎢⎥⎣⎦⎝⎭()13m AD AB AC =++又因为点E ,F ,H 三点共线,则(),1AF xAH y AE x y =++=,()22x y AF x AH y AE AB AC AD =+=++ ,所以32132m xx y m y⎧=⎪⎪+=⎨⎪⎪=⎩,解得34m =,即34AF AG = ,故34AF AG =.故选:C.5.O 为空间任意一点,若1148AP OA OB tOC =-++,若A ,B ,C ,P 四点共面,则t =()A.1B.98C.18D.14【答案】C 【解析】【分析】将1148AP OA OB tOC =-++化简为:3148OP OA OB OC t =++ ,利用四点共面定理可得31148t ++=,即可求解.【详解】因为AP OP OA =- ,所以1148AP OA OB tOC =-++,可化简为:1148OP OA OA OB tOC -++-=,即3148OP OA OB OC t =++ ,由于A ,B ,C ,P 四点共面,则31148t ++=,解得:18t =;故选:C6.已知直线1:420l ax y +-=与直线2:250l x y b -+=互相垂直,垂足为()1,c 则a b c ++=()A.24B.20C.2D.4-【答案】D 【解析】【分析】根据两直线垂直可求出a 的值,将公共点的坐标代入直线1l 的方程,可得出c 的值,再将公共点的坐标代入直线2l 的方程,可得出b 的值,由此可得出a b c ++的值.【详解】因为直线1:420l ax y +-=与直线2:250l x y b -+=互相垂直,则2200a -=,可得10a =,由题意可知,点()1,c 为两直线的公共点,则10420c +-=,解得2c =-,再将点()1,2-的坐标代入直线2l 的方程可得()2520b -⨯-+=,解得12b =-,因此,101224a b c ++=--=-.故选:D.7.已知圆221:(1)(2)1C x y -+-=,圆222:(3)(4)4C x y -++=,,M N 分别是圆12,C C 上两个动点,P 是x 轴上动点,则PN PM -的最大值是()A. B. C.D.【答案】A 【解析】【分析】由两圆的标准方程写出其圆心坐标及半径,再由2211||||(||)(||)PN PM PC r PC r -≤+--,求出点2C 关于x 轴的对称点3C ,结合2113||||||PC PC C C -≤即可求得结果.【详解】由题意知,圆1C 的圆心为1(1,2)C ,半径11r =,圆2C 的圆心为2(3,4)C -,半径22r =,作2(3,4)C -关于x 轴的对称点3(3,4)C ,如图所示,22112121||||(||)(||)||||PN PM PC r PC r PC PC r r -≤+--=-++31211321||||||PC PC r r C C r r =-++≤++213=+=+13,,P C C 共线时等号成立,所以||||PN PM -的最大值为3+.故选:A.8.已知抛物线24x y =的焦点为F ,过F 的直线与抛物线交于A ,B 两点,点O 为坐标原点,则下列命题中正确的个数为()①AOB V 面积的最小值为4;②以AF 为直径的圆与x 轴相切;③记OA ,OB ,AB 的斜率分别为1k ,2k ,3k ,则123k k k +=;④过焦点F 作y 轴的垂线与直线OA ,OB 分别交于点M ,N ,则以MN 为直径的圆恒过定点.A.1 B.2C.3D.4【答案】C 【解析】【分析】依次判断每个选项:AB 的斜率为0时,2AOB S =△,所以①错误,计算1||||2EG AF =②正确,证明1212123124y y x x k k k x x ++=+==,所以③正确,根据等式令0x =,得1y =-或3,所以④正确,得到答案.【详解】当AB 的斜率为0时,2AOB S =△,所以①错误.设AF 的中点为E ,作EG x ⊥轴交x 轴于点G ,作AD ⊥准线交准线于点D ,交x 轴于点C ,则||||2E OFG AC +=,又1OF CD ==,所以||||11||||||222CD AC EG AD AF +===,所以②正确.直线AB 的方程为31y k x =+,联立24x y =,得23440x k x --=.设()11,A x y ,()22,B x y ,则1234x x k +=,124x x =-,所以1212123124y y x x k k k x x ++=+==,所以③正确.直线111:4y x OA y x x x ==,所以14,1M x ⎛⎫ ⎪⎝⎭.同理可得24,1N x ⎛⎫⎪⎝⎭.所以以MN 为直径的圆的方程为()()2217122121222(1)x x x x x y x x x x +-⎡⎤⎡⎤-+-=⎢⎥⎢⎥⋅⋅⎣⎦⎣⎦,即()222332(1)44x k y k ++-=+.令0x =,得1y =-或3,所以④正确.故选:C.【点睛】本题考查了抛物线的面积,斜率,定值问题,意在考查学生的计算能力和综合应用能力.二、多项选择题(本大题共4小题.每题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.)(2023·四川省成都市树德中学期中)9.点()00,P x y 是圆22:86210C x y x y +--+=上的动点,则下面正确的有()A.圆的半径为3B.03y x -既没有最大值,也没有最小值C.002x y +的范围是11⎡-+⎣D.2200023x y x +++的最大值为72【答案】BC 【解析】【分析】将圆方程化为标准方程可判断选项A 错误.设03y k x =-,则转化为直线与圆有交点,可算得003y k x =-既没有最大值,也没有最小值,选项B 正确.对于选项C 和D ,可用三角换元化简,再结合辅助角公式即可判断.【详解】圆22:86210C x y x y +--+=转化为()()22434x y -+-=,则圆的圆心为()4,3,半径为2,选项A 错误.设003y k x =-,则直线()003y k x =-与圆有交点,即2≤,整理得23650k k +-≥,解得33k --≤或33k -+≥.既03y x -没有最大值,也没有最小值,选项B 正确.设042sin x θ=+,032cos yθ=+,则()002114sin 2cos 11x y θθθϕ+=++=++,其中1tan 2ϕ=.则002x y +的取值范围为11⎡-+⎣,选项C 正确.又22000086210x y x y +--+=,则2200008621x y x y +=+-,因此()2200000231061820sin 12cos 4040x y x x y θθθα+++=+-=++=++其中3tan 5α=.则2200023x y x +++的最大值为40,选项D 错误.故选:BC.10.在棱长为1正方体1111ABCD A B C D -中,点P 为线段1CC 上异于端点的动点,()A.三角形1D BP 面积的最小值为4B.直线1D B 与DP 所成角的余弦值的取值范围为0,3⎛⎫ ⎪ ⎪⎝⎭C.二面角1A BD P --的正弦值的取值范围为6,13⎛⎫⎪ ⎪⎝⎭D.过点P 做平面α,使得正方体的每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的取值范围为0,2⎛⎫⎪ ⎪⎝⎭【答案】AB 【解析】【分析】根据三角形的面积公式,转化为求P 到直线1BD 距离最小值,进而转化为异面直线1CC 和1BD 的距离,也就是直线1CC 到平面11BDD B 的距离,等于C 到BD 的距离,从而得到三角形1D BP 面积的最小值,判定A ;1BD 在平面1DC 中的射影为1CD ,设1BD 与1CD 所成的角为α,设直线DP 与直线1CD 所成的角为β,设直线1D B 与DP 所成角为γ,则根据射影三余弦定理cos cos cos γαβ=,计算求得其取值范围,进而判定B ;二面角的平面角的范围,可以排除C ;考虑到各种情况,取面积最大的的一个截面,可以排除D.【详解】对于A ,要使三角形1D BP 面积的最小,即要使得P 到直线1BD 距离最小,这最小距离就是异面直线1CC 和1BD 的距离,也就是直线1CC 到平面11BDD B 的距离,等于C 到BD 的距离,为2.由于1BD =,所以三角形1D BP 面积的最小值为1224=,故A 正确;对于B ,先证明一个引理:直线a 在平面M 中的射影直线为b ,平面M 中的直线c ,直线,,a b c 所成的角的余弦值满足三余弦定理,直线,a b 的角为α,直线,b c 的角为β,直线,a c 的角为γ,则cos cos cos γαβ=.证明:如上图,在平面M 内任意取一点O 为原点,取两条射线分别为,x y 轴,得到坐标平面xOy ,然后从O 作与平面M 垂直的射线作为z 轴,建立空间直角坐标系,设直线a 的方向向量为()111,,x y z ,则()11,,0x y 为射影直线b 的方向向量,设直线c 的方向向量坐标为()22,,0x y ,则cos α=,cos β=,cos γ=,所以cos cos αβ=,cos γ=,引理得证.如上图所示,根据正方体的性质可知1BD 在平面1DC 中的射影为1CD ,设1BD 与1CD 所成的角为α,cosα=设直线DP 与直线1CD 所成的角为β,,42ππβ⎛⎫∈⎪⎝⎭,2cos 0,2β⎛⎫∈ ⎪ ⎪⎝⎭.设直线1D B与DP所成角为γ,根据上面的引理可得:cos cos cos0,3γαββ⎛⎫==∈ ⎪⎪⎝⎭,故B正确;对于C,如上图所示,设AC、BD交点为M,连接1A M,PM,由正方体性质易知1,BD AC BD AA⊥⊥,11,,AC AA A AC AA⋂=⊂平面11ACC A,所以BD⊥平面11ACC A,故1,BD A M BD MP⊥⊥,1A MP∠为二面角1A BD P--的平面角,当P与1C重合时,111π2A MC A MA∠=-∠,11tan122AAA MAAM∠===>,所以1ππ43A MA<∠<,∴11π2A MC∠<,P在1C C上从下往上移动时,1A MP∠逐渐变大,最终是钝角,其正弦值可以等于1,故C错误;对于D,因为过正方体顶点与各棱所成的角的都相等的直线是体对角线所在的直线,所以过点P的平面与各棱所成的角相等必须且只需与某一条体对角线垂直,过P与对角线1BD垂直的截面中,当P为1CC中点时取得最大值,是一个边长为2的正六边形,如下图所示,面积为1223336sin6022242⨯⨯⨯⨯︒=>,不在区间0,2⎛⎫⎪⎪⎝⎭内,故D不正确.故选:AB【点睛】直线a 在平面M 中的射影直线为b ,平面M 中的直线c ,直线,,a b c 所成的角的余弦值满足三余弦定理,,a b 的角为α,,b c 的角为β,,a c 的角为γ,则cos cos cos γαβ=.这是常见的很好用的一个公式.11.已知直线1:880l ax y +-=与直线20:2l x ay a +-=,下列说法正确的是()A.当8a =时,直线1l 的倾斜角为45︒B.直线2l 恒过()0,1点C.若4a =,则1//l 2l D.若0a =,则12l l ⊥【答案】BD 【解析】【分析】利用直线斜率与倾斜角的关系判断A ,利用直线过定点的求解判断B ,利用直线平行与垂直的性质判断CD ,从而得解.【详解】A 中,当8a =时,直线1l 的斜率11k =-,设其倾斜角为,[0,π)αα∈,所以1tan 1k α==-,则135α=︒,所以A 不正确;B 中,直线20:2l x ay a +-=,整理可得2(1)0x a y +-=,令2010x y =⎧⎨-=⎩,可得0,1x y ==,即直线2l 恒过定点(0,1),所以B 正确;C 中,当4a =时,两条直线方程分别为:220,220x y x y +-=+-=,则两条直线重合,所以C 不正确;D 中,当0a =时,两条直线方程分别为:1,0y x ==,显然两条直线垂直,所以D 正确.故选:BD.12.正方体1111ABCD A B C D -棱长为4,动点P 、Q 分别满足1AP mAC nAD =+ ,其中()0,1m ∈,Rn ∈且0n ≠,14QB QC +=;R 在11B C 上,点T 在平面11ABB A 内,则()A.对于任意的(0,1)m ∈,R n ∈且0n ≠,都有平面ACP ⊥平面11A B DB.当1m n +=时,三棱锥1B A PD -的体积不为定值C.若直线RT 到平面1ACD的距离为1DD 与直线RT所成角正弦值最小为3.D.1AQ QD ⋅的取值范围为[]28,4-【答案】ACD 【解析】【分析】建空间直角坐标系,用向量知识求解四个选项.