中职数学高二期末试题

合集下载

高二职高期末数学试卷

高二职高期末数学试卷

考试时间:120分钟满分:100分一、选择题(每题5分,共50分)1. 下列各数中,属于无理数的是()A. √4B. √9C. √16D. √252. 若函数f(x) = 2x + 1,则f(3)的值为()A. 7B. 8C. 9D. 103. 下列图形中,属于等边三角形的是()A. 图形1B. 图形2C. 图形3D. 图形44. 已知等差数列{an}的前三项分别为1,3,5,则该数列的公差为()A. 1B. 2C. 3D. 45. 若直线y = kx + b与圆x² + y² = 1相切,则k和b的关系为()A. k² + b² = 1B. k² - b² = 1C. k² + b² = 0D. k² - b² = 06. 下列各函数中,为奇函数的是()A. y = x²B. y = x³C. y = x⁴D. y = x⁵7. 若复数z满足|z - 2i| = 3,则复数z在复平面上的轨迹是()A. 一条射线B. 一个圆C. 一条直线D. 一条抛物线8. 下列各数中,属于正数的是()A. -3B. 0C. 1D. -19. 若a,b,c是等差数列,且a + b + c = 12,a² + b² + c² = 42,则ab + bc + ca的值为()A. 18B. 24C. 30D. 3610. 若sinα = 1/2,cosα = √3/2,则tanα的值为()A. 1B. √3C. -1D. -√3二、填空题(每题5分,共50分)1. 函数f(x) = x² - 4x + 3的图像与x轴的交点坐标为__________。

2. 若等比数列{an}的首项为a₁,公比为q,则a₃ = _________。

3. 圆的标准方程为(x - 2)² + (y + 3)² = 16,圆心坐标为__________。

中职数学 2023-2024学年河南省洛阳市中等职业学校高二(下)期末数学试卷(选考)

中职数学 2023-2024学年河南省洛阳市中等职业学校高二(下)期末数学试卷(选考)

2023-2024学年河南省洛阳市中等职业学校高二(下)期末数学试卷(选考)一、选择题(每小题5分,共30分)二、填空题(每小题5分,共30分)A .(2,-2)B .(2,2)C .(2,0)D .(2,-4)1.(5分)已知a =(0,-2),b =(1,0)则a +2b =( )→→→→A .-4B .-3C .3D .42.(5分)等差数列{a n }的通项公式是a n =-3n +2,则公差d 是( )A .186B .192C .189D .1953.(5分)等比数列{a n }中,若a 2=6,a 3=12,则S 6等于( )A .x =B .x =-C .y =D .y =-4.(5分)抛物线y =2x 2的准线方程是( )18181818A .+=1B .+=1C .+=1D .+=15.(5分)对称中心在原点,焦点坐标为(-2,0),(2,0),椭圆上一点到两个焦点的距离的和等于6的椭圆的标准方程为( )x 29y 25x 25y 29x 236y 232x 232y 236A .y =±x B .y =±x C .y =±x D .y =±x 6.(5分)双曲线-=1的渐近线方程是( )x 29y 24233249947.(5分)已知向量a =(1,2),b =(3,k ),a ∥b ,则实数k = .→→→→三、计算题(每小题10分,共30分)四.证明题(10分)8.(5分)若a 是单位向量,则|a |= .→→9.(5分)双曲线-=1的离心率为 .x 216x 2910.(5分)抛物线x 2=8y 的焦点到准线的距离为 .11.(5分)已知a =(3,-4),则|a |= .→→12.(5分)抛物线16y +x 2=0的焦点坐标是 .13.(10分)求椭圆+=1的焦点、顶点坐标.x 28y 2514.(10分)已知a =(5,m ),b =(3,-1),且a -3b 与a +b 互相垂直,求m 的值.→→→→→→15.(10分)在等比数列{a n }中,若a 3-a 1=1,a 4-a 2=2,求首项a 1和公比q .16.(10分)如图,P -ABCD 的底面ABCD 是平行四边形,E 是PA 中点.求证:PC ∥平面BDE .。

中职数学高二期末试卷含答案

中职数学高二期末试卷含答案

绝密★启用前中职高二第二学期期末数学试卷一、 选择题(每小题3分,共45分) 1. sin15°cos75°+cos15°sin105°的值是( )。

A .0 B. 12 C.√32D.12.计算2cos2π8−1的结果是( )。

A .√32B.√22C.-√22D.13.tan(π4−α)=3,则tan α=( )。

A.-2 B.-12C. 12D.24.∆ABC 的边a,b,c 满足a 2=b 2+c 2+bc ,则A=( )。

A.30° B.60° C.135° D.120°5.函数y =√2sin2xcos2x 是( )。

A.周期为π2的奇函数 B. 周期为π2的偶函数C.周期为π4的奇函数 D. 周期为π4的偶函数6.在∆ABC 中,若a=2,b=√2,c=√3+1 ,则∆ABC 是( )。

