职高高二数学第一学期期末试卷
职高高二期末数学试题

高二期末数学试题一:选择题:本大题共有30个小题,请把选项填在第二卷的答题栏内1、过点(1,-3)且与向量n=(-4,3)垂直的直线方程是()A、4x-3y-13=0B、-4x+3y-13=0C、3x-4y-15=0D、-3x+4y-13=02、过点B(3,-2)且平行于直线x+3y+7=0的直线方程是()A、x+3y+3=0B、3x-y-11=0C、3x-2y+3=0D、3x-2y-11=03、直线3x+y+6=0的一个法向量是()A、(3,1)B、(3,-1)C、(-3,1)D、(-1,3)4、已知点A(-3,1)B、(1,-1)C、(x,0)是共线的三点,则x的值为()A、-3B、3C、1D、-15、直线3x-4y-12=0与两坐标轴围成的三角形的面积等于()A、(3,1)B、(3,-1)C、(-3,1)D、(-1,3)6、斜率的积等于-1是两条直线互相垂直的()条件A、充分B、必要C、充要D、既不充分也不必要7、点P(2,4)到直线3x-4y+m=0的距离是2,则m的值是()A、0B、20C、0或20D、-8或128、圆(x-1)2+y2=1的圆心和半径分别是()A、(1,0),1B、(-1,0),1C、(0,1),1D、(0,-1),19、圆x2+y2-6x=0的圆心到直线3x-4y+1=0的距离是()A、1B、2C、4D、510、若直线x-y+m=0与圆x2+y2=2相切,则m的值等于()A、1B、2C、-2D、±211、圆x2+y2-2x+4y+4=0上的点到直线3x-4y+9=0的最大距离是()A、3B、4C、5D、612、经过一条直线和一个点的平面()A、1个B、2个C、4个D、1个或无数个13、三条直线互相平行,则这三条直线确定平面的个数是()A、1个B、2个C、3个D、1个或3个14、直线在平面外,指的是()A、直线与平面没有公共点B、直线与平面不相交C、直线与平面至多有1个交点D、直线与平面垂直15、在一个平面内,和这个平面的斜线垂直的直线()A、只有一条B、有无数条C、不存在D、有相交的两条16、正方体ABCD-A1B1C1D1中,O1为A1C1的中点,则CO1垂直于A、ACB、B1D1C、A1DD、A1A17、下列命题中正确的个数是()⑴垂直于同一直线的两平面平行⑵平行于同一直线的两平面平行⑶垂直于同一平面的两直线平行⑷平行于同一平面的两直线平行A、1个B、2个C、3个D、4个18、在正方体ABCD-A1B1C1D1中,二面角D1-AB-D的大小是()A、300B、450C、600D、90019、3名同学报考5所高中,每人只报一所学校,有不同报法()A、8种B、15种C、35种D、53种20、一公园有四个门,有人从一门进从另一个门出,共有不同走法()A、4种B、8种C、12种D、16种21、从1,2,3,4,5,6 中,任取两个数字,恰有一个偶数的概率是()A、1B、0.8C、0.6D、0.222、袋中有3个红球,2个白球,取出两个球,恰好红白球各一个的概率是()A、0.4B、0.8C、0.6D、0.523、把一枚硬币抛掷两次,两次都正面向上的概率是()A、1/4B、1/3C、1/2D、124、抛掷两颗骰子,点数和为7的概率是()A、1/36B、1/6C、1/4D、1/225、三个人参加一次聚会,甲比乙先到的概率是()A、1/2B、1/3C、2/3D、126、有40件产品,编号从1至40,现在从中抽取4件检验,用系统抽样方法确定所抽的编号为( )A.5,10,15,20B.2,12,22,32C.2,14,26,38D.5,8,31,3627.分层抽样、系统抽样、简单随机抽样三种抽样中,为不放回抽样的有( )A.0个B.1个C.2个D.3个28.某学校有初一学生300人,初二200人,初三400人.现采用分层抽样的方法抽取容量为45的样本,那么各年级抽取的人数分别为( )A.15,5,25B.15,15,15C.10,5,30D.15,10,2029、某校有40个班,每班50人,每班派3人参加“学代会”,在这个问题中样本容量是A、40 B、50C、120D、15030..为了了解参加一次知识竞赛的1252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么总体中应随机剔除的个体数目是()A、2 B、4C、5D、6高二期末考试数学试题班级姓名成绩二:填空题(每小题3分,共12分)31、要检查某种产品的合格率,检查人员从1000件产品中任意抽取了50件,则这种抽样方法是____________.36、求过点A(0,1)和B(2,1),半径等于5的圆的方程(8分)32、以点C(-1,4)为圆心,且与直线3x-4y-1=0相切的圆的方程是33、已知两点A(-5,2)、B(-3,6),则线段AB的垂直平分线方程是34、正方体ABCD-A1B1C1D1中,C1C与AB1所成的角是三:解答题35、正方体ABCD-A1B1C1D1中,AB=1,求:(1)AA1与平面DBB I D I的距离(2)A1B与平面DBB1D1所成的角(8分)37、长方体中,AB=BC=2,CC1=23,求两异面直线AA1和BC1所成的角(6分)38、求点P(2,3)关于直线L:x+y-3=0的对称点Q的坐标(6分)。