【详解】对于A ,以A 为坐标原点,AB ,AD ,1AA 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则()0,0,0A ,()0,4,0D ,()4,4,0C ,()10,4,4D ,()10,0,4A ,()14,0,4B ,()4,0,0B 设平面11A B D 的法向量为()111,,m x y z =,()114,0,0A B =,()10,4,4A D =- 则11111140440m A B x m A D y z ⎧⋅==⎪⎨⋅=-=⎪⎩ ,令11y =,则10x =,11z =,则()0,1,1m =,()4,4,0AC =,()10,4,4AD = ,()()()14,4,00,4,44,44,4AP mAC nAD m n m m n n =+=+=+,设平面ACP 的法向量为()222,,x n y z =,则()2222244044440n AC x y n AP mx m n y nz ⎧⋅=+=⎪⎨⋅=+++=⎪⎩ ,令21x =,则21y =-,21z =,则()1,1,1n =-,又()11110m n ⋅=-⨯+⨯=,所以m n ⊥,所以对于任意的(0,1)m ∈,R n ∈且0n ≠,都有平面ACP ⊥平面11A B D ,故A 正确;对于B ,当1m n +=时,()4,4,4P m n 设平面1A BD 的法向量为()333,,u x y z =()14,0,4BA =- ,()4,4,0BD =-,则133334+404+40u BA x z u BD x y ⎧⋅=-=⎪⎨⋅=-=⎪⎩ ,令31x =,则31y =,31z =,所以()1,1,1u =,又()4,4,4BP n n =-,点P 到平面1A BD的距离为3BP u d u⋅=== 又11B A PD P A BD V V --=,又因为1A BD 的面积为定值,所以三棱锥1B A PD -的体积为定值,故B 错误;对于C ,设()4,,4R b ,(),0,T a c ,则()4,,4RT a b c =---因为直线RT 到平面1ACD的距离为RT //平面1ACD ,()4,4,0AC =,()10,4,4AD = 设面1ACD 为()444,,k x y z =,则44144440440k AC x y k AD y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,令41y =-,则441,1x z ==,所以()1,1,1k =-所以440RT k a b c ⋅=-++-=,即8a b c ++=,又()4,,4AR b =,则AR k k⋅==2b =或14b =,若2b =,所以6a c +=,()4,2,4R ,又()10,0,4DD =,设直线1DD 与直线RT 所成角为θ,所以11cos RT DD RT DD θ⋅====当cos θ最大时,sin θ最小,令()22421224c g c c c -=-+,()()()224421224c c g c c c -'=-+,()g c 在[]0,4单调递增,所以()()max 142g c g ==,()()min 106g c g ==-,cos θ63=,所以sin θ最小为3,所以直线1DD 与直线RT 所成角正弦值最小为3;若14b =,所以6a c +=-,()4,14,4R ,根据对称性可得sin θ最小为33,故C 正确;对于D ,设(),,Q x y z 因为14QB QC += ,所以()4,,QB x y z =--- ,()4,4,4QC x y z =--- ,()182,42,42QB QC x y z +=---,所以14QB QC +=,整理得222844200x y z x y z ++---+=,即()()()2224224x y z -+-+-=所以点p 的运动轨迹为一个以()4,2,2为球心,半径为2的球面上一点,所以26x ≤≤,()()1,,4,,4,A Q x y z QD x y z =-=---所以222144208AQ QD x y z y z x ⋅=---++=- ,当6x =时,1AQ QD ⋅ 最小为28-,当2x =时,1AQ QD ⋅最大为4所以1AQ QD ⋅的取值范围为[]28,4-,故D 正确.故选:ACD.三、填空题(本大题共4小题,每小题5分,共20分.)13.直线()()()112360x y R λλλλ+--+-=∈被圆2225x y +=截得的弦长的最小值是______.【答案】8.【解析】【分析】首先化简直线求出直线恒过定点(0,3)P ,并判断点在圆内,由圆的性质知:当该直线与OP 垂直时,直线被圆截得的弦长最短.用弦长公式计算弦长即可.【详解】直线的方程可化简为:2360x x y y λλλ+-++-=,整理得:(26)(3)0x y x y λ+-+-+=.令26030x y x y +-=⎧⎨-+=⎩,解得:03x y =⎧⎨=⎩.所以直线恒过定点(0,3)P .又因为220325+<,所以点(0,3)P 在2225x y +=内.所以当该直线与OP 垂直时,直线被圆截得的弦长最短.3d ==,故最短弦长为.故答案为:8.【点睛】本题主要考查了含参直线恒过定点问题以及过圆内一点求最短弦长问题,考查了学生的图形转化计算的能力,属于中档题.14.若点()sin ,cos P θθ-与ππcos ,sin 44Q θθ⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭关于直线y x =对称,写出一个符合题意的θ值为______.【答案】3π8(答案不唯一)【解析】【分析】由,P Q 中点在直线y x =上且所成直线斜率为1-,并应用和角正余弦公式展开化简得πsin sin()4θθ=+且πcos cos 4θθ⎛⎫=-+ ⎪⎝⎭,进而求θ值.【详解】由题设,,P Q 中点ππsin cos()cos sin()44(,)22θθθθ++-++在直线y x =上,且1PQ k =-,所以ππsin cos()cos sin()4422θθθθ++-++=,且πsin()cos 41πcos()sin 4θθθθ++=-+-,即ππsin cos()cos sin()44θθθθ++=-++,且ππsin()cos sin cos(44θθθθ++=-+,所以sin cos sin cos cos sin 2222θθθθθθ+-=-++,且sin cos cos sin cos sin 2222θθθθθθ++=-+,πsin cos )4θθθθ=+=+πsin cos )4θθθθ=-=+,所以πsin sin(4θθ=+,且πcos cos(4θθ=-+,综上,π2(21)π,Z 4k k θ+=+∈,可得1π()π,Z 28k k θ=+-∈,显然3π8满足.故答案为:3π8(答案不唯一)15.如图,点C 是以AB 为直径的圆O 上的一个动点,点Q 是以AB 为直径的圆O 的下半个圆(包括A ,B两点)上的一个动点,,3,2PB AB AB PB ⊥==,则1)3AP BA QC +⋅(的最小值为___________.【答案】3-【解析】【分析】建立合适的平面直角坐标系,利用三角换元法和辅助间公式得到1)344AP BA QC ππαθ⎛⎫⎛⎫+⋅=+-+ ⎪ ⎪⎝⎭⎝⎭ (,最后根据正弦函数的性质即可得到答案.【详解】以O 为原点,以AB 为x 轴,以AB 的中垂线为y 轴建立平面直角坐标系O xyz -,则圆O 的半径为32,(3,2)AP = ,(3,0)BA =-,1(2,2)3AP BA ∴+= ,设3333cos ,sin ,cos ,sin 2222C Q ααθθ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,[)[]0,2π,π,0a θ∈∈-,则3333cos cos ,sin sin 2222QC αθαθ⎛⎫=-- ⎪⎝⎭,()()1ππ3cos cos 3sin sin 3344AP BA QC αθαθαθ⎛⎫⎛⎫⎛⎫∴+⋅=-+-=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ [)[]0,2π,π,0a θ∈∈- ,ππ9ππ3ππ,,,442444αθ⎡⎫⎡⎤∴+∈+∈-⎪⎢⎢⎥⎣⎭⎣⎦,∴当π3πππ,4244αθ+=+=时,1)3AP BA QC +⋅ (取得最小值3-,故答案为:3-.【点睛】关键点点睛:本题的关键是建立合适的直角坐标系,利用三角换元法表示出相关点的坐标,最后计算向量数量积,再根据三角恒等变换和三角函数性质即可求出最值.16.已知A ,B是曲线||1x -=(0,1)C ,则CA CB +的取值范围是________.【答案】【解析】【分析】由曲线方程,结合根式的性质求x 的范围,进而判断曲线的形状并画出草图,再由圆的性质、数形结合法判断CA CB +的最值,即可得其范围.【详解】由||1x -=22(||1)(1)4x y -+-=.由||10x -=,所以1x ≤-或1x ≥.当1x ≤-时,22(1)(1)4x y ++-=;当1x ≥时,22(1)(1)4x y -+-=.所以||1x -=22:(1)(1)4P x y ++-=的左半部分和圆22:(1)(1)4Q x y -+-=的右半部分.当A ,B 分别与图中的M ,N 重合时,||||CA CB +取得最大值,为6;当A ,B 为图中E ,F ,G ,H 四点中的某两点时,||||CA CB +取得最小值,为.故||||CA CB +的取值范围是.故答案为:.四、解答题:写出必要的文字描述、解题过程.共6题.17.已知直线l :12y x =和两个定点(1,1),(2,2)A B ,问直线l 上是否存在一点P ,使得|22||||PA PB +取得最小值?若存在,求出点P 的坐标和22||||PA PB +的最小值;若不存在,说明理由.【答案】存在,95,910⎛⎫ ⎪⎝⎭,1910【解析】【分析】设()002,P x x ,根据坐标运算22||||PA PB +可转化为关于0x 的二次函数,利用二次函数的最值求解即可.【详解】假设直线l 上存在一点()002,P x x ,使得22||||PA PB +取得最小值,如图,则22||||PA PB +()()()()22222000000211222101810x x x x x x =-+-+-+-=-+,因为0R x ∈,所以当01892010x -=-=,即点P 的坐标为99,510⎛⎫⎪⎝⎭时,22||||PA PB +取得最小值,且最小值为1910.18.在平面直角坐标系xOy 中,设二次函数()()22f x x x b x =++∈R 的图像与两坐标轴有三个交点,经过这三个交点的圆记为C .(1)求实数b 的取值范围;(2)求圆C 的方程;(3)请问圆C 是否经过某定点(其坐标与b 无关)?请证明你的结论.【答案】(1){|1b b <,且0b ≠}(2)222(1)0x y x b y b ++-++=(1b <,且0b ≠);(3)过定点(0,1)和(2,1)-,证明见解析.【解析】【分析】(1)令0x =得抛物线与y 轴交点,此交点不能是原点;令()0f x =,则方程∆>0,即可求b 的范围.(2)设出所求圆的一般方程,令0y =得到的方程与220x x b ++=是同一个方程;令0x =得到的方程有一个根为b ,由此求得参数及圆C 的一般方程.(3)把圆C 方程里面的b 合并到一起,令b 的系数为零,得到方程组,求解该方程组,即得圆过的定点.【小问1详解】令0x =得抛物线与y 轴交点是(0,)b ;令2()20=++=f x x x b ,由题意0b ≠,且440b ∆=->,解得1b <,且0b ≠.即实数b 的取值范围{|1b b <,且0b ≠}.【小问2详解】设所求圆的一般方程为220x y Dx Ey F ++++=,由题意得函数()()22f x x x b x =++∈R 的图像与两坐标轴的三个交点即为圆220x y Dx Ey F ++++=和坐标轴的交点,令0y =得,20x Dx F ++=,由题意可得,这与220x x b ++=是同一个方程,故2D =,F b =.令0x =得,20y Ey F ++=,由题意可得,此方程有一个根为b ,代入此方程得出1E b =--,∴圆C 的方程为222(1)0x y x b y b ++-++=(1b <,且0b ≠).【小问3详解】把圆C 的方程改写为222(1)0x y x y b y ++---=,令22201x y x y y ⎧++-=⎨=⎩,解得01x y =⎧⎨=⎩或21x y =-⎧⎨=⎩,故圆C 过定点(0,1)和(2,1)-.19.如图,已知ABC V 的三个顶点分别为)(4,3A ,)(1,2B ,)(3,4C -.(1)试判断ABC V 的形状;(2)设点D 为BC 的中点,求BC 边上中线的长.【答案】(1)直角三角形;(2).【解析】【分析】(1)利用两点间距离公式直接计算三角形三边长即可判断作答.(2)求出点D 坐标,再用两点间距离公式计算作答.【小问1详解】根据两点间的距离公式,得AB ==,BC ==,CA ==((222+=,即222AB BC CA +=,所以ABC V 是直角三角形.【小问2详解】依题意,线段BC 的中点(2,1)D -,AD ==,所以BC 边上中线的长为.(2023·安徽省淮北市树人高级中学期中)20.如图,在三棱锥P ABC -中,1AB BC ==,PA PB PC AC ====,O 为棱AC 的中点(1)证明:平面PAC ⊥平面ABC ;(2)若点M 在棱BC 上,且PC 与平面PAM 所成角的正弦值为4,求二面角M PA C --的大小【答案】(1)证明见解析(2)30°【解析】【分析】对于(1),通过题目条件,可以分别得到BO 和PO 长度,分别通过勾股定理和等腰三角形的三线合一得到PO OB ⊥和PO AC ⊥,从而得到⊥PO 平面ABC ,从而得到平面PAC ⊥平面ABC ;对于(2),先建立空间直角坐标系,因为已知PC 与平面PAM 所成角的正弦值为4,同时点M 在棱BC 上,所以设点M 的坐标,从而分别求出PC和平面PAM 的法向量,并得到点M 的坐标。