A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定7.已知∆ABC 中,a=2,b=√2,A =π4,则∠B=( )。

A.π3B. π6C. π6或5π6D. π3或2π38.如果方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( )。

A. (0,+∞)B. (0,2) C .(1,+∞) D. (0,1) 9.抛物线x =−y 24的焦点坐标是( )。

A. (0,-1)B. (-1,0)C. (0,−116) D. (−116,0) 10.中心在原点,一个焦点的坐标(0,√13),一条渐近线方程式3x-2y=0的双曲线方程是( )。

A.x 22-y 23=1 B.9x 2−4y 2=36C.9y 2−4x 2=36或4y 2−9x 2=36D. 4y 2−9x 2=36 11.在(2x −1)5的展开式中,含x 3项的系数是( )。

A.4C 52B.−4C 52C. 8C 52D. −8C 5212.十个人站成一排,其中甲、乙、丙三人恰好站在一起的概率为( )。

浙江省中职卓越联盟2023-2024学年高二上学期1月期末数学试卷(含答案)

浙江省中职卓越联盟2023-2024学年高二上学期1月期末数学试卷(含答案)

浙江省中职卓越联盟2023学年第一学期2022级期末考试数学试卷本试卷共三大题.全卷共4页.满分100分,考试时间90分钟。

注意事项:1.所有试题均须在答题纸上作答,未在规定区域内答题,每错一个区域扣卷面总分1分.在试卷和草稿纸上作答无效。

2.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸和试卷上。

3.选择题每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

非选择题用黑色字迹的签字笔或钢笔将答案写在答题纸上。

4.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑。

一、单项选择题(本大题共18小题,每小题2分,共36分)在每小题列出的四个备选答案中,只有一个是符合题目要求的错涂、多涂或未涂均无分。

1.下列说法:(1)零向量是没有方向的向量;(2)单位向量的方向是任意的; (3)零向量与任意一个向量共线;(4)方向相同的向量叫平行向量 其中,正确说法的个数是( )A .0B .1C .2D .3 2.设x ∈R ,则“2x >22x >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 3.已知两点(3,5),(2,1)A B −−,则与向量AB 同向的单位向量为( ) A .6161⎛⎝B .6161⎛ ⎝C .6161D .61614.某班有男生23人,女生15人,从中选一名同学为数学课代表,则不同的选法的种数为( ) A .345 B .23 C .15 D .38 5.若()2*P 56n n =∈N ,则5C n =( )A .21B .50C .56D .126 6.cos104cos16sin104sin16︒︒−︒︒的值为( ) A .12 B .12− C .3 D .37.抛物线220y x =的焦点到其准线的距离为( ) A .20 B .10 C .5 D .528.如图所示.在ABC △中、6BD DC =,则AD =( )A .1677AB AC + B .6177AB AC + C .1566AB AC + D .5166AB AC + 9.将(1)(2)(4)(5)x x x x −+−−展开,则3x 的系数等于( ) A .10− B .8− C .8 D .1010.已知中心在坐标原点,离心率为53的双曲线的焦点在x 轴上,则它的渐近线方程为( ) A .43y x =± B .45y x = C .43y x =− D .34y x =±1l .已知tan 2θ=,则cos 2θ=( )A .35− B .817 C .817− D .817−或81712.在ABC △中,已知3223a b c bc =+,则A =( ) A .30︒ B .60︒ C .120︒ D .150︒13.美丽的新疆让不少旅游爱好者神往,某人计划去新疆旅游、在火焰山、喀纳斯村、卧龙满、观鱼台、阿克库勒湖、那仁草原、天山天池、赛里木湖、那拉提、葡萄沟这10个景点中选择4个作为目的地.已知天山天池必选,则不同的选法种数为( )A .210B .120C .84D .36 14.函数π3sin 6y x ⎛⎫=+⎪⎝⎭的单调递增区间为( ) A .ππ2π,2π,22k k k ⎛⎫−+∈ ⎪⎝⎭Z B .(2π,2ππ),k k k +∈Z C .2ππ2π,2π,33k k k ⎛⎫−+∈ ⎪⎝⎭Z D .π5π2π,2π,66k k k ⎛⎫−+∈ ⎪⎝⎭Z15.若地物线24y x =上的点M 到焦,点F 的距离为10,则M 到y 轴的距离为( ) A .10 B .9 C .8 D .716.二项式621x x ⎛⎫− ⎪⎝⎭的展开式中常数项为( )A .15−B .6−C .6D .1517.双曲线2212y x −=的离心率为( ) A 6 B .32 C .62D 318、已知圆22(2)9x y −+=与抛物线22(0)x py p =>的准线相切,则p =( ) A .1 B .2 C .6 D .8二、填空题(本大题共6小题,每小题3分,共18分)19.已知向量(4,3),(,1)a b x ==,且a b ∥,则实数x 的值为__________.20.现有甲、乙、丙、丁在内的6名同学在比赛后站成一排合影留念,若甲、乙二人必须相邻,且丙、丁二人不能相邻,则符合要求的排列方法共有__________种.(用数字作答)21.设点12,F F 为椭圆22159x y +=的两个焦点,P 为椭圆上一点,则12PF F △的周长为__________. 22.若4sin 5α=−,且α是第三象限角,则2sin 2cos αα−=_________. 