高二职高期末数学试卷

考试时间:120分钟满分:100分一、选择题(每题5分,共50分)1. 下列各数中,属于无理数的是()A. √4B. √9C. √16D. √252. 若函数f(x) = 2x + 1,则f(3)的值为()A. 7B. 8C. 9D. 103. 下列图形中,属于等边三角形的是()A. 图形1B. 图形2C. 图形3D. 图形44. 已知等差数列{an}的前三项分别为1,3,5,则该数列的公差为()A. 1B. 2C. 3D. 45. 若直线y = kx + b与圆x² + y² = 1相切,则k和b的关系为()A. k² + b² = 1B. k² - b² = 1C. k² + b² = 0D. k² - b² = 06. 下列各函数中,为奇函数的是()A. y = x²B. y = x³C. y = x⁴D. y = x⁵7. 若复数z满足|z - 2i| = 3,则复数z在复平面上的轨迹是()A. 一条射线B. 一个圆C. 一条直线D. 一条抛物线8. 下列各数中,属于正数的是()A. -3B. 0C. 1D. -19. 若a,b,c是等差数列,且a + b + c = 12,a² + b² + c² = 42,则ab + bc + ca的值为()A. 18B. 24C. 30D. 3610. 若sinα = 1/2,cosα = √3/2,则tanα的值为()A. 1B. √3C. -1D. -√3二、填空题(每题5分,共50分)1. 函数f(x) = x² - 4x + 3的图像与x轴的交点坐标为__________。
2. 若等比数列{an}的首项为a₁,公比为q,则a₃ = _________。
3. 圆的标准方程为(x - 2)² + (y + 3)² = 16,圆心坐标为__________。
江苏省连云港市职业中学高二数学理上学期期末试卷含解析

江苏省连云港市职业中学高二数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知数列{a n}的通项公式为(n∈N*),若前n项和为9,则项数n为 ( )A.99B.100C.101D.102参考答案:A2. 已知实数,实数,则复数在复平面内对应的点位于第一象限的概率为()A.B.C.D.参考答案:A3. 阅读如图所示的程序框图,该程序输出的结果是()A.95 B.94 C.93 D.92参考答案:C 【考点】程序框图.【专题】计算题;操作型;算法和程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:当a=1时,不满足退出循环的条件,执行循环体后,S=9,a=2;当a=2时,不满足退出循环的条件,执行循环体后,S=92,a=3;当a=3时,不满足退出循环的条件,执行循环体后,S=93,a=4;当a=4时,满足退出循环的条件,故输出的结果为:93,故选:C【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.4. 有下列四个命题,①若点P在椭圆=1上,左焦点为F,则|PF|长的取值范围为[1,5];②方程x=表示双曲线的一部分;③过点(0,2)的直线l与抛物线y2=4x有且只有一个公共点,则这样的直线l共有3条;④函数f(x)=x3﹣2x2+1在(﹣1,2)上有最小值,也有最大值.其中真命题的个数是()A.1 B.2 C.3 D.4参考答案:C【考点】命题的真假判断与应用.【分析】根据椭圆的性质,可判断①;根据双曲线的标准方程,可判断②;根据直线与抛物线的位置关系,可判断③;分析函数的最值,可判断④.【解答】解:椭圆=1的a=3.c=2,若点P在椭圆=1上,左焦点为F,|PF|长的最小值为a﹣c=1,最大值为a+c=5,则|PF|长的取值范围为[1,5],故①正确;②方程x=可化为:x2﹣y2=1,x≥0,表示双曲线的一部分,故②正确;③过点(0,2)的直线l与抛物线y2=4x有且只有一个公共点,则直线与抛物线相切,或与对称轴平行,则这样的直线l共有3条,故③正确;④函数f(x)=x3﹣2x2+1的导数f′(x)=3x2﹣4x2,令f′(x)=0,则x=0,或x=,由f(﹣1)=﹣2,f()=; f(0)=1,f(2)=1,故在(﹣1,2)上无最小值,有最大值.故④错误;故选:C5. 某班举行联欢会,原定的五个节目已排出节目单,演出前又增加了两个节目,若将这两个节目插入原节目单中,则不同的插法总数为()A.42B.36C.30D.12参考答案:A6. 