吉林省白城市2013-2014学年高二上学期期末考试生物试题(一) Word版含答案

吉林省白城市2013-2014学年高二上学期期末考试生物试题(一) Word版含答案

白城市2013—2014年第一学期期末考试高二生物(试卷一)本试卷分第Ⅰ卷和第Ⅱ卷两部分,满分为 100 分,答题时间为 90 分钟。

考生作答时,选择题答案和非选择题答案写在答题纸上。

考试结束后,将答题纸交回。

注意事项:1、答题前,考生务必先将自己的姓名、准考证号、所在学校准确填写,条形码贴在指定位置上。

2、选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦擦干净后,再选涂其它答案标号。

非选择题答案字体工整、清楚。

第Ⅰ卷(50分)一、选择题:(每小题只有一个正确答案,31至40每题2分,共50分)1.下列各组化合物中,全是内环境成分的一组是 ( )A .CO 2、血红蛋白、H +、尿素 B .呼吸氧化酶、抗体、激素、H 2O C .Na +、O 2、葡萄糖、血浆蛋白 D .Ca 2+、载体、氨基酸2.人体细胞外液构成细胞生活的液体环境,这个环境中可发生许多生化反应,其中有( )A .蛋白质消化分解成氨基酸B .神经递质和激素的合成C .丙酮酸氧化分解成二氧化碳和水D .乳酸与碳酸氢钠作用生成乳酸钠和碳酸3.人体内环境相对稳定是健康的保障。

由于内环境成分发生明显变化而引起的病症是( ) ①小腿抽搐②镰刀型细胞贫血症 ③尿毒症 ④组织水肿 A .①②③B .①③④C .①②④D .②③④4.分别刺激下图Ⅰ、Ⅱ、Ⅲ、Ⅳ四处,不能引起肌肉收缩的是 ( )A .ⅠB .ⅡC .ⅢD .Ⅳ5.在人的神经系统中,有些细胞既能传导兴奋,又能合成和分泌激素。

这些细胞位于( )A.大脑皮层B.垂体C.下丘脑D.脊髓 6.将神经细胞置于相当于细胞外液的溶液(溶液S )中,可测得静息电位。

给予细胞一个适宜的刺激,膜两侧出现一个暂时性的电位变化,这种膜电位变化称为动作电位。

适当降装订 线学校 班级 姓名 考号低溶液S中的Na 浓度,测量该细胞的静息电位和动作电位,可观察到()A.静息电位值减小 B.静息电位值增大C.动作电位峰值升高 D.动作电位峰值降低7.为了验证胰岛素具有降低血糖含量的作用,在设计实验方案时,如果以正常小鼠每次注射药物前后小鼠症状的变化为观察指标,则下列对实验组小鼠注射药物的顺序,正确的是 ( )A.先注射胰岛素溶液,再注射胰岛素溶液B.先注射胰岛素溶液,后注射葡萄糖溶液C.先注射胰岛素溶液,后注射生理盐水D.先注射生理盐水,后注射胰岛素溶液8.人体受到某种抗原的刺激会产生记忆细胞,当其受到同种抗原第二次刺激时( )A.记忆细胞的细胞周期持续时间变长,机体抗体浓度增加B.记忆细胞的细胞周期持续时间变短,机体抗体浓度增加C.记忆细胞的细胞周期持续时间变短,机体抗体浓度减少D.记忆细胞的细胞周期持续时间不变,机体抗体浓度减少9.在制备抗蛇毒毒素血清时,需将减毒的蛇毒注入家兔体内,引起免疫反应,这一免疫反应和所用的蛇毒分别是()A.非特异性免疫,抗原 B.特异性免疫,抗体 C.非特异性免疫,抗体 D.特异性免疫,抗原10.免疫是机体的一种重要的保护性功能。

吉林省白城市2013-2014学年高二上学期期末考试地理试题 Word版含答案

吉林省白城市2013-2014学年高二上学期期末考试地理试题 Word版含答案

白城市2013—2014年第一学期期末考试高二 地理本试卷分第Ⅰ卷和第Ⅱ卷两部分,满分为 100 分,答题时间为 90 分钟。

考生作答时,选择题答案和非选择题答案写在答题纸上。

考试结束后,将答题纸交回。

注意事项:1、答题前,考生务必先将自己的姓名、准考证号、所在学校准确填写,条形码贴在制定位置上。

2、选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦擦干净后,再选涂其它答案标号。

非选择题答案字体工整、清楚。

第Ⅰ卷 (共60分)一、单项选择题(选出每小题中最符合题意的一个选项,共30小题,每题2分)1、2013年11月,吉林省松原地区发生罕见的群发性地震,为了快捷而准确监测,及时了解松原地区的受灾状况宜采用的地理信息技术是: A .地理信息系统 B .遥感技术 C .全球定位系统 D .多媒体技术2.GIS 中,不同类型的地理空间信息可以储存在不同的图层上,叠加不同的图层可以分析不同要素间的相互关系。

城市交通图层与城市人口分布图层的叠加,可以 A 为商业网点选址 B 分析建筑设计的合理性 C 计算城市水域面积 D 估算城市生产总值3、一支地理考察队所用手持式全球定位系统信号接收机显示如下界面,据此判断该考察队可能( )A.在喜马拉雅山测量珠峰高度B.在塔里木盆地勘探石油C.在柴达木盆地调查地质构造D.在河西走廊寻找地下水下图1中,甲、乙、丙、丁分别是我国东部季风区四个平原地区的年降水量柱状图和年气温变化曲线图。

读图完成4——5题。

装订线 学校 班级 姓名 考号4.四图中反映华北暖温带湿润半湿润地区的气温和降水的是A.甲B. 乙C. 丙D.丁5.四图中适合甘蔗和甜菜生长的分别是A.甲、乙B. 乙、丙C. 丙、丁D. 丁、甲图2为我国某地区,读图回答6~8题。

6、对图中所示地区自然环境的叙述,正确的是A 地处西风带,气候温和湿润,河流落差大,水能资源丰富B.自然带类型为温带荒漠带,河流以冰雪融水补给为主C.全部为干旱区,自然带体现了明显纬向地域分异规律D.河流以降水补给为主,径流年际变化大7、图中A地区降水的水汽主要来自①太平洋②大西洋③北冰洋④印度洋A.①③ B.②④ C.①② D.②③8、该地区是我国重要的长绒棉生产基地,其最有利的自然区位条件是A.光照 B.水源 C.地形 D.土壤田纳西河的早期开发,由于发展炼铜业,对环境造成污染并破坏了植被。

2024-2025学年吉林省长春市东北师范大学附属中学高二上学期10月期中考试数学试题(含答案)

2024-2025学年吉林省长春市东北师范大学附属中学高二上学期10月期中考试数学试题(含答案)

2024-2025学年吉林省长春市东北师范大学附属中学高二上学期10月期中考试数学试题一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.直线x +3y +1=0的倾斜角是( )A. 30°B. 60°C. 120°D. 150°2.已知α,β是两个平面,l,m 是两条不同的直线,则下列说法正确的是( )A. 若m ⊥α,l ⊥m ,则l ⊥α B. 若m//β,n//β,则m//n C. 若m//α,l ⊥α,则l ⊥mD. 若α//β,m//α,则m//β3.已知两直线l 1:3x +4y−14=0,l 2:(a−2)x +4y +a =0,若l 1//l 2,则l 1与l 2间的距离为( )A. 95B. 125C. 175D. 1954.某同学参加学校组织的化学竞赛,比赛分为笔试和实验操作测试,该同学参加这两项测试的结果相互不受影响.若该同学在笔试中结果为优秀的概率为34,在实验操作中结果为优秀的概率为23,则该同学在这次测试中仅有一项测试结果为优秀的概率为( )A. 712B. 12C. 512D. 135.在平行四边形ABCD 中,点E,F,G 分别满足DE =EC ,BC =2BG ,AF =2FE ,则FG =( )A. 23AB−16ADB. 23AB +16ADC. 16AB−23ADD. 16AB +23AD6.已知圆M 经过P (1,1),Q (2,−2)两点,且圆心M 在直线l:x−y +1=0,则圆M 的标准方程是( )A. (x−2)2+(y−3)2=5 B. (x−3)2+(y−4)2=13C. (x +3)2+(y +2)2=25D. (x +3)2+(y−2)2=257.如图,在直三棱柱ABC−A 1B 1C 1中,AB ⊥BC,AB =BC =AA 1=2,P 为线段A 1B 1的中点,Q 为线段C 1P 上一点,则▵BCQ 面积的取值范围为( )A. [2,6] B. [2,5] C. [ 3,5] D. [ 2,5]8.已知点A,B是圆C:(x−2)2+y2=1上的两个动点,点P是直线l:x+y=0上动点,且PA⋅CA=0,PB⋅CB =0,下列说法正确的是( )A. 圆C上恰有一个点到直线l的距离为12B. PA长的最小值为2−1C. 四边形ACBP面积的最小值为2D. 直线AB恒过定点(32,−12)二、多选题:本题共3小题,共18分。