23.已知双曲线过点(2,3),渐近线方程为3y =±,则该双曲线的标准方程为__________.24.已知函数21()sin cos cos 2f x x x x =−+,则()f x 的最小值为__________. 三、解答题(本大题共7小题,共46分)解答时应写出必要的文字说明、证明过程或演算步骤.25.(本题6分)已知nx x ⎛ ⎝二项展开式中,二项式系数之和是64,求:(1)n 的值;(3分) (2)含3x 的项.(3分)26.(本题6分)已知α为第一象限角,且π3sin 25α⎛⎫−= ⎪⎝⎭,求: (1)sin 2cos 2αα−的值;(3分) (2)πtan 4α⎛⎫−⎪⎝⎭的值.(3分) 27(本题6分)设a 为实数,已知双曲线223:1x y C a −=与椭圆22215x y a+=有相同的焦点12,F F .(1)求a 的值;(2分)(2)若点P 在双曲线C 上,且12PF PF ⊥,求12F PF △的面积.(4分) 28(本题6分)已知函数2()2sin cos 12sin f x x x x =+−,求: (1)()f x 的最小正周期;(3分)(2)()f x 的最小值以及取得最小值时x 的集合(3分)29.(本题7分)已知抛物线2:2(0)C y px p =−>过点(1,2)A −. (1)求抛物线的方程,并求其准线方程;(3分)(2)过该抛物线的焦点,作倾斜角为135︒的直线,交抛物线于A ,B 两点,求弦AB 的长度.(4分)30.(本题7分)设椭圆2222:1(0)x y M a b a b+=>>的离心率与双曲线22:1E x y −=的离心率互为倒数,且椭圆的右顶点是抛物线2:8C y x =的焦点. (1)求椭圆M 的方程;(3分)(2)已知点(1,0)N ,若点P 为椭圆M 上任意一点,求||PN 的最值.(4分)31.(本题8分)如图所示,已知村庄B 在村庄A 的东北方向,且村庄A ,B 之间的距离是4(31)千米,村庄C 在村庄A 的西偏北15︒方向,且村庄A ,C 之间的距离是8千米.现要在村庄B 的北偏东30︒方向建立一个农贸市场D ,使得农贸市场D 到村庄C 的距离是到村庄B 3D 到村庄B ,C 的距离之和.浙江省中职卓越联盟2023学年第一学期2022级期末考试数学答案一、单项选择题(本大题共18小题,每小题2分,共36分)1.B 【解析】由零向量的定义及性质知,其方向任意,且与任意向量共线,方向相同或相反的两个非零向量称为平行向量,故(1)(2)(4)错误,(3)正确.故选B . 2.A 【解析】幂函数2y x =,当2x =±222,22,x x x =∴>⇒>∴“2x >22x >”的充分不必要条件.故选A .3.A 【解析】因为点(3,5),(2,1)A B −−,所以(5,6)AB =−,所以与AB 同向的单位向量为||6161AB AB ⎛= ⎝.故选A . 4.D 【解析】由分类加法计数原理可知,共有231538+=种选法.故选D .5.C 【解析】2P (1)56n n n =−=,即2560n n −−=,解得8n =或7n =−(舍),则558C C 56n ==.故选C .6.B 【解析】()1cos104cos16sin104sin16cos 10416cos1202︒︒−︒︒=︒+︒=︒=−.故选B . 7.B 【解析】因为220p =,所以10p =,抛物线220y x =的焦点到其准线的距离为10.故选B . 8.A 【解析】661()777AD AB BD AB AC AB AC AB =+=+−=+.故选A . 9.B 【解析】(1)(2)(4)(5)x x x x −+−−展开式中含3x 的系数为12458−+−−=−.故选B .10.A 【解析】由已知可设双曲线的标准方程为22221(0,0)x y a b a b −=>>.由已知可得53c e a ==,所以53c a =,则2222169b c a a =−=,所以43b a =,所以双曲线的渐近线方程为43b y x x a =±=±.故选A . 11.A 【解析】因为tan 2θ=,所以22222222cos sin 1tan 3cos 2cos sin cos sin 1tan 5θθθθθθθθθ−−=−===−++.故选A . 12.D 【解析】由2223a b c bc =++,变形为2223b c a bc +−=,22232b c a bc +−∴=,3cos A ∴=而A 为三角形内角,150A ∴=︒.故选D .13.C 【解析】因为天山天池必选,所以从另外9个景点中选3个的选法有39C 84=种.故选C .14.C 【解析】由πππ2π2π,262k x k k −≤+≤+∈Z ,得2ππ2π,2π,33x k k k ⎛⎫∈−+∈ ⎪⎝⎭Z ,即函数的单调递增区间为2ππ2π,2π,33k k k ⎛⎫−+∈ ⎪⎝⎭Z .故选C . 15.B 【解析】由已知得抛物线的焦点(1,0)F ,准线方程1x =−,设点()00,M x y .由题意可知,||10MF =,00||1102pMF x x ∴=+=+=,09x ∴=,即M 到y 轴的距离为9.故选B . 16.D 【解析】因为二项式621x x ⎛⎫− ⎪⎝⎭的展开式通项为66316621C (1)C rr r r r rr T x x x −−+⎛⎫=−=− ⎪⎝⎭,令630r −=,则2r =,所以二项式621x x ⎛⎫− ⎪⎝⎭的展开式中常数项为226(1)C 15−=.故选D .17.D 【解析】由双曲线方程2212y x −=得1,2a b ==21123c b e a a ⎛⎫==+=+= ⎪⎝⎭D .18.C 【解析】圆22(2)9x y −+=与抛物线22(0)x py p =>的准线相切,32p∴−=,解得6p =±.又0,6p p >∴=.故选C .二、填空题(本大题共6小题,每小题3分,共18分)19.43【解析】因为向量(4,3),(,1)a b x ==,且a b ∥,所以4130x ⨯−=,即43x =.20.144【解析】根据题意,分2步进行分析:①将甲、乙看成一个整体,与甲、乙、丙、丁之外的两人全排列,有2323P P 12=种情况; ②排好后,有4个空位,在其中任选2个,安排丙、丁,有24P 12=种情况. 