所在平面内点、,满足,,则点的轨迹一定经过的()A.重心B.垂心C.内心D.外心参考答案:A7. 用数学归纳法证明命题:1+2+3+…+n2=时,则从n=k到n=k+1左边需增加的项数为()A.2n﹣1 B.2n C.2n+1 D.n2﹣n+1参考答案:C【考点】数学归纳法.【分析】根据等式1+2+3+…+n2=时,考虑n=k和n=k+1时,等式左边的项,再把n=k+1时等式的左端减去n=k时等式的左端,即可得到答案.【解答】解:当n=k时,等式左端=1+2++k2,当n=k+1时,等式左端=1+2++k2+(k2+1)+(k2+2)+(k2+3)+…+(k+1)2,所以增加的项数为:(k+1)2﹣(k2+1)+1=2k+1即增加了2k+1项.故选:C8. 设复数z满足,则()A. B. C. D.参考答案:C【分析】根据复数的运算,化简求得,再由共轭复数的概念,即可求解,得到答案.【详解】由题意,复数满足,即,所以,故选C.【点睛】本题主要考查了复数的运算,以及共轭复数的概念,其中解答中熟记复数的运算法则,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.9. 已知函数有两个零点,则( ▲ )A.B.C.D.参考答案:d略10. 某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为36样本,则老年人、中年人、青年人分别各抽取的人数是()A.6,12,18 B.7,11,19 C.6,13,17 D.7,12,17参考答案:A【考点】分层抽样方法.【专题】概率与统计.【分析】利用分层抽样的性质求解.【解答】解:由题意知:老年人应抽取人数为:28×≈6,中年人应抽取人数为:54×≈12,青年人应抽取人数为:81×≈18.故选:A.【点评】本题考查样本中老年人、中年人、青年人分别各抽取的人数的求法,是基础题,解题时要认真审题,注意分层抽样性质的合理运用.二、填空题:本大题共7小题,每小题4分,共28分11. 某车间甲组有10名工人,其中有4名女工人;乙组有10名工人,其中有6名女工人,现采用分层抽样(层内采用不放回简单随机抽样)从甲、乙两组中共抽取4名工人进行技术考核.则抽取的4名工人中恰有两名男工人的概率为▲;参考答案:本题考查分层抽样,简单随机抽样,古典概率.中档题.计算得.略12. 一项“过关游戏”的规则规定:在第n关要抛一颗骰子n次,如果这n次抛掷所出现的点数之和大于,则算过关。
职教中心高二数学试卷期末

考试时间:120分钟满分:100分一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 下列函数中,在定义域内是增函数的是:A. \( f(x) = -x^2 + 2x \)B. \( f(x) = x^3 - 3x \)C. \( f(x) = \sqrt{x} \)D. \( f(x) = e^{-x} \)2. 若 \( a^2 + b^2 = 1 \),则 \( a + b \) 的取值范围是:A. \( (-\sqrt{2}, \sqrt{2}) \)B. \( (-1, 1) \)C. \( [-\sqrt{2}, \sqrt{2}] \)D. \( [1, \sqrt{2}] \)3. 已知 \( \sin A = \frac{3}{5} \),\( \cos B = \frac{4}{5} \),且 \( A \) 和 \( B \) 均为锐角,则 \( \sin(A + B) \) 的值为:A. \( \frac{7}{25} \)B. \( \frac{24}{25} \)C. \( \frac{17}{25} \)D. \( \frac{13}{25} \)4. 下列命题中,正确的是:A. 若 \( f(x) \) 是奇函数,则 \( f(x) \) 的图像关于原点对称B. 若 \( f(x) \) 是偶函数,则 \( f(x) \) 的图像关于 \( y \) 轴对称C. 若 \( f(x) \) 是周期函数,则 \( f(x) \) 的图像是一条封闭曲线D. 若 \( f(x) \) 是单调函数,则 \( f(x) \) 的图像是一条直线5. 若 \( \frac{1}{a} + \frac{1}{b} = 1 \),则 \( ab \) 的最大值为:A. 2B. 1C. \( \frac{1}{2} \)D. \( \frac{1}{4} \)6. 下列数列中,不是等比数列的是:A. \( 2, 4, 8, 16, \ldots \)B. \( 1, 3, 9, 27, \ldots \)C. \( 1, -1, 1, -1, \ldots \)D. \( 1, 2, 4, 8, \ldots \)7. 