2024-2025学年吉林省长春市高二上学期第一次月考数学检测试题(含解析)

2024-2025学年吉林省长春市高二上学期第一次月考数学检测试题一、单选题(本大题共8小题)1.在空间直角坐标系中,已知点,点则( )Oxyz ()1,3,5P ()1,3,5Q --A .点和点关于轴对称B .点和点关于轴对称P Q x P Q y C .点和点关于轴对称D .点和点关于原点中心对称P Q z P Q 2.向量,若,则( )()()2,1,3,1,2,9a x b y ==- a ∥b A .B .1x y ==11,22x y ==-C .D .13,62x y ==-12,63x y =-=3.直三棱柱中,若,则( )111ABC A B C -1,,CA a CB b CC c === 1A B =A .B .a b c +-r r ra b c -+r r rC .D .a b c -++ a b c -+- 4.下列可使非零向量构成空间的一组基底的条件是( ),,a b c A .两两垂直B .,,a b c b cλ= C .D .a mb nc =+a b c ++=5.已知,则直线恒过定点( )2b a c =+0ax by c ++=A .B .(1,2)-(1,2)C .D .(1,2)-(1,2)--6.已知:,:,则两圆的位1C 2222416160x y x y +++-=2C 22228840x y x y ++--=置关系为( )A .相切B .外离C .相交D .内含7.已知点为椭圆上任意一点,直线过的圆心且P 22:11612x y C +=l 22:430M x y x +-+= 与交于两点,则的取值范围是( )M ,A B PA PB ⋅A .B .C .D .[]3,35[]2,34[]2,36[]4,368.已知圆和圆交于两点,点在圆221:2470C x y x y +---=222:(3)(1)12C x y +++=P 上运动,点在圆上运动,则下列说法正确的是( )1C Q 2C A .圆和圆关于直线对称1C 2C 8650x y +-=B .圆和圆的公共弦长为1C 2CC .的取值范围为PQ0,5⎡+⎣D .若为直线上的动点,则的最小值为M 80-+=x y PM MQ+-二、多选题(本大题共3小题)9.已知向量,,则下列正确的是( )()1,2,0a =-()2,4,0b =-A .B .//a ba b⊥ C .D .在方向上的投影向量为2b a = a b ()1,2,0-10.布达佩斯的伊帕姆维泽蒂博物馆收藏的达·芬奇方砖在正六边形上画了具有视觉效果的正方体图案,如图,把三片这样的达·芬奇方砖拼成组合,把这个组合再转换成空间几何体.若图中每个正方体的棱长为1,则下列结论正确的是( )A .B .点到直线的距离是122CQ AB AD AA =--+1C CQ C .D .异面直线与所成角的正切值为43CQ = CQ BD 11.已知实数满足方程,则下列说法正确的是( ),x y 22410x y x +-+=A .的最大值为B .的最大值为y x -2-22x y +7+C .的最大值为D .的最小值为y x x y+2三、填空题(本大题共3小题)12.O 为空间任意一点,若,若ABCP 四点共面,则3148OP OA OB tOC=++ t =.13.已知点和点,是动点,且直线与的斜率之积等于,则()2,0A -()2,0B P AP BP 34-动点的轨迹方程为.P 14.已知点为圆上位于第一象限内的点,过点作圆P 221:(5)4C x y -+=P 的两条切线,切点分别为,直线222:2C x y ax +-220(25)a a a +-+=<<,PM PN M N 、分别交轴于两点,则 , .,PM PN x (1,0),(4,0)A B ||||PA PB =||MN =四、解答题(本大题共5小题)15.分别求满足下列各条件的椭圆的标准方程.(1)已知椭圆的离心率为,短轴长为23e =(2)椭圆与有相同的焦点,且经过点,求椭圆的标准方程.C 2212x y +=31,2M ⎛⎫⎪⎝⎭C 16.已知圆心为的圆经过点,且圆心在直线上.C ()()1,4,3,6A B C 340x y -=(1)求圆的方程;C (2)已知直线过点且直线截圆所得的弦长为2,求直线的一般式方程.l ()1,1l C l 17.如图,四边形与四边形均为等腰梯形,ABCD ADEF,,,,,平面,//BC AD //EF AD 4=AD AB =2BC EF ==AF =FB ⊥ABCD 为上一点,且,连接、、M AD FM AD ⊥BD BE BM(1)证明:平面;⊥BC BFM (2)求平面与平面的夹角的余弦值.ABF DBE18.已知圆与圆内切.()222:0O x y r r +=>22:220E x y x y +--=(1)求的值.r (2)直线与圆交于两点,若,求的值;:1l y kx =+O ,M N 7OM ON ⋅=-k (3)过点作倾斜角互补的两条直线分别与圆相交,所得的弦为和,若E O AB CD ,求实数的最大值.AB CDλ=λ19.已知两个非零向量,,在空间任取一点,作,,则叫a bO OA a = OB b = AOB ∠做向量,的夹角,记作.定义与的“向量积”为:是一个向量,它与向a b ,a ba b a b ⨯ 量,都垂直,它的模.如图,在四棱锥中,底面a b sin ,a b a b a b ⨯=⋅ P ABCD -为矩形,底面,,为上一点,.ABCD PD ⊥ABCD 4DP DA ==E AD AD BP ⨯=(1)求的长;AB (2)若为的中点,求二面角的余弦值;E AD P EB A --(3)若为上一点,且满足,求.M PB AD BP EM λ⨯=λ答案1.【正确答案】B【详解】由题得点与点的横坐标与竖坐标互为相反数,纵坐标相同,P Q 所以点和点关于轴对称,P Q y 故选:B.2.【正确答案】C【分析】利用空间向量平行列出关于的方程组,解之即可求得的值.,x y ,x y 【详解】因为,所以,由题意可得,a b ∥a b λ=()()()2,1,31,2,9,2,9x y y λλλλ=-=-所以则.2,12,39,x y λλλ=⎧⎪=-⎨⎪=⎩131632x y λ⎧=⎪⎪⎪=⎨⎪⎪=-⎪⎩故选C.【思路导引】根据题目条件列出关于的方程组,解方程组即可得到答案.a∥b ,x y 3.【正确答案】D【详解】.()11111A A B B a b B A B cCC C CB =+=-+=-+--+ 故选:D .4.【正确答案】A【详解】由基底定义可知只有非零向量不共面时才能构成空间中的一组基底.,,a b c对于A ,因为非零向量两两垂直,所以非零向量不共面,可构成空间的一,,a b c ,,a b c 组基底,故A 正确;对于B ,,则共线,由向量特性可知空间中任意两个向量是共面的,所以b c λ=,b c 与共面,故B 错误;a,b c 对于C ,由共面定理可知非零向量共面,故C 错误;,,a b c 对于D ,即,故由共面定理可知非零向量共面,故D 错误.0a b c ++= a b c =--,,a b c 故选:A.5.【正确答案】A【分析】由题意可得,可得定点坐标.(1)(2)0a x b y -++=【详解】因为,所以,2b a c =+2c b a =-由,可得,所以,0ax by c ++=(2)0ax by b a ++-=(1)(2)0a x b y -++=当时,所以对为任意实数均成立,1,2x y ==-(11)(22)0a b -+-+=,a b 故直线过定点.(1,2)-故选A.6.【正确答案】C 【详解】因为可化为22221:22416160,2880C x y x y x y x y +++-=+++-= ,则,半径,()()221425x y +++=()11,4C --15r =因为可化为,22222:228840,4420C x y x y x y x y ++--=++--= ()()222210x y ++-=则,半径()22,2C -2r =则,因为.1C =122155r r r r -=<<+=+故选:C.7.【正确答案】A【详解】,即,22:430M x y x +-+= ()2221x y -+=则圆心,半径为.(2,0)M 1椭圆方程,,22:11612x y C +=2216,12a b ==则,22216124,2c a b c =-=-==则圆心为椭圆的焦点,(2,0)M 由题意的圆的直径,且AB 2AB = 如图,连接,由题意知为中点,则,PM M AB MA MB =-可得()()()()PA PB PM MA PM MB PM MB PM MB ⋅=+⋅+=-+ .2221PM MB PM =-=- 点为椭圆上任意一点,P 22:11612x y C +=则,,min 2PM a c =-= max 6PM a c =+= 由,26PM ≤≤ 得.21PA PB PM ⋅=- []3,35∈故选:A.8.【正确答案】D【详解】对于A ,和圆,221:2470C x y x y +---=222:(3)(1)12C x y +++=圆心和半径分别是,()()12121,2,3,1,C C R R --==则两圆心中点为,11,2⎛⎫- ⎪⎝⎭若圆和圆关于直线对称,则直线是的中垂线,1C 2C 8650x y +-=12C C 但两圆心中点不在直线上,故A 错误;11,2⎛⎫- ⎪⎝⎭8650x y +-=对于B ,到直线的距离,1C 8650x y ++=81255102d ++==故公共弦长为,B错误;=对于C ,圆心距为,当点和重合时,的值最小,5=P QPQ当四点共线时,的值最大为12,,,P Q C CPQ 5+故的取值范围为,C 错误;PQ0,5⎡+⎣对于D ,如图,设关于直线对称点为,1C 80-+=x y (),A m n则解得即关于直线对称点为,21,11280,22n mm n -⎧=-⎪⎪-⎨++⎪-+=⎪⎩6,9,m n =-⎧⎨=⎩1C 80-+=x y ()6,9A -连接交直线于点,此时最小,2AC M PM MQ +122PM MQ MC MC C A +≥+-=-==即的最小值为,D 正确.PM MQ+故选:D.9.【正确答案】ACD【详解】ABC 选项,由题意得,故且,AC 正确,B 错误;2b a= //a b2b a= D 选项,在,Da b ()01,2,=-正确.故选:ACD10.【正确答案】ABC 【详解】依题意得,12CQ CB BQ AD BA =+=-+()11222AD AA AB AB AD AA =-+-=--+ 故A 正确;如图,以为坐标原点,建立空间直角坐标系,1A 111(0,1,0),(1,1,0),(1,0,0),(0,1,1),(1,1,1),(1,1,1),B C D Q C E -------,(1,1,1),(0,1,1),(1,0,1)G B D -----对于BC ,,1(1,2,1),(1,2,2)QC CQ =--=-所以,设,3CQ==173QC CQ m CQ ⋅==- 则点到直线的距离BC 正确;1C CQd ==对于D ,因为,(1,2,2),(1,1,0)CQ BD ---==所以cos ,CQ BD 〈〉==tan ,CQ BD 〈〉= 所以异面直线与所成角的正切值为D 错误.CQ BD 故选:ABC .11.