则有1212144⨯=种排法.21.10【解析】根据题意,12PF F △的周长为226410a c +=+=. 22.35(或填0.6)【解析】因为4sin 5α=−,且a 是第三象限角,所以23cos 1sin 5αα=−−=−,所以2224333sin 2cos 2sin cos cos 25555ααααα⎛⎫⎛⎫⎛⎫−=−=⨯−⨯−−−= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.23.2213y x −=【解析】渐近线方程为3,y x =±∴设双曲线的方程为22(0)3y x λλ−=≠,代入点(2,3),1λ∴=,∴双曲线的标准方程为2213y x −=. 24.22−因为2111cos 212π()sin cos cos sin 22222224x f x x x x x x +⎛⎫=−+=−+=− ⎪⎝⎭,所以当πsin 214x ⎛⎫−=− ⎪⎝⎭时,函数()f x 有最小值,最小值为22−. 三、解答题(本大题共7小题,共46分)25.解:1)由二项式定理可知,在nx x ⎛⎝展开式中,264n =, 2分所以6n =. 1分(2)由二项式定理可知,在6x x ⎛− ⎝展开式中,第1r +项为3662166C C (2)rr r r r r r T x xx −−+⎛=⋅⋅=⋅−⋅ ⎝, 令3632r −=,则2r =, 1分 所以6x x ⎛ ⎝展开式中含3x 的项为22336C (2)60x x ⋅−=. 2分26.解:(1)α为第一象限角,且3cos 5α=,24sin 1cos 5αα∴=−=, 1分 ()231sin 2cos 22sin cos 12sin 25ααααα∴−=−−=. 2分 (2)sin 4tan cos 3ααα==, 1分πtan tan πtan 114tan π41tan 71tan tan 4ααααα−−⎛⎫∴−=== ⎪+⎝⎭+. 2分 27.解:(1)根据题意,显然0a >,且双曲线C 的焦点在x 轴上, 故235a a +=−,即220a a +−=,即(2)(1)0a a +−=,解得2a =−或1a =,又因为0a >,所以1a =. 2分(2)由(1)可得双曲线C 的方程为2213y x −=, 如图所示,设其左、右焦点分别为12,F F ,故可得12(2,0),(2,0)F F −.根据双曲线的对称性,不妨设点P 在双曲线C 的左支上,设1PF x =.由双曲线定义可得212PF PF −=,即22PF x =+. 1分 又因为12F PF △为直角三角形,所以2221212PF PF F F +=,即22(2)16x x ++=,即22260,26x x x x +−=+=, 2分 故12F PF △的面积()211(2)2322S x x x x =+=+=. 1分 28.解:(1)2π()2sin cos 12sin sin 2cos 2224f x x x x x x x ⎛⎫=+−=+=+ ⎪⎝⎭, 1分∴函数()f x 的最小正周期2ππ2T ==. 2分 (2)π()22,24f x x A ⎛⎫=+= ⎪⎝⎭min ()2f x ∴=−, 2分此时ππ3π22π,π428x k x k +=−∴=−, ∴()f x 取得最小值时x 的集合为3ππ8x x k k ⎧⎫=−∈⎨⎬⎩⎭Z ,. 1分 29.解:(1)22(0)y px p =−>过点(1,2)A −,24p ∴=,即2p =, 1分 ∴抛物线的方程为24y x =−, 1分准线方程为1x =. 1分(2)由(1)知,抛物线的焦点为(1,0)F −,则直线:(1)AB y x =−+,设点()()1122,,,A x y B x y , 1分 由2(1),4y x y x=−+⎧⎨=−⎩得2610x x ++=, 由韦达定理可知,12126,1x x x x +=−=, 1分212||1AB k x ∴=+−()2121224x x x x =+−2364=−242=8=. 2分30.解:(1)由题意可知,双曲线22:1E x y −=2, 抛物线2:8C y x =的焦点为(2,0), 则椭圆M 的离心率222c e a ===, 1分 由2222,22a c e a a b c =⎧⎪⎪==⎨⎪=+⎪⎩,得2,2,2a c b === 故椭圆M 的方程为22142x y +=. 2分 (2)设点P 的坐标为()00,x y ,则()2200012242x y x +=−≤≤, ()()()222220000011||1122122PN x y x x x =−+=−+−=−+ 2分 因为022x −≤≤,所以当02x =时,||PN 取得最小值,即min ||1PN =;当02x =−时,||PN 取得最大值, 即max ||3PN =. 2分31.解:由题意可得434,8,120,3AB AC BAC CD BD =−=∠=︒=. 在ABC △中,由余弦定理可得2222cos BC AB AC AB AC BAC =+−⋅∠, 则222131)]8284(31)962BC ⎛⎫=−+−⨯⨯⨯−= ⎪⎝⎭, 2分 故46BC =即村庄B ,C 之间的距离为6 1分 在ABC △中,由正弦定理可得sin sin BC ACBAC ABC=∠∠, 则38sin 22sin 246AC BAC ABC BC ⨯∠∠===,从而45ABC ∠=︒, 故村庄C 在村庄B 的正西方向. 2分 因为农贸市场D 在村庄B 的北偏东30︒的方向,所以120CBD ∠=︒.在BCD △中,由余弦定理可得2222cos D BC BD BC BD CBD =+−⋅∠,因为3CD BD =,所以2223(46)46BD BD BD =++,解得46BD =122CD = 2分 故46122BD CD +=即农贸市场D 到村庄B ,C 的距离之和为(46122)+千米. 1分。