若 \( \triangle ABC \) 中,\( a = 3 \),\( b = 4 \),\( c = 5 \),则\( \sin A \) 的值为:A. \( \frac{3}{5} \)B. \( \frac{4}{5} \)C. \( \frac{5}{3} \)D. \( \frac{3}{4} \)8. 下列方程中,解集为空集的是:A. \( x^2 - 2x + 1 = 0 \)B. \( x^2 - 4 = 0 \)C. \( x^2 + 1 = 0 \)D. \( x^2 - 3x + 2 = 0 \)9. 若 \( \log_2 x + \log_4 x = 3 \),则 \( x \) 的值为:A. 8B. 16C. 32D. 6410. 下列函数中,是双曲函数的是:A. \( y = \sinh x \)B. \( y = \cosh x \)C. \( y = \tanh x \)D. \( y = \coth x \)二、填空题(本大题共5小题,每小题5分,共25分。
职业中学高二上期末试题

职业中学高二数学期末试题班级___________ 姓名__________一、 选择题:(每题3分,共42分)1、已知数列{}n a 的通项公式为35n a n =-,那么2n a =( )A .65n - B. 35n - C. 310n - D. 610n - 2、在等比数列{}n a 中,已知2582,6,a a a ===则( )A . 10 B. 12 C. 18 D.243、设n s 为数列{}n a 的前n 项和,且232n s n n =+,则数列{}n a 为() A .等差数列且公差为3 B. 等比数列C. 等差数列且公差为6D.既不是等差数列,又不是等比数列4、下列向量中,共线的是( )A 、)2,3(),3,2(-==b aB 、)6,4(),3,2(-==b aC 、)3,3(),3,1(==D 、)4,7(),7,4(==5、下列各对向量中互相垂直的是( )A 、)5,3(),2,4(-==B 、)3,4(),4,3(=-=C 、)5,2(),2,5(--==D 、)2,3(),3,2(-=-=6、设点A (21,a a )及点B (21,b b )则AB 的坐标是( )A 、(),2211b a b a --B 、(),2121b b a a --C 、(),2211a b a b --D 、(),1212b b a a --7、设)3,3(),1,3(-==则>=<,( )A .6πB .65πC .3πD .32π8、已知A (-1,2),B (1,-2)则下列各式中错误的是( )A .BO OA =B =C .()4,2-=D 10=9、下列直线中通过点M (1,3)的为( )A .012=+-y xB .012=+-y xC .012=--y xD .013=-+y x10、直线012=++y x 与012=-+y x 的位置关系的是( )A .垂直B .相交但不垂直C .平行D .重合11、以点A (1,3)B (-5,1)为端点的线段垂直平分线的方程为() A .083=+-y x B .062=--y xC .043=++y xD .0212=++y x12、直线x y 3-=且与圆4)4(22=+-y x 的位置关系是( )A .相切B .相离C .相交且过圆心D .相交不过圆心13、半径为3且与y 轴相切于原点的圆的方程为( )A .9)3(22=+-y xB .9)3(22=++y xC .9)3(22=++y xD .9)3(22=+-y x 或9)3(22=++y x14、如果两条不重合直线21,l l 的斜率都不存在,那么( )A .21l l ⊥B .21,l l 相交但不垂直C .21//l lD .无法判定二、填空题(每题2分,共18分)1、数列0,1,4,9,16,25……的一个通项公式为___________2、三个连续整数的和为45,则这三个整数为_____________3、=--BC AC AB _______________4、已知A (-3,6),B (3,-6)则=________5、设)5,6(),3,2(-=--=则•=____________6、直线062=+-y x 在x 轴y 轴上的截距分别是_______,________7、点(2,1)到直线0743=+-y x 的距离为_____________8、圆心在坐标原点,半径为5的圆的标准方程为_______________9、若点P (3,4)是线段AB 的中点,点A 的坐标为(-1,2)则点B 的坐标为___________三、解答题(共40分)1、在等比数列{}n a 中,已知75,21,43S q a 求-==(7分)2、已知向量)4,3(),1,2(-=-=且)()(m -+与垂直,求实数m (6分)3、求平行于直线0234=++y x ,并且和它的距离等于2的直线方程(6分)4、求圆心为(1,3),且与直线0-y-x相切的圆的方程(7分)743=5、求经过直线02=-x的交点,圆心为C(4,3)的圆1+y2=1x与直线0++y的方程(7分)6.已经点A(2,-3)、B(-4,7),求以线段AB为直径的圆的方程。