【正确答案】ABD【详解】根据题意,方程,即,22410x y x +-+=22(2)3x y -+=表示圆心为,半径为(2,0)对于A ,设,即,y x z -=0x y z -+=直线与圆有公共点,0x y z -+=22(2)3x y -+=所以≤22z ≤≤则的最大值为,故A 正确;z y x =-2-对于B ,设,其几何意义为圆上的点到原点的距离,t =22(2)3x y -+=所以的最大值为,t 2故的最大值为B 正确;22x y +22(27t ==+对于C ,设,则,直线与圆有公共点,yk x =0kx y -=0kx y -=22(2)3x y -+=则,解得的最大值为C 错误;≤k ≤≤yx 对于D ,设,作出图象为正方形,作出圆,如图,m x y=+22(2)3x y -+=由图象可知,正方形与圆有公共点A 时,有最小值m 2即的最小值为,故D 正确;x y+2故选:ABD12.【正确答案】/0.12518【详解】空间向量共面的基本定理的推论:,且、、不共OP xOA yOB zOC =++ A B C 线,若、、、四点共面,则,A B C P 1x y z ++=因为为空间任意一点,若,且、、、四点共面,O 3148OP OA OB tOC=++ A B C P所以,,解得.31148t ++=18t =故答案为.1813.【正确答案】221(2)43x y x +=≠±【详解】设动点的坐标为,又,,P (,)x y ()2,0A -()2,0B 所以的斜率,的斜率,AP (2)2AP y k x x =≠-+BP (2)2BP yk x x =≠-由题意可得,3(2)224y y x x x ⨯=-≠±+-化简,得点的轨迹方程为.P 221(2)43x y x +=≠±故221(2)43x y x +=≠±14.【正确答案】 2,【详解】圆的标准方程为,圆心,2C 22()2(2)x a y a a -+=->()2,0C a 则为的角平分线,所以.2PC APB ∠22AC PA BC PB=设,则,()00,P x y ()22054x y -+=所以,则,2PAPB===222AC BC =即,解得,则,()124a a -=-3a =222:(3)1C x y -+=所以点与重合,N ()4,0B 此时,可得,221,30C M MAC =∠=52M ⎛ ⎝.故;215.【正确答案】(1)或;22114480x y +=22114480y x +=(2).22143x y +=【详解】(1)由题得,222212328c a a b b a b c c ⎧=⎪=⎧⎪⎪⎪=⇒=⎨⎨⎪⎪=+=⎩⎪⎪⎩所以椭圆的标准方程为或.22114480x y +=22114480y x +=(2)椭圆满足,故该椭圆焦点坐标为,2212x y +=1c ==()1,0±因为椭圆与有相同的焦点,且经过点,C 2212x y +=31,2M ⎛⎫ ⎪⎝⎭所以可设椭圆方程为,且,解得,C 22221x y a b +=22222231211ab a b ⎧⎛⎫⎪ ⎪⎪⎝⎭+=⎨⎪⎪=+⎩4241740a a -+=故,解得(舍去)或,故.()()224140aa --=214a =24a =2213b a =-=所以椭圆的标准方程为.C 22143x y +=16.【正确答案】(1)()()224310x y -+-=(2)或10x -=512170x y +-=【详解】(1)由题意,则的中点为,且,()()1,4,3,6A B AB (2,5)64131AB k -==-故线段中垂线的斜率为,AB 1-则中垂线的方程为,即,5(2)y x -=--70x y +-=联立,解得,即圆心,34070x y x y -=⎧⎨+-=⎩43x y =⎧⎨=⎩()4,3C 则半径r CA ===故圆的方程为.C ()()224310x y -+-=(2)当直线斜率不存在时,直线的方程为,l 1x =圆心到直线的距离为,由半径,(4,3)C 3r =则直线截圆所得的弦长,满足题意;l C 2=当直线斜率存在时,设直线方程为,l l 1(x 1)y k -=-化为一般式得,10kx y k -+-=由直线截圆所得的弦长,半径.l C 2r =1则圆心到直线的距离,又圆心,3d ==(4,3)由点到直线的距离公式得,3d 解得,故直线方程为,512k =-l 51(1)12y x -=--化为一般式方程为.512170x y +-=综上所述,直线的方程为或.l 10x -=512170x y +-=17.【正确答案】(1)证明见详解;【分析】(1)根据线面垂直的性质,结合线面垂直的判定定理、平行线的性质进行证明即可;(2)作,垂足为,根据平行四边形和矩形的判定定理,结合(1)的结论,EN AD ⊥N 利用勾股定理,因此可以以,,所在的直线分别为轴、轴、轴建立空BM BC BF x y z 间直角坐标系,利用空间向量夹角公式进行求解即可.【详解】(1)因为平面,又平面,FB ⊥ABCD AD ⊂ABCD 所以.又,且,FB AD ⊥FM AD ⊥FB FM F ⋂=所以平面.因为,所以平面.AD ⊥BFM //BC AD ⊥BC BFM (2)作,垂足为.则.又,EN AD ⊥N //FM EN //EF AD 所以四边形是平行四边形,又,FMNE EN AD ⊥所以四边形是矩形,又四边形为等腰梯形,且,,FMNE ADEF 4=AD 2EF =所以.1AM =由(1)知平面,所以.又,AD ⊥BFM BM AD⊥AB =所以.在中,1BM =Rt AFMFM ==在中,.Rt FMB 3FB ==所以由上可知,能以,,所在的直线分别为轴、轴、轴建立如图所示空间BM BC BF x y z 直角坐标系.则,,,,,所以,,(1,1,0)A --(0,0,0)B (0,0,3)F (1,3,0)D -(0,2,3)E (1,1,0)AB =,,,设平面的法向量为,(0,0,3)BF = (1,3,0)BD =- (0,2,3)BE =ABF ()111,,m x y z = 由,得可取.00m AB m BF ⎧⋅=⎪⎨⋅=⎪⎩ 1110,0,x y z +=⎧⎨=⎩(1,1,0)m =- 设平面的法向量为,BDE ()222,,n x y z =由,得,可取.00n BD n BE ⎧⋅=⎪⎨⋅=⎪⎩ 222230,230,x y y z -+=⎧⎨-+=⎩(9,3,2)n = 因此,.cos ,m n m n m n ⋅===依题意可知,平面与平面的夹角的余弦值为ABFDBE 18.【正确答案】(1)r =(2);1k =±(3)max λ=【详解】(1)由题意得,,O (0,0)()()2222220112x y x y x y +--=⇒-+-=故圆心,圆E 的半径为()1,1E 因为,故在圆E 上,()()2201012-+-=O (0,0)所以圆O 的半径,且r >OE r ==r =(2)由(1)知,联立,22:8O x y +=()2222812701x y k x kx y kx ⎧+=⇒++-=⎨=+⎩设,则恒成立,()()1122,,,M x y N x y ()22Δ42810k k =++>且,12122227,11k x x x x k k +=-=-++所以,()2222121212222721811111k k k y y k x x k x x k k k -=+++=--+=+++所以,解得.221212222718681711O k k x x y O y k k k M N ⋅=---+=-+==+++-1k =±(3)如图,因为直线和直线倾斜角互补,AB CD所以当直线斜率不存在时,此时直线的斜率也不存在,AB CD 此时,,AB CD=1AB CDλ==当直线的斜率为0时,直线的斜率为0,不满足倾斜角互补,AB CD 当直线斜率存在且不为0时,设直线 即,AB ():11AB y k x -=-10kx y k --+=圆心O 到直线的距离为AB d故AB ===由直线方程得直线的方程为即,AB CD ()11y k x -=--10kx y k +--=同理得CD =则,AB CD λ====当,,0k>AB CDλ====因为对勾函数在上单调递减,在上单调递增,()1f x x x =+(0,1)(1,+∞)所以时,,0x >()())[)1,2,f x f ∞∞⎡∈+=+⎣所以时,故,0k >[)17212,k k ∞⎛⎫+-∈+ ⎪⎝⎭4411,1372k k ⎛⎤+∈ ⎥⎛⎫⎝⎦+- ⎪⎝⎭所以,λ⎛= ⎝当,0k <AB CDλ====由上知时,故,0k <()[)17216,k k ∞⎡⎤⎛⎫-+-+∈+ ⎪⎢⎥⎝⎭⎣⎦()431,14172k k ⎡⎫-∈⎪⎢⎡⎤⎛⎫⎣⎭-+-+ ⎪⎢⎥⎝⎭⎣⎦所以.λ⎫=⎪⎪⎭综上,max λ=19.【正确答案】(1)2(2)13-(3)10【分析】(1)首先说明为直线与所成的角,即,设PBC ∠AD PB ,AD BP PBC=∠,根据所给定义得到方程,解得即可;()0AB x x =>(2)在平面内过点作交的延长线于点,连接,为二ABCD D DF BE ⊥BE F PF PFD ∠面角的平面角,由锐角三角函数求出,设二面角的平面P EB D --cos PFD ∠P EB A --角为,则,利用诱导公式计算可得;θπPFD θ=-∠(3)依题意可得平面,在平面内过点作,垂足为,即EM ⊥PBC PDC D DN PC ⊥N 可证明平面,在平面内过点作交于点,在上取点DN ⊥PBC PBC N //MN BC PB M DA,使得,连接,即可得到四边形为平行四边形,求出,即E DE MN =EM DEMN DN可得解.【详解】(1)因为底面为矩形,底面,ABCD PD ⊥ABCD 所以,,又底面,所以,//AD BC BC DC ⊥BC ⊂ABCD PD BC ⊥又,平面,所以平面,PD DC D = ,PD DC ⊂PDC BC ⊥PDC 又平面,所以,PC ⊂PDC BC PC ⊥所以为直线与所成的角,即,PBC ∠AD PB ,AD BP PBC=∠设,则,()0AB x x =>PC ==PB ==在中Rt PBC s n i PCPBC PB ∠==又,解得(负值已舍去),AD BP ⨯==2x =所以;2AB =(2)在平面内过点作交的延长线于点,连接,ABCD D DF BE ⊥BE F PF 因为底面,底面,所以,又,PD ⊥ABCD BF ⊂ABCD PD BF ⊥DF PD D = 平面,所以平面,又平面,所以,,DF PD ⊂PDF BF ⊥PDF PF ⊂PDF BF PF ⊥所以为二面角的平面角,PFD ∠P EB D --因为为的中点,E AD所以π2sin4DF ==PF ==所以,1cos 3DF PFD PF ∠===设二面角的平面角为,则,P EB A --θπPFD θ=-∠所以,()1cos cos πcos 3PFD PFD θ=-∠=-∠=-即二面角的余弦值为;P EB A --13-(3)依题意,,又,()AD BP AD⨯⊥ ()AD BP BP⨯⊥ AD BP EM λ⨯= 所以,,又,所以,EM AD ⊥EM BP ⊥//AD BC EM BC ⊥又,平面,所以平面,PB BC B = ,PB BC ⊂PBC EM ⊥PBC 在平面内过点作,垂足为,PDC D DN PC ⊥N 由平面,平面,所以,BC ⊥PDC DN ⊂PDC BC DN ⊥又,平面,所以平面,PC BC C = ,PC BC ⊂PBC DN ⊥PBC 在平面内过点作交于点,在上取点,使得,连接PBC N //MN BC PB M DA E DE MN =,EM 所以且,所以四边形为平行四边形,//DE MN DE MN =DEMN 所以,又,即EM DN =DN ==EM=所以.10AD BP EMλ⨯===【关键点拨】本题关键是理解并应用所给定义,第三问关键是转化为求.DN。