职教中心高二数学试卷期末

职教中心高二数学试卷期末

考试时间:120分钟满分:100分一、选择题(本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 下列函数中,在定义域内是增函数的是:A. \( f(x) = -x^2 + 2x \)B. \( f(x) = x^3 - 3x \)C. \( f(x) = \sqrt{x} \)D. \( f(x) = e^{-x} \)2. 若 \( a^2 + b^2 = 1 \),则 \( a + b \) 的取值范围是:A. \( (-\sqrt{2}, \sqrt{2}) \)B. \( (-1, 1) \)C. \( [-\sqrt{2}, \sqrt{2}] \)D. \( [1, \sqrt{2}] \)3. 已知 \( \sin A = \frac{3}{5} \),\( \cos B = \frac{4}{5} \),且 \( A \) 和 \( B \) 均为锐角,则 \( \sin(A + B) \) 的值为:A. \( \frac{7}{25} \)B. \( \frac{24}{25} \)C. \( \frac{17}{25} \)D. \( \frac{13}{25} \)4. 下列命题中,正确的是:A. 若 \( f(x) \) 是奇函数,则 \( f(x) \) 的图像关于原点对称B. 若 \( f(x) \) 是偶函数,则 \( f(x) \) 的图像关于 \( y \) 轴对称C. 若 \( f(x) \) 是周期函数,则 \( f(x) \) 的图像是一条封闭曲线D. 若 \( f(x) \) 是单调函数,则 \( f(x) \) 的图像是一条直线5. 若 \( \frac{1}{a} + \frac{1}{b} = 1 \),则 \( ab \) 的最大值为:A. 2B. 1C. \( \frac{1}{2} \)D. \( \frac{1}{4} \)6. 下列数列中,不是等比数列的是:A. \( 2, 4, 8, 16, \ldots \)B. \( 1, 3, 9, 27, \ldots \)C. \( 1, -1, 1, -1, \ldots \)D. \( 1, 2, 4, 8, \ldots \)7. 若 \( \triangle ABC \) 中,\( a = 3 \),\( b = 4 \),\( c = 5 \),则\( \sin A \) 的值为:A. \( \frac{3}{5} \)B. \( \frac{4}{5} \)C. \( \frac{5}{3} \)D. \( \frac{3}{4} \)8. 下列方程中,解集为空集的是:A. \( x^2 - 2x + 1 = 0 \)B. \( x^2 - 4 = 0 \)C. \( x^2 + 1 = 0 \)D. \( x^2 - 3x + 2 = 0 \)9. 若 \( \log_2 x + \log_4 x = 3 \),则 \( x \) 的值为:A. 8B. 16C. 32D. 6410. 下列函数中,是双曲函数的是:A. \( y = \sinh x \)B. \( y = \cosh x \)C. \( y = \tanh x \)D. \( y = \coth x \)二、填空题(本大题共5小题,每小题5分,共25分。