高二中职期末考试数学试题

松滋市言程中学2016--2017学年度第二学期期末考试高二中职数学试卷本试卷共3大题, 23小题, 考试时长120分钟, 满分150分。
1、一、选择题(本大题共12小题, 每小题5分共60分)2、 在每小题给出的4个备选项中, 只有一项是符合题目要求的, 将其选出来, 不选错选多选均不得分。
3、数列22221111,31415161----,,,的一个通项公式为( ) A ()2111n a n =+- B 1(2)n a n n =+ C 21(2)1n a n =+- D 211n a n =- 4、等差数列753222----,,,,的第1n +项为( ) A ()172n - B ()142n - C 42n - D 72n - 在等差数列中, 若( )A 12B 28C 24D 30等比数列中, 若( )A 2B 4C 8D 165、化简AB AC BD CD -+-=( )A 2ADB 2CBC 0D 06、下列说法中不正确的是( )A 零向量和任何向量平行B 平面上任意三点,,,A BC 一定有AB BC AC +=C 若, 则7、D 若, 当时若, 则( )A 00B 090C 0120D 0180设且, 则( )A 12B 12-C 12±D 8直线过两点, 则该直线的倾斜角是( )A 060B 090C 00D 0180 直线与直线互相垂直, 则等于( )A 1B 2-C 23-D 13-8、以点()()1,3,5,1A B -为端点的线段的垂直平分线的方程为( ) A 380x y -+= B 260x y --=C 340x y ++=D 1220x y ++=半径为3, 且与轴相切于原点的圆的方程为( )A ()2239x y -+=B ()2239x y ++=C ()2239x y ++=D ()()22223939x y x y -+=++=或二、填空题(本大题共6小题, 每小题5分共30分) 将答案填在相应题号的答题卡上。
职业高中高二上学期期末数学试题卷(含答案)

职业高中高二上学期期末考试数学试题卷一、选择题(每小题3分,共30分。
每小题中只有一个选项是正确的)1.已知B(-2,5),且()3,3=,则点A 的坐标为 ( ) A.(-5,2) B.(5,2-) C.(1,8) D.(1,2)2.已知||=5,()3,-=k ,则k 的值是 ( ) A.4- B.4 C. 4± D.2-3.已知BC AD 31=,则四边形是 ( )A.平行四边形B.矩形C.梯形D.对边不平行的四边形4.在边长为2的等边△ABC 中,∙= ( ) A.4 B.-4 C.2 D.2-5.已知+=0的 ( ) A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分又不必要条件6.直线0133=-+y x 的倾斜角是 ( )A.030B.0150C.060D.01207.直线0643=+-y x 与圆()()43222=-+-y x 的位置关系是 ( )A.过圆心 B.相切 C.相离 D.相交且不过圆心8.正方体棱长为a ,则其对角线长为 ( ) A.a 3 B.a 3 C.a 2 D.2a9.空间中垂直于同一直线的两条直线的位置关系是 ( ) A.平行 B.相交 C.异面 D.以上均有可能10. 如果二面角的一个面上的点到棱的距离是它到另一个面的距离的3倍,那么这个二面角的平面角θ应该满足 ( )A .030=θB . 060=θ C . 33sin =θ D . 33cos =θ 二、填空题(每小题3分,共24分)1.已知向量与反向==6,则= 2.在菱形ABCD 中,()()=-∙+ 3.已知=(2,1),=(3,m ),且∥,则实数m =4.若直线的斜率为2,且过点()2,1-,则直线的方程为5.已知点A ()5,2-和B ()5,6-,以AB 为直径的圆的标准方程为6. 直线4=+y ax 与014=-+ay x 互相垂直,则=a7.如果直线m ⊥n ,且m ⊥平面α,则n 与平面α的关系为 8.将正方形ABCD 沿AC 折成直二面角后=∠DAB 三、计算题(每小题6分,共24分)1.已知()m ,5=,()1,3-=,且-3与+互相垂直,求m 的值。
中等职业学校高二上学期期末数学测试卷及答案