高二上学期数学期末试卷

高二上学期数学期末试卷(文科数学)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“,x x e x ∀∈>R ”的否定是( )A .x e R x x <∈∃0,0B .,x x e x ∀∈<RC .,x x e x ∀∈≤RD .x e R x x ≤∈∃0,0.2.设实数和满足约束条件,则的最小值为( )A .B .C .D .3.抛物线22y x =的准线方程为( )A .14y =-B .18y =-C .1y =D .12y =4.“α为锐角”是“0sin >α”的()A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件5.设双曲线)0(19222>=-a ya x 的渐近线方程为023=±y x ,则a 的值为() A .4 B .3 C .2 D .16. 在空间直角坐标系中,已知点P (x ,y ,z ),给出下列四条叙述:①点P 关于x 轴的对称点的坐标是(x ,-y ,z )②点P 关于yOz 平面的对称点的坐标是(x ,-y ,-z )③点P 关于y 轴的对称点的坐标是(x ,-y ,z )④点P 关于原点的对称点的坐标是(-x ,-y ,-z )其中正确的个数是( ) A .3 B .2 C .1 D .0 7.给定下列四个命题: ①若一个平面内的两条直线与另外一个平面都平行,那么这两个平面相互平行; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行; ④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中,为真命题的是( ) A .①和② B .②和③ C .③和④ D .②和④ 8.若双曲线193622=-y x 的弦被点(4,2)平分,则此弦所在的直线方程是( ) A .02=-y x B .042=-+y x C .014132=-+y x D .082=-+y x 9.设1F ,2F 是椭圆E :2222x y a b +=1(a >b >0)的左、右焦点,P 为直线32a x =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为( )A .12B .23C .34D .45 10.椭圆221259x y +=的左焦点为1F , 点P 在椭圆上, 若线段1PF 的中点M 在y 轴上, 则1PF =( ) A .415 B .95 C .6 D .7 x y 1024x y x y x +≤⎧⎪-≤⎨⎪≥⎩23z x y =+26241614二、填空题:本大题共5小题,每小题5分,共25分.11.若圆心在轴上、的圆位于轴左侧,且与直线相切,则圆的方程是 .12.某三棱锥的三视图如图所示,该三棱锥的体积是 。

吉林省白城市2013-2014学年高二上学期期末考试历史试题 Word版含答案

白城市2013—2014年第一学期期末考试高二历史试卷本试卷分第Ⅰ卷和第Ⅱ卷两部分,满分为100分,答题时间为90分钟。

考生作答时,选择题答案和非选择题答案写在答题纸上。

考试结束后,将答题纸交回。

注意事项:1、答题前,考生务必先将自己的姓名、准考证号、所在学校准确填写,条形码贴在指定位置上。

2、选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦擦干净后,再选涂其它答案标号。

非选择题答案字体工整、清楚。

第Ⅰ卷 (选择题,共60分)一、选择题(本大题共30小题,每小题2分,共计60分。

在每小题列出的四个选项中,只有一项是最符合题目要求的)1.春秋战国至秦汉时期,各种思想流派纷呈。

有的学者对各种思想主张进行整理,将它们分别描述为“全面归服自然的隐士派”、“专制君主的参谋集团”、“劳苦大众的行动帮会”、“拥有无限同情心和向上心的文化人的学派”。

按顺序它们分别是: A .儒、道、墨、法 B .墨、儒、法、道 C .法、儒、道、墨 D .道、法、墨、儒 18.《中国文化概论》中对某一学派特征的描述是:“它设计出一整套由小及大、由近及远的发展人格和安定邦家的方案,为巩固政教体制提供了切实可循的途径。

”这一学派为统治者所重用是在:A .商周时期B .春秋战国时期C .秦朝时期D .西汉时期3. “人人自有定盘针,万化根源总在心。

却笑从前颠倒见,枝枝叶叶外头寻。

”这首诗反映了 : A.孟子的“仁政” B.董仲舒的“独尊儒术” C.王阳明的“心学” D.顾炎武的“经世致用” 4.黄宗羲认为:“然则其(封建国家)所谓法者,一家之法,而非天下之法也。

……即论者谓有治人无治法,吾以谓有治法而后有治人。

”黄宗羲思想的核心是: A .建立一家之法 B .法律是由人来决定的 C .反对君主制,实行法治 D .建立君主立宪制5. 黄宗羲、顾炎武、王夫之是明清之际著名的思想家,他们的思想实质上是: A .儒家思想在新的历史条件下的活跃 B .宋明理学的深化和发展 C .前秦儒家民本思想的复兴 D .资产阶级民主思想的兴起6. “没有人愿意用抽签的方法雇佣一位舵手和建筑师、吹笛手或其他行业的人,而这类事若出错的话,危害还比在管理国家事务上出错轻得多。

2023-2024学年吉林省长春市高二上册期末数学模拟试题2(含解析)