中职高二数学期末试卷

中职高二数学期末试卷

中职高二数学期末试卷职中高二级下学期数学期末模拟试卷一、选择题(将唯一正确答案代号填入表格对应题号内,每题3分,共计36分)1.点A (-3,-4)到x 轴的距离是:A.3B.4C.5D.7 2.点A (0,4),B (-2,0)的中点是:A.(-2,4)B.(-1,2)C.(-2,2)D.(0,2)3.已知直线l 的斜率是3,则直线l 的倾斜角是:A.060B.045C.030D.02404.已知直线l 的倾斜角β=090,则直线l 的斜率是:A.1B.-1C.不能确定D.不存在 5.直线1=x 与y 轴:A.平行B.相交C.重合D.不能确定 6.圆16)7()2(22=-+-y x 的圆心坐标是:A.(2,7)B.(-2,-7)C.(-2,7)D.(2,-7) 7.圆25)6()3(22=-+-y x 的半径长为:A.10B.25C.5D.58.一个棱锥的底面积是402cm ,高是12cm ,则它的体积是 3cm π。

A.130B.140C.150D.1609.一个球的半径增大一倍,那么它的体积增大了几倍。

A.1B.2C.7D.810.一个圆锥的母线是10cm ,侧面展开图是半圆,则圆锥的底面半径是:A.10 cmB.8cmC.6 cmD.5cm11.直线06=+-y x 与直线0=+y x 的交点坐标为A .(-3,3)B .(3,-3)C .(4,2)D .(3,3) 12.某中职学校二年级有12名女排运动员,要从中选出3人调查学习负担情况,调查应采用的抽样方法是:A.随机抽样法B.分层抽样法C.系统抽样法D.无法确定 二、填空题(将最合适的答案填写在对应的位置,每题3分,共15分)。

1.过点A (1,-1)且与x 轴平行的直线方程为 2.一个正方体的体积是83cm ,则它的表面积为 2cm 3.抛一枚硬币,出现一枚正面在上的概率是4.已知一直线的倾斜角是 45,则该直线的斜率是 5.过直线外一点作直线的垂线有 条三、判断(正确的记“√”,错误的记“╳”,每题2分,共10分)。

职业高中高二下学期期末数学试题卷3(含答案)

职业高中高二下学期期末数学试题卷3(含答案)

职业高中下学期期末考试高二《数学》试题一、选择题(每小题3分,共30分)1、已知,235sin )(παπα<<=13-,则sin()4πα-等于 ( )A.726 B. 7226 C. 7226- D. 726-2、若,则( )A.B.1C.-1D.23、函数函数的最大值是 ( )A. -2B.C.2D.14、到点与点距离之和为10的点的轨迹方程为( )A. B.C.D.5、顶点为原点,准线为的抛物线的标准方程为 ( )A. B. C. D.6、双曲线的渐近线方程为 ( ) A.B.C.D.7、将5个小球放入4个盒子里,不同的方法种数为 ( )A. B. C. D.8、1名教师与4名学生随机的站成一排,教师恰好站在中间位置的概率为( )A. B. C. D.9、事件A 在一次试验中发生的概率为,求在3次独立重复试验中,事件A 恰好发生2次的概率为 ( )A. B. C. D.10、在,A , ( )A.B.C.D.专业 班级 姓名 学籍号 考场 座号二、填空题(每题3分,共24分)11、sin19512、将函数的图像向平移个单位可以得到函数的图像。

13、在14、椭圆的焦点坐标为,长轴长为,短轴长为15、抛物线的的准线方程为16、双曲线的焦距为17、用0、1、2、3、4、这5个数字,可以组成没有重复数字的三位数的个数为18、在的展开式中,第4项的二项式系数为,第4项的系数为三、解答题(共46分)19、当x分别取何值时,函数取得最大值及最小值,最大值与最小值各是多少?(6分)20、已知在中.(8分)21、已知双曲线经过点P(3,6),且双曲线的一条渐近线方程为,求双曲线的标准方程。

(8分)22、求顶点在原点,对称抽为坐标轴,且经过点(-6,-4)的抛物线的标准方程。

(6分)23、停车场有12个车位,有8辆车停放,(6分)(1)共有多少种不同的停车方法?(2)若要求4个空车位要连在一起,那么有多少种不同的停车方法?24、从含有2件次品的5件产品中,(6分)(1)任取2件,求恰有1件次品的概率P1;(2)每次取1件,取后不放回,连续取2次,求恰好有1件次品的概率P2;(3)每次取1件,取后放回,连续取2次,求恰好有1件次品的概率P3. 25、指出正弦函数的图像经过如何变化可以得到正弦型函数的图像。