中等职业学校公共基础课水平测试数学测试试卷(满分:100分;时间:90分钟)1.用列举法表示不等式+27x≤的所有正奇数的解集是{1,3}. ()2.设全集U={2,1,16,1,0}-,A={1,2,16}-,则={1,0}UAð. ()3.不等式||x≤1的解集为(1,1)-. ()4.区间(5,0]-可用集合表示为{|50}x x-<<. ()5.若53,x+<-则8x>-. ()6.已知()f x=(4)3f=. ()7.3()1f x x=-在R上是减函数. ()8.函数21()+1f xx=的定义域为R. ()9.2logy x=的图像过点(1,0). ( )10.把对数式ln3x=写成指数式是3x e=. ()11.22231log+log384=. ()12.函数xy=是指数函数. ()13.指数函数都是非奇非偶函数. ()14.=303π︒. ()15.30060︒︒与是终边相同的角. ()16.96-︒是第二象限角. ()17.角α的终边与单位圆的交点坐标为34(,)55-,则角α的余弦值为35-. ()18.已知1cos2α=-,且α是第二象限角,则tanα的值是. ()19.cos1080︒>. ()20.sin0︒的值等于1. ()21.当sinα时,=45α︒. ()22.sin360︒的值等于1. ()23.1是等比数列{3}n的项. ()24.数列1,2,3,4----与数列4,3,2,1----是相同的数列. ()25.数列1,1,1,1,1,,---的通项公式为1(1)nna+=-. ()26.等差数列1,2,3,4,的前7项和为28. ()27.等比数列1,3,9,27--,的前5项和为60. ()28.(0,2),(0,3)a b==-,a与b是共线向量. ()29.+0AB BD DA+=. ()30.直线3y x=+与直线23y x=+的交点坐标为(0,3). ()31.直线5y x=-+与直线+3=0x y-的位置关系为平行. ()32.直线30x y--=的斜截式方程是+3y x=-. ()一、判断题(每题1分,共40 分)学校______________________姓名:______________学籍号:_________________年级:______________专业:_____________…….…………………………….密…………………………………封…………………………………线……………………………………第1 页共8页第2 页共8页第4 页共8页33.斜率不存在为的直线的倾斜角为90︒. ()34.平行于同一条直线的两直线互相平行. ()35.垂直于同一个平面的两直线平行. ()36.圆柱的母线平行且相等,且等于圆柱的高. ()37.底面是正方形的四棱锥一定是正四棱锥. ()38.从1,2,3,45,这五个数中任取一个,得到奇数的概率是35. ()39.由12,3,4,可组成24个可以重复数字的四位数. ()40.抛掷两次骰子,则两次都出现偶数点的概率是14. ()1.设{}{}2,1,1,1,1,2A B=-=-,则A B=()A. {}1,1,2- B. {}1- C. {}1 D. {}22.指出条件p是结论q的什么条件?条件:20p x+=,结论:(2)(5)0q x x++=.()A. 必要条件B. 充分条件C. 充分且必要条件D. 不确定3.不等式10x->的解集为()A. []1,1- B. (1,1)- C. (,1)(1,)-∞-+∞ D. (,1][1,)-∞-+∞4.不等式(2)(3)0x x--<的解集为()A. (,2)(3,)-∞-+∞ B. (,2)(3,)-∞+∞ C. (2,3)- D. (2,3)5.已知()tanf x x=,则()4fπ的值为()A.3B.2C. 1D.6.函数()f x=的定义域为()A. (,1]-∞ B. (,0]-∞ C. (,0)(0,)-∞+∞ D. R7.函数()f x x=是().A.奇函数B. 偶函数C. 非奇非偶函数D. 既奇又偶函数8.函数()43f x x=+在R上是(.)A. 减函数B. 增函数C. 先增后减D. 先减后增9.函数1yx=的图像不过()A. 原点B. (1,1)C. (1,1)-- D. 无法确定10.如果21log log32a a>,则a的取值范围是()A. )1,0(B. )0,(-∞ C. ),0(+∞ D. ),1(+∞11.把指数式124x⎛⎫=⎪⎝⎭化为对数式为()A.1log24x= B.21log4x= C.14log2x= D.14log2x=12.函数3y x=的图像关于()对称. ()A. x轴B. y轴C. (0,0)D. 直线y x=13.把指数幂23a化成根式的形式是()A. aB.C.D.14.计算63a a÷=()A. 9aB. 6aC. 3aD. 2a二、单选题:(每题1分,共40分)专业:_____________………………………第3 页共8页第5 页 共8页 第6 页 共8页15.下列函数属于指数函数的是 ( )A. 0.3xy =- B. 0.3xy = C. 0.3y x = D. 22y x -=16.53π是 ( ) A. 第一象限角 B.第二象限角 C.第三象限角 D. 第四象限角17. 