2023-2024学年吉林省长春市高二上册期末数学模拟试题一、单选题1.一条直线过原点和点()1,1P -,则这条直线的倾斜角是()A .4πB .4π-C .34πD .74π【正确答案】C求出直线的斜率,结合倾斜角的取值范围可求得所求直线的倾斜角.【详解】设这条件直线的倾斜角为θ,则10tan 110θ--==--,0θπ≤<,因此,34πθ=.故选:C.2.抛物线22y x =的准线方程是()A .12x =-B .18x =-C .18y =-D .12y =-【正确答案】C【分析】依题意将抛物线化为标准式,即可求出抛物线的准线;【详解】解:因为抛物线方程为22y x =,即212x y =,所以122p =,即14p =,所以抛物线的准线为18y =-故选:C3.已知椭圆C 的焦点1F ,2F 在x 轴上,过点1F 的直线与C 交于A ,B 两点,若2ABF △周长为8,则椭圆C 的标准方程可能为()A .2211615x y +=B .22187x y +=C .22143x y +=D .22134x y +=【正确答案】C【分析】由椭圆的定义可得2ABF △的周长为48a =,然后可选出答案.【详解】由椭圆的定义可得2ABF △的周长为48a =所以2a =因为椭圆的焦点在x 轴上,所以椭圆C 的标准方程可能为22143x y+=故选:C4.已知等差数列{}n a 的前项和为n S ,若3a 与9a 方程28200x x --=的两个实根,则11S =()A .46B .44C .42D .40【正确答案】B【分析】利用等差数列的性质和前n 项和公式即可求解.【详解】因为3a 与9a 方程28200x x --=的两个实根,所以398a a +=.由等差数列{}n a 的性质可得:119138a a a a +=+=,所以()1111111442a a S +⨯==.故选:B5.经过两条直线23100x y -+=和3420x y +-=的交点,且垂直于直线3240x y -+=的直线方程为()A .2320x y ++=B .3220x y +-=C .2320x y -+=D .2320x y +-=【正确答案】D联立直线方程求出交点坐标,利用两直线垂直的条件求出斜率,点斜式写出直线方程.【详解】由231003420x y x y -+=⎧⎨+-=⎩,解得22x y =-⎧⎨=⎩因为所求直线与直线3240x y -+=垂直所以所求直线方程:2x +3y +c =0,代入点(2,2)-可得2c =-,所以所求直线方程为2320x y +-=故选:D方法点睛:本题考查直线方程,确定直线方程一般有两种途径:1.确定直线上不同的两点,通过直线方程的两点式确定;2.确定直线的斜率和直线上的一点,通过直线方程的点斜式确定.6.等比数列{}n a 的各项均为正数,已知向量()45,a a a = ,()76,b a a = ,且4a b ⋅= ,则2122210log log log (a a a ++⋯+=)A .12B .10C .5D .22log 5+【正确答案】C【分析】利用数量积运算性质、等比数列的性质及其对数运算性质即可得出.【详解】向量a =4a 5a ,b =7a 6a ,且a •b=4,∴47a a +56a a =4,由等比数列的性质可得:110a a =……=47a a =56a a =2,则2122210log log log a a a +++=log 2(12a a 10a )=()5521102log log 25a a ==.故选C .本题考查数量积运算性质、等比数列的性质及其对数运算性质,考查推理能力与计算能力,属于中档题.7.2020年12月17日凌晨1时59分,嫦娥五号返回器携带月球样品成功着陆,这是我国首次实现了地外天体采样返回,标志着中国航天向前又迈出了一大步.月球距离地球约38万千米,有人说:在理想状态下,若将一张厚度约为0.1毫米的纸对折n 次其厚度就可以超过到达月球的距离,那么至少对折的次数n 是()lg 20.3≈lg3.80.6≈A .40B .41C .42D .43【正确答案】C设对折n 次时,纸的厚度为n a ,则{}n a 是以10.12a =⨯为首项,公比为2的等比数列,求出{}n a 的通项,解不等式460.12381010n n a =⨯≥⨯⨯即可求解【详解】设对折n 次时,纸的厚度为n a ,每次对折厚度变为原来的2倍,由题意知{}n a 是以10.12a =⨯为首项,公比为2的等比数列,所以10.1220.12n nn a -=⨯⨯=⨯,令460.12381010n n a =⨯≥⨯⨯,即122 3.810n ≥⨯,所以lg 2lg 3.812n ≥+,即lg 20.612n ≥+,解得:12.6420.3n ≥=,所以至少对折的次数n 是42,故选:C关键点点睛:本题解题的关键是根据题意抽象出等比数列的模型,求出数列的通项,转化为解不等式即可.8.圆22:890C x y x ++-=上有四个点到双曲线()2222:10,0x y E a b a b-=>>的一条渐近线的距离为2,则双曲线E 的离心率的取值范围是().A .41,3⎛⎫⎪⎝⎭B .4,3⎛⎫+∞ ⎪⎝⎭C .1,7⎛⎫ ⎪ ⎪⎝⎭D .7⎛⎫+∞ ⎪ ⎪⎝⎭【正确答案】C【分析】易得双曲线22221x y a b-=的一条渐近线为0bx ay -=和圆的圆心()4,0-,半径为5,根据圆C 上有四个点到0bx ay -=的距离为2,由圆心()4,0-到0bx ay -=的距离523d <-=求解.【详解】双曲线22221x y a b-=的一条渐近线为0bx ay -=,圆22:890C x y x ++-=,圆心()4,0-,半径为5,因为圆C 上有四个点到0bx ay -=的距离为2,所以圆心()4,0-到0bx ay -=的距离523d <-=3<,而222+=a b c ,所以22167c a <,即17e <<故选:C二、多选题9.下列结论中,正确的是()A .sincos33ππ'⎛⎫= ⎪⎝⎭B .若()21f x x =,则()2327f '=-C .()x xe e '=D .()41log ln 4x x '=【正确答案】BCD【分析】根据初等函数的导数逐一判断即可.【详解】A :因为sin32π=,所以'sin 03π⎛⎫= ⎪⎝⎭,因此本选项不正确;B :由()()231'2f x f x x x =⇒=-,所以()2'327f =-,因此本选项正确;C :因为()'x xe e =,所以本选项正确;D :因为()41log 'ln 4x x =,所以本选项正确,故选:BCD10.已知曲线22:0C Ax By Dx Ey F ++++=,下列说法正确的是()A .若A =B =1,则C 是圆B .若A =B =0,220D E +>,则C 是直线C .若A ≠0,B =0,则C 是抛物线D .若AB <0,D =E =0,0F ≠,则C 是双曲线【正确答案】BD【分析】对于A :当A =B =1时,则曲线22:0C x y Dx Ey F ++++=,分22+40D E F -=,22+4>0D E F -,22+40D E F -<,分别讨论可判断;对于B :当A =B =0,则:0C Dx Ey F ++=,且220D E +>,可判断;对于C :当A ≠0,B =0,则2:0C Ax Dx Ey F +++=,分0E =,0E ≠,讨论可判断;对于D :当AB <0,D =E =0,0F ≠,则22:0C Ax By F ++=由此可判断.【详解】已知曲线22:0C Ax By Dx Ey F ++++=,对于A :当A =B =1时,则曲线22:0C x y Dx Ey F ++++=,若22+40D E F -=,则C 是点,22D E ⎛⎫-- ⎪⎝⎭;若22+4>0D E F -,则C 是圆;若22+40D E F -<,则C 不存在,故A 不正确;对于B :当A =B =0,则:0C Dx Ey F ++=,且220D E +>,则C 是直线,故B 正确;对于C :当A ≠0,B =0,则2:0C Ax Dx Ey F +++=,若0E =,则2:0C Ax Dx F ++=表示一元二次方程,若0E ≠,则2:+0C Ax Dx Ex F ++=表示抛物线,故C 不正确,对于D :当AB <0,D =E =0,0F ≠,则22:0C Ax By F ++=表示双曲线,故D 正确,故选:BD.11.等差数列{}n a 是递增数列,公差为d ,前n 项和为n S ,满足753a a =,下列选项正确的是()A .d <0B .10a <C .当n =5时n S 最小D .0n S >时n 的最小值为8【正确答案】BD【分析】利用等差数列基本量计算以及等差数列前n 项和公式进行判断.【详解】A :因为数列递增,故0d >,故A 错;B :因为753a a =,根据基本量展开,即130a d +=,因为0d >,所以10a <,故B 正确;C :由130a d +=可知40a =,所以前3项均为负数,故n S 最小时,n 为3或4.故C 错;D :()17747702a a S a +===,()()188458402a a S a a +==+>,故当0n S >时,n 最小值为8.故选:BD12.已知双曲线()2222:10,0x y C a b a b-=>>的实轴长为12,焦距为20,左、右焦点分别为12,F F ,下列结论正确的是()A .双曲线C 的离心率为53B .双曲线C 的渐近线方程为34y x=±C .2F 到一条渐近线的距离是8D .过2F 的最短弦长为643【正确答案】AC【分析】依题意可知6a =,10c =,8b =,进而由双曲线的几何性质可依次做出判断.【详解】依题意可知6a =,10c =,所以8b =.离心率53c e a==,故A 正确;渐近线方程为43y x =±,故B 错误;2(10,0)F ,不妨设渐近线为430x y +=,则2F 到渐近线的距离8d =,故C 正确;过2F 的最短弦长为212a =,故D 错误.故选:AC.三、填空题13.已知F 为椭圆22143x y +=的左焦点,P 为椭圆上一点,则PF 的取值范围为_________.【正确答案】[1,3]【分析】设出点P 的坐标,由两点间的距离公式求出||PF ,进而根据点在椭圆上将式子化简,最后求出范围.【详解】由题意,()1,0F -,设(),P x y ,则2222313434x y y x +=⇒=-,所以1|||4|2PF x ==+,因为22x -≤≤,所以||PF 的范围是[]1,3.故答案为.[]1,314.函数()2ln f x x x =+在点(1,(1))f 处的切线方程为__________.【正确答案】320x y --=【分析】求出切点和斜率,代入点斜式即可求出结果.【详解】因为()2ln f x x x =+,所以()11=f ,()1'2f x x x=+,()'1213f =+=所以切线方程为13(1)y x -=-,即320x y --=故320x y --=本题考查的是导数的几何意义,考查了运算求解能力,属于一般题目.15.已知实数4,m ,9构成一个等比数列,则圆锥曲线221x y m+=的离心率为________.【正确答案】6【分析】根据等比中项的性质求得m ,由此对m 进行分类讨论,求得圆锥曲线221xy m+=的离心率.【详解】由于实数4,,9m 成等比数列,所以24936m =⨯=,所以6m =±.当6m =时,2216x y +=为椭圆,6c a c a ===.当6m =-时,2216x y +=-为双曲线,1,1a b c =====.所以锥曲线221x y m +=的离心率为6本小题主要考查等比中项的性质,考查椭圆和双曲线的离心率的求法,考查分类讨论的数学思想方法,属于基础题.16.已知双曲线2222:1,-=x y C a b且圆22(2):1E x y -+=的圆心是双曲线C 的右焦点.若圆E 与双曲线C 的渐近线相切,则双曲线C 的方程为____________.【正确答案】2213x y -=【分析】由已知可得双曲线右焦点坐标为(2,0),再由圆心到渐近线的距离为1,得到,a b 关系,结合2c =,即可求解.【详解】∵2224c a b =⇒+=.①取渐近线0bx ay -=,2213a b =⇒=.②由①②可得23a =,21b =,∴双曲线C 的方程为2213x y -=.故答案为:2213x y -=.本题以圆为背景,考查双曲线的性质,考查计算求解能力,属于基础题.四、解答题17.等差数列{}n a 满足1210a a +=,432a a -=.(1)求{}n a 的通项公式和前n 项和n S ;(2)设等比数列{}n b 满足23b a =,37b a =,求数列{}n b 的前n 项和n T .【正确答案】(1)22n a n =+;23n S n n=+(2)224n n T +=-【分析】(1)利用等差数列的通项公式和前n 项和公式求解即可;(2)根据条件算出14,2b q ==,再由等比数列的前n 项和公式求解即可.【详解】(1)设等差数列{}n a 的公差为d ,由1210a a +=,432a a -=可得,1110,2a a d d ++==,解得:14,2a d ==,可得:()42122n a n n =+-=+,()()12422322n n n a a n n S n n +++===+.(2)设等比数列{}n b 的公比为q ,由足23b a =,37b a =,可得:18b q ⋅=,2116b q ⋅=,解得:14,2b q ==,则数列{}n b 的前n 项和n T 为.()24122412n n n T +-==--18.已知圆22:8120C x y y +-+=,直线:20l ax y a ++=.(1)当直线l 与圆C 相交,求a 的取值范围;(2)当直线l 与圆C 相交于A 、B 两点,且AB =l 的方程.【正确答案】(1)3,4⎛⎫-∞- ⎪⎝⎭;(2)20x y -+=或7140x y -+=.【分析】(1)根据直线与圆的位置关系,利用几何法可得出关于实数a 的不等式,由此可解得实数a 的取值范围;(2)根据勾股定理求出圆心到直线l 的距离,再利用点到直线的距离公式可得出关于实数a 的值,即可求出直线l 的方程.【详解】(1)解:圆C 的标准方程为()2244x y +-=,圆心为()0,4C ,半径为2r =,因为直线l 与圆C 2<,解得34a <-.(2)解:因为AB =,则圆心C 到直线l 的距离为d由点到直线的距离公式可得d =2870a a ++=,解得1a =-或7-.所以,直线l 的方程为20x y -+=或7140x y -+=.19.已知抛物线C :24y x =,坐标原点为O ,焦点为F ,直线l :1y kx =+.(1)若l 与C 只有一个公共点,求k 的值;(2)过点F 作斜率为1的直线交抛物线C 于A 、B 两点,求OAB 的面积.【正确答案】(1)1或0;(2)【分析】(1)将直线方程与抛物线方程联立,由0k =或0∆=即可求解;(2)求出抛物线的焦点坐标,即可得直线方程,设11(,)A x y ,22(,)B x y ,联立直线与抛物线方程,根据121||||2OABSOF y y =⋅-及韦达定理即可求解;【详解】解:(1)依题意214y kx y x=+⎧⎨=⎩消去x 得2114y ky =+,即2440ky y -+=,①当0k =时,显然方程只有一个解,满足条件;②当0k ≠时,2(4)440k ∆=--⨯=,解得1k =;综上,当1k =或0k =时直线与抛物线只有一个交点;(2)抛物线C :24y x =,所以焦点(1,0)F ,所以直线方程为1y x =-,设11(,)A x y ,22(,)B x y ,由214y x y x=-⎧⎨=⎩,消去x 得2440y y --=,所以124y y +=,124y y =-,所以12||y y -==所以1211||||122OABSOF y y =⋅-=⨯⨯=20.已知数列{}n a 的前n 项和为n S ,239n n S a =-.(1)求数列{}n a 的通项公式;(2)若3log n n b a =,求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T 【正确答案】(1)()13N n n a n +*=∈(2)24n nT n =+【分析】(1)根据数列公式11,1,2n n n a n a S S n -=⎧=⎨-≥⎩,结合已知得出19a =与()132n n a n a -=≥,即可根据等比数列定义得出答案;(2)根据对数运算结合小问1通项得出1n b n =+,再得出数列11n n b b +⎧⎫⎨⎬⎩⎭的通项公式,即可利用裂项相消法得出答案.【详解】(1)由题意得,当1n =时,1112239S a a ==-,解得19a =,当2n ≥时,由239n n S a =-可得,11239n n S a --=-,两式相减并整理得:13n n a a -=,故数列{}n a 是首项为9,公比为3的等比数列,则数列{}n a 的通项公式为.()11933n n n a n -+*=⨯=∈N (2)由小问1知:133log log 31n n n b a n +===+,则()()111111212n n b b n n n n +==-++++,则12231111n n n T b b b b b b +=+++,111111233412n n ⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭,1122n =-+,24n n =+.21.已知椭圆2222:1(0)x y C a b a b +=>>过点31,2⎛⎫-- ⎪⎝⎭,1,24⎛⎫- ⎪⎝⎭(1)求C 的方程;(2)记C 的左顶点为M ,上顶点为N ,点A 是C 上在第四象限的点,AM ,AN 分别与y 轴,x 轴交于P ,Q 两点,试探究四边形MNQP 的面积是否为定值?若是,求出定值;若不是,请说明理由.【正确答案】(1)22143x y +=;(2)是定值,定值【分析】(1)利用代入法进行求解即可;(2)根据直线二点式方程,结合四边形的面积表达式,通过数学运算进行求解判断即可.【详解】解:(1)依题意,2222191,41451,416a b a b ⎧+=⎪⎪⎨⎪+=⎪⎩解得224,3a b ==,故C 的方程为22143x y +=.(2)是定值.理由如下:依题意,(2,0),M N -,设()00,A x y ,则22003412x y +=,所以直线0002:02y x AM y x -+=-+,令0020,2P y x y x ==+,则0000022||22P y y NP y x x +===++;直线000x AN x -=-,令0,Q y x =.则22Q MQ x =+=又易知NP MQ ⊥,所以四边形MNQP 的面积为1||||2S NP MQ =⋅012=00002x y y +-=所以四边形MNQP 的面积为关键点睛:根据四边形的面积表达式,通过熟练的数学运算求解是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