中专高二期末数学试卷

中专高二期末数学试卷

一、选择题(每题4分,共40分)1. 已知函数f(x) = 2x - 3,则f(-1)的值为:A. -5B. -1C. 1D. 52. 下列各数中,有理数是:A. √2B. πC. √-1D. 3.143. 下列命题中,正确的是:A. 对于任意实数a,a² ≥ 0B. 两个有理数的和一定是有理数C. 两个无理数的和一定是无理数D. 两个无理数的乘积一定是有理数4. 在△ABC中,∠A = 60°,∠B = 45°,则∠C的度数是:A. 75°B. 90°C. 105°D. 120°5. 已知数列{an}的通项公式为an = 3n - 2,则第10项a10的值为:A. 27B. 28C. 29D. 306. 下列各式中,正确的是:A. a² = |a|B. (a + b)² = a² + b²C. (a - b)² = a² - b²D. (a + b)(a - b) = a² - b²7. 已知函数f(x) = x² - 4x + 3,则f(x)的对称轴是:A. x = 1B. x = 2C. x = 3D. x = 48. 下列函数中,是反比例函数的是:A. y = x + 2B. y = 2xC. y = 2/xD. y = x²9. 已知等差数列{an}的首项a1 = 3,公差d = 2,则第5项a5的值为:A. 9B. 11C. 13D. 1510. 在直角坐标系中,点P(2, 3)关于x轴的对称点是:A. (2, -3)B. (-2, 3)C. (2, -3)D. (-2, -3)二、填空题(每题5分,共50分)11. 若a + b = 5,ab = 6,则a² + b² = _______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019学年第二学期仙居县职业中专高二数学期末试卷本试题卷共三大题。

全卷共四页。

满分 100 分,考试时间 90 分钟一、选择题(本大题共30小题,每小题2分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}1,2,4A = ,集合{}2,3,4,5B = ,则AB = ( )A. {}1,2,4B. {}2,3,4,5C.{}2,4D.{}1,2,3,4,5 2.集合{}13x x -<≤用区间可以表示为 ( ) A.[)1,3- B.(]1,3- C.[3,)+∞ D.(),1-∞-3.设集合{}0A x x =<,则下列关系不正确的是 ( ) A.2A -∈ B.0A ∉ C.{}2A -⊆ D.{}0A ⊆4.若a b >,则下列式子中不正确的是 ( ) A.22a b ->- B.22a b > C.a b -<- D.12a b +>+5.一元一次不等式组2121x x +>⎧⎨-<⎩的解集是 ( )A.{}3x x <B. {}13x x -<<C. {}1x x >- D. ∅6.二次函数[]21,2,2y x x =-∈- 的图像是 ( ) A.一条直线 B.一条线段 C.一条射线 D.两个点7.不等式12x -≤的解集为 ( ) A. {}1x x < B. {}3x x < C.{}13x x -≤≤ D.{}13x x x ≤-≥或 8.若()21f x x =+,则()0f 的值是 ( ) A.1- B.0 C.1 D.39. 一根弹簧不挂重物时长5cm ,挂上重物后,重物每增加 1kg ,弹簧就伸长0. 25cm ,若悬挂的物体为5kg ,则弹簧伸长后的总长为 ( ) A. 5.25cm B.6cm C.6.25cm D. 6.5cm 10.下列计算结果正确的是 ( ) A.122-=- B.2l g 10o = C.020= D.21log 12=11.105︒角的终边落在 ( )A.第一象限B.第二象限C.第三象限D.第四象限 12.3π弧度用角度制可以表示为 ( )A. 30︒B. 45︒C. 60︒D. 90︒13.已知数列{}n a 的通项公式23n a n =+,则5a = ( ) A.10 B.11 C.12 D.13 14.根据数列1,2,3,5,8,13, ,34,的特点,空格中应填的数是 ( )A.19B.20C.21D.2315.已知()()1,2,2,1a b =-=,则a b -的坐标为 ( ) A.()1,3 B.()1,1 C.()3,1- D. ()3,1- 16.AB BC CD ++ 等于 ( ) A.BD B.DA C.AC D.AD 17.角α的终边经过点()1,2,则tan α= ( )C.2D.1218.已知sin70a ︒=,则sin110︒的值为 ( )A. aB. a -C. 1a - 19.直线3x y +=与1x y -=的交点坐标是 ( ) A.()1,2 B.()2,1 C.()1,1D.()2,2 20.直线30x y +-=与直线2210x y ++=的位置关系是 ( ) A.垂直 B.平行 C.相交但不垂直 D.重合21.圆()()22124x y -+-=的圆心和半径分别为 ( ) A.()1,2,2 B. ()1,2,2-- C. ()1,2,4 D. ()1,2,4-- 22.直线l 的倾斜角为45︒,那么直线l 的斜率为 ( )A.1-B.1 D.323.直线1y =+的倾斜角为 ( )A.30︒B.45︒C.60︒D.120︒24.以下条件中,不能确定一个平面的是 ( ) A.不共线三点 B.两相交直线 C.两平行直线 D.两异面直线25.已知圆锥的底面半径为2cm ,高为3cm ,则此圆锥的体积为 ( ) A.32cm π B. 34cm π C. 36cm π D.312cm π26.把指数式2a b =写成对数式,下列式子正确的是 ( ) A.2log a b = B.2log b a = C.log 2a b = D.log 2a b =27. 书架上,上层有8本不同的《读者》杂志,中层有10本不同的数学书,下层有9本不同的英语书,某人从中各取一本的选择有 ( ) A. 27种 B. 360种 C. 720 种 D. 170种28.扔一枚骰子,朝上面所显示的数字大于2且小于5的概率是 ( ) A.16 B.13 C.12 D.2329.若指数函数()xf x a =满足(3)8f =,则(1)f 的值为 ( ) A.0.5 B.1 C.2 D.4 30.已知2211()1x x f x xx +<⎧=⎨≥⎩ ,则()2f -的值为 ( )A.5B.4C.3D.3- 二、填空题(本大题共7小题,每小题2分,共14分) 31._________2lg 225lg )13(67sin 1lg 23=++-++πA32.y =33.若22log log a b >,则a b 与的大小关系是 34.已知等差数列{}13,1,7n a a a ==,则8a =35.经过点()1,1-且与直线30x y +-=平行的直线方程是 36.不等式()()130x x +-≤的解集用区间表示为 37.一个正方体的棱长为2cm ,则这个正方体的表面积为三、解答题(共26分,解答应写出文字说明及演算步骤)38.博纳影城的巨幕厅有20 排座位,第一排有16个座位,然后每排增加 2 个座位,问: (1)巨幕厅的最后一排有多少个座位?(3分)(2)现有698名中职学生去剧场观影,问该巨幕厅的座位是否够坐? (3分)39.已知直线l 的方程为10x y +-=.(1)求过点(1,2)且与直线l 垂直的直线方程.(3分) (2)求以点(1,2)为圆心,且与直线l 相切的圆的方程.(3分)()()()分)的值域()函数(分)的最小正周期()函数求(已知函数32 4113sin cos 3cos sin .402x f x f x x x x f +-+=π41.某农场拟建两间矩形的饲养室,饲养室的一面使用现有墙,中间用一道墙隔开(如图所示).已知计划中的建筑材料可建围墙的总长为50 m ,设两间饲养室合计长x(m),总占地面积为y(m 2).(1)求y 关于x 的函数关系式和自变量x 的取值范围;(3分)(2)利用图象判断:若要使两间饲养室占地总面积达到200 m 2,则各道墙的长度为多少m ?占地总面积有可能达到210 m 2吗?(4分)2019学年第二学期仙居县职业中专高二数学期末试卷答题卷本试题卷共三大题。