在0~360之间,与60-终边相同的角是 ( ) A. 660 B.320 C.390 D. 30018. 1的弧度数是 ( ) A. 1 B.2π C. 3πD. 180π19.函数2cos21y x =-+的最小值是 ( ) A. 2 B. 2- C. 1- D. 320. 已知角α的终边经过点(3,0),则角α的正弦值为 ( ) A.31B. 0C. 3D. 1 21. tan(315)-= ( )A. 3B. 1C. 1-D. 2122. 108的各三角函数值的符号为 ( ) A. sin 0α> B. 0cos >α C. 0tan <α D. 以上都不对23. sin 270等于 ( ) A. 0 B. 1- C. 1 D.1224. 数列 ,8,6,4,2的第8项是 ( ) A. 16 B. 17 C. 18 D. 1925. 24是数列 ,15,12,9,6,3的第几项? ( )A. 8B. 9C. 10D. 11 26. 等差数列2,6,10,14,的通项公式是 ( )A. 42n a n =+B. 46n a n =-C. 42n a n =-D. 24n a n =- 27. 等比数列1111,,,,392781的通项公式是 ( )A. n n a 31=B. n n a 31-=C. 21+-=n a nD. na n +-=3128. (1,2),(3,1),a b =-=-则a b ⋅= ( )A. 5B. 5-C. 1-D. 129. 下列等式错误的是 ( ) A. a b b a +=+ B. 00a a +=+ C. ()0a a +-= D. ()=0+-a a 30. 点(2,1)P -到直线230x y -=的距离为 ( )A.B.C.D. 31. 关于直线1x =与直线7y =说法正确的是 ( ) A. 垂直 B. 平行 C. 重合 D. 无法确定32. 直线1y =与直线1=x 的交点坐标为 ( ) A. )1,1(- B. )1,2( C. )2,1( D. (1,1)33. 若点(1,2)A 与点B 关于点(2,5)P 对称,则点B 的坐标为 ( ) A. (3,8) B. (1,8)- C. (1,1)- D. (0,1)-34. 圆224x y +=的圆心为 ( ) A. (1,0) B. (0,0) C. (0,1) D. (0,2)35. 方程2226100x y x y ++-+=表示 ( )第7 页 共8页 第8 页 共8页A.圆B. 不表示任何图形C. 点D. 无法确定 36. 平面的斜线与平面所成角的范围是( )A. (0,90)B. (0,90]C. (0,180)D. ]90,0[37.过两条平行直线中的一条,可做多少个平面平行于另一条直线? ( ) A. 一个 B. 两个 C. 三个 D. 无数个38. 某学校高一年级共有7个班,高二年级6个班,从中选一个班级担任学校星期一早晨升旗任务,共有( )种安排方法.A. 14B. 13C. 12D. 4239. 在随机试验中,对于不可能事件φ,则()P φ= ( ) A. 等于1 B. 等于0 C. 大于0 D. 大于等于0且小于等于1 40. 抛掷一颗骰子,“出现偶数点”的事件是 ( ) A. 必然事件 B. 不可能事件 C. 基本事件 D. 随机事件1.表示所有大于7的整数组成的集合是 ( ) A.{}Z x x x ∈>,7 B.{} ,10,9,8 C.{}Q x x x ∈>,7 D.{}7>x 2.已知集合{}{}60,52≤≤=<<-=x x B x x A ,则=⋂B A ( ) A.[0,5) B.(2,6]- C. {}05x x ≤< D. {}26x x -<≤ 3. 下列函数定义域为(),0-∞的是 ( ) A.y =B.2log ()y x =-C. y =D. y =4.下列对数值大于零的是 ( ) A.ln e B. ln 5 C. 1ln 2D .ln 0.6 5. 已知4sin 5∂=,则∂tan 的值可能是 ( ) A .35- B. 35 C.34 D.34-6.以下哪些数是数列{(1)n +- 的项 ( )A.1B.2C.3D.47.5a →=,且(,4)a k →=- ,则=k ( ) A.3 B. -3 C.4 D.-48.圆心在原点,的圆的标准方程错误的是 ( ) A .224x y += B.224x y -= C. 222x y += D. 222x y -= 9.两个平面可以把空间分成 ( )A.两部分B.三部分C.四部分D.五部分10.从甲、乙、丙、丁四人中挑选1人去参加职业技能大赛。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
职高高二第一学期数学期末考试试卷
班级 姓名 学号 得分
一、选择题(共12小题,每小题3分,共36分。
在每小题列出的四个选项中,只有一项是.....符合题目要求的.......