白城市2013—2014年第一学期期末考试高二文科数学(试卷二)本试卷分第Ⅰ卷和第Ⅱ卷两部分,满分为150分,答题时间为120 分钟。

考生作答时,选择题答案和非选择题答案写在答题纸上。

考试结束后,将答题纸交回。

注意事项:1、答题前,考生务必先将自己的姓名、准考证号、所在学校准确填写,条形码贴在制定位置上。

2、选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦擦干净后,再选涂其它答案标号。

非选择题答案字体工整、清楚。

第Ⅰ卷 (共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的。

) 1. 函数232+-=x x y 的定义域是( )A. []21,B. ),2[]1,(+∞⋃-∞C. )21(,D.),2()1,(+∞⋃-∞ 2.已知△ABC 中,a =4,b =43,∠A =30°,则∠B 等于( ) A .30° B .30°或150° C .60° D .60°或1203.已知等差数列}{n a 的公差为2,若3a 是1a 与4a 的等比中项, 则2a =( )A .4-B .6-C .8-D .10-4.椭圆1422=+y m x 的焦距为2,则m 的值等于( ) A.5B.5或8C.5或3D.205.如果命题(¬p)∨(¬q)是假命题,则在下列各结论中:①命题p ∧q 是真命题; ②命题p ∧q 是假命题;③命题p ∨q 是真命题;④命题p ∨q 是假命题. 正确的为( )A.①③B.②④C.②③D.①④装订线学校 班级 姓名 考号6.设12)(:23+++=mx x x x f p 在),(∞+∞-内单调递增;34:≥m q .则p 是q 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 7.抛物线y =14x 2的焦点到准线的距离是( )A.14B.12C.2D.48.在等比数列}{n a 中,已知81131=a a a ,则82a a 等于( ) A .16B .12C .6D .49.已知变量y x 、满足的约束条件为⎪⎩⎪⎨⎧-≥≤+≤11y y x x y ,且目标函数为y x z +=,则z 的最大值是( )A. 1B.2C. -1D. -210.若椭圆)0(12222>>=+b a b y a x 的离心率为32,则双曲线12222=-by a x 的渐近线方程为( )A .x y 21±= B .x y 2±= C .x y 4±= D .x y 41±= 11.若0,0>>b a ,且函数224)(23+--=bx ax x x f 在1=x 处有极值,则ab 的最大值等于( ) A.2B.3C.6D.912.△ABC 的内角C B A ,,的对边分别为c b a ,,,且c b a ,,成等比数列,a c 2=, 则B cos =( ) A.14 B.34 C.12 D.12-第Ⅱ卷(共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.命题“∀x ∈R ,x 2+1>0”的否定是__ _ 14.在△ABC 中,若AB =5,AC =5,且cos C =109,则BC =________. 15.在等比数列{}n a 中,34151211-=-==n n S a a ,,,则=q ______ 16.曲线12-=x xy 在点(1,1)处的切线方程为_______ _.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17. (本题满分10分)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列}{n b 中的543 b b b 、、,求数列}{n b 的通项公式.18. (本题满分12分)在ABC ∆中,设角C B A ,,的对边分别为c b a ,,,已知163cos ,3,8===A cm c cm b .(Ⅰ)求a 的值,并判定ABC ∆的形状; (Ⅱ)求ABC ∆的面积。

19.(本题满分12分)已知c x bx ax x f +-+=2)(23在2-=x 时有极大值6,在1=x 时有极小值.(1)求c b a ,,的值;(2)求)(x f 在区间[-3,3]上的最大值和最小值.20.(本题满分12分)已知21,F F 是椭圆)0(12222>>=+b a by a x 的两个焦点,O 为坐标原点,点)22,1(-P 在椭圆上,且1PF ·12F F =0,⊙O 是以F 1F 2为直径的圆,直线m kx y l +=:与⊙O 相切,并且与椭圆交于不同的两点A ,B .(1)求椭圆的标准方程;(2)当OA ·OB =23,求k 的值.21、(本题满分12分)已知数列}{n a 的前n 项和为n S ,且有n n S n 211212+=,数列}{n b 满足)(0212*++∈=+-N n b b b n n n ,且113=b ,前9项和为153;(1)求数列}{n a 、}{n b 的通项公式;(2)设)12)(112(3--=n n n b a c ,数列}{n c 的前n 项和为n T ,求使不等式57k T n >对一切*∈N n 都成立的最大正整数k 的值;22.(本题满分12分)已知函数2)(23-++=nx mx x x f 的图象过点(-1,-6),且函数x x f x g 6)()(+'=是偶函数.(1)求n m 、的值;(2)若0>a ,求函数)(x f y =在区间)1,1(+-a a 内的极值.白城市2013—2014年第一学期期末考试高二文科数学(试卷二)答案一、选择题二、填空题13. ∃x ∈R,x 2+1≤0 14. 4或5 15. -2 16. x +y -2=0三、解答题17.解: 设成等差数列的三个正数分别为d a a d a +-,,依题意,得15=+++-d a a d a解得5=a ...........3分所以}{n b 中的543 b b b 、、依次为7-d,10,18+d . 依题意,有(7-d )(18+d )=100, 解得d =2或d =-13(舍去).故{b n }的第3项为5,公比为2. ..........7分 由b 3=b 1·22,即5=b 1·22,解得b 1=54.所以{b n }是以54为首项,2为公比的等比数列,其通项公式为b n =54·2n -1=5·2n-3..............10分 18.解:(1)由余弦定理得6416338238 cos 222222=⨯⨯⨯-+=-+=Abc c b a .............3分 装 订线学校 班级 姓名 考号cm a 8 =∴ cm b a 8 ==又ABC ∆∴ 是等腰三角形 .............6分 (2)由316cosA =得 16247)163(1cos 1sin 22=-=-=A A ............9分 242473162473821sin 21cm A bc S ABC =⨯⨯⨯==∆ ..........12分 19.解:(1)223)(2-+='bx ax x f由题意得 ⎪⎩⎪⎨⎧=-+='=--=-'=+++-=-0223)1(02412)2(6448)2(b a f b a f c b a f ............4分解得 38,21,31===c b a .............6分 (2))1)(22)( , 3822131)(223-+=-+='+-+=x x x x x f x x x x f ( 令 12,0)(=-=='x x x f 或得 .............8分 当x 变化时,)( )(x f x f 、'的变化情况如下表:由上表可知,当3=x 时,)(x f 有最大值661;当1=x 时,)(x f 有最小值23 (12)分20.解:(1)依题意,可知PF 1⊥F 1F 2,∴c =1,依题意得⎪⎩⎪⎨⎧+==+222221211c b a ba 解得1, 222==b a∴椭圆的方程为1222=+y x ...............4分 (2)直线m kx y l +=:l :y =kx +m 与⊙O :122=+y x 相切, 则1,11||222+==+k m k m 即 ...............5分由⎪⎩⎪⎨⎧+==+m kx y y x 1222得0224)21222=-+++m kmx x k ( ...............7分∵直线l 与椭圆交于不同的两点A ,B . 设),(),,(2221y x B y x A ∴0002≠⇒>⇒>∆k k22212212122 , 214k m x x k km x x +-=⋅+-=+ ∴222222212122121211212)())((k k k k m m x x km x x k m kx m kx y y +-=+-=+++=++=,.....10分32211222121=++=+=⋅∴k k y y x x OB OA ,解得1±=k .............12分21.解:(1)当2≥n 时, 51+=-=-n S S a n n n适合上式时,,6111===S a n5 +=∴n a n ............2分 由0212=+-++n n n a a a 可知,}n b {是等差数列,设公差为d有题意得 ⎪⎩⎪⎨⎧=+=⨯+112153289911d b d b 解得 3,51==d a233)1(5 +=⨯-+=∴n n b n ............4分 (2)由(1)知:)12)(12(1)12)(112(3+-=--=n n b a c n n n 而)121121(21)12)(12(1)12)(112(3+--=+-=--=n n n n b a c n n n ..........5分所以:n n c c c T +++= 21)]121121()5131()311[(21+--++-+-=n n 12)1211(21+=+-=n n n ; .........7分 又因为0)12)(32(1123211>++=+-++=-+n n n n n n T T n n ;所以}{n T 是单调递增,故31)(1min ==T T n ; .........10分 由题意可知5731k>;得:19<k ,所以k 的最大正整数为18; (12)分22.解 (1)由函数)(x f 图象过点(-1,-6),得3-=-n m , ① 由2)(23-++=nx mx x x f 得n mx x x f ++='23)(2,则n x m x x x f x g +++=+'=)26(36)()(2 ..............2分 而)(x g 图象关于y 轴对称,所以-2m +62×3=0,所以m =-3,代入①得n =0. ..............4分 (2)由(1)得)2(36-3)(2-=='x x x x x f令200)(==='x x x f 或得f ′(x )=0得x =0或x =2. 当x 变化时,)( )(x f x f 、'的变化情况如下表:↘..............7分由此可得:当10<<a 时,)(x f 在)1,1(+-a a 内有极大值2-)0(=f ,无极小值; 当1=a 时,)(x f 在)1,1(+-a a 内无极值;当31<<a 时,)(x f 在)1,1(+-a a 内内有极小值6)2(-=f ,无极大值;当3≥a 时,)(x f 在)1,1(+-a a 内无极值. ...............10分综上得:当10<<a 时,)(x f 有极大值-2,无极小值; 当31<<a 时,)(x f 有极小值-6,无极大值;当1=a 或3≥a 时,)(x f 无极值. ................12分。

相关文档
最新文档