) 1、圆022
2=+++y x y x 的圆心坐标和半径分别是( ) .A 45),1,21( .B 4
5),1,21(-- .C 25),1,21( .D 25),1,21(-- 2、设线段AB 的中点为M,且A ( -4 , 0 ) , B (7 , -2 ) ,则点M 的坐标为 ( ).
A 、)1,211(-
B 、)1,23(-
C 、)1,211(-
D 、)1,2
3(- 3、设直线m ∥平面a ,直线n 在a 内,则 ( ).
A .m ∥n
B .m 与n 相交
C .m 与n 异面
D .m 与n 平行或异面
4、平行于x 轴,且过点(3,2)的直线方程为( ).
A.3=x
B.2=y
C.x y 23=
D.x y 3
2= 5、如果 a 、b 是异面直线,那么与 a 、b 都平行的平面( )
A .有且只有一个
B .有两个
C .有无数个
D .不一定存在
6、过空间一点,与已知直线平行的平面有( )
A .1个
B .2个
C .3个
D 无数个
7、半径为3且与y 轴相切于原点的圆的方程为( ).
A 、()93-22=+y x
B 、()9322
=++y x C 、()9322=++y x D 、()93-22=+y x 或()9322
=++y x 8、点(5,7)到直线01-34=-y x 的距离=( ).
A 、252
B 、58
C 、8
D 、5
2 9、都与第三个平面垂直的两个平面( )
A.互相垂直
B.互相平行
C.相交
D.如果相交,那么交线垂直于第三个平面
10、已知直线L 1:13+=x y 与直线L 2:01=++y ax ,若L 1⊥L 2,则a=( ).
A 、3
1- B 、31 C 、3- D 、3 11、空间中垂直于同一条直线的两条直线( )
A.互相平行
B.互相垂直
C.异面或相交
D.平行或异面或相交
12、直线x y 3-=与圆()44-22
=+y x 的位置关系是( ).
A 、相切
B 、相离
C 、相交且过圆心
D 、相交不过圆心
二、填空题(每空格3分,共18分。
把答案填在相应的横线上或按题目要求作答)
13、在一点条件下,可能出现不同的结果,这类现象叫做________.
14、如图所示,正方体1111D C B A ABCD -中,C B 1与1AD 所成的角的度数为 ;
15、过点A (1-,m ),B (m ,6)的直线与直线012-=+y x 垂直,则m=________________;
16、如果直线21//l l ,//2l 平面α,那么1l 与平面α的位置关系是________________;
17、直线062=+y -x 在x 轴与y 轴上的截距分别是________________;
18、如图所示,在长方体ABCD —A 1B 1C 1D 1,底面边长AB=3cm,BC=4m ,高BB 1=5m ,则对角线DB 1与平面ABCD 所成的角________________.
三、解答题(共46分,其中第19题6分,第20、21、22、23、24各8分,解答时请写出必要的文字说明、方程式和重要的演算步骤)
19、求圆心在点(0,2)且与直线012=+-y x 相切的圆的方程.
20、设点P 到直线064-3=+y x 的距离为6,且点P 在x 轴上,求点P 的坐标.
21、如图所示,在正方体AC 1中,求平面ABC 1D 1与平面ABCD 所成的二面角的大小。
D 1 C 1 A 1 A B 1 B C D 第18题B 1
C 1
D 1 A 1 A B C
D
22、已知过点A (1-,n ),B (n ,6)的直线与直线012=+y -x 平行,求n 的值.
23、一个圆锥的母线长是12cm ,母线和轴的夹角是︒30,求这个圆锥的侧面积和全面积。
24、直线13-=x y 且与直线02=++ay x 垂直,求实数a 的值.
25.学校一年级50各学生第二学期数学期末考试成绩中,有8人不及格,试求该校一年级学生第二学期数学期末考试的及格率。