全卷共四页。

满分100分,考试时间90分钟。

一、单项选择题(本大题共30小题,每小题2分,共60分)请将答案填入表格内二、填空题(本大题共7小题,每小题2分,共14分)31. 32. 33. 34. 35. 36. 37. 三、简答题(本大题共4小题,共26分)38.博纳影城的巨幕厅有20 排座位,第一排有16个座位,然后每排增加 2 个座位,问: (1)巨幕厅的最后一排有多少个座位?(3分)(2)现有698名中职学生去剧场观影,问该巨幕厅的座位是否够坐? (3分)39.已知直线l 的方程为10x y +-=.(1)求过点(1,2)且与直线l 垂直的直线方程.(3分) (2)求以点(1,2)为圆心,且与直线l 相切的圆的方程.(3分)()()()分)的值域()函数(分)的最小正周期()函数求(已知函数32 4113sin cos 3cos sin .402x f x f x x x x f +-+=π41.某农场拟建两间矩形的饲养室,饲养室的一面使用现有墙,中间用一道墙隔开(如图所示).已知计划中的建筑材料可建围墙的总长为50 m ,设两间饲养室合计长x(m),总占地面积为y(m 2).(1)求y 关于x 的函数关系式和自变量x 的取值范围;(3分)(2)利用图象判断:若要使两间饲养室占地总面积达到200 m 2,则各道墙的长度为多少m ?占地总面积有可能达到210 m 2吗?(4分)2019学年第二学期仙居县职业中专高二数学期末试卷参考答案本试题卷共三大题。

全卷共四页。

满分100分,考试时间90分钟。

一、单项选择题(本大题共30小题,每小题2分,共60分)请将答案填入表格内二、填空题(本大题共7小题,每小题2分,共14分) 31.21732. {}2≥x x 33. 0>>b a 34. 22 35. 0=+y x 36. []3,1- 37. 24cm 2 三、简答题(本大题共4小题,共26分) 38. 解:(1)n =20,d =2,a 1=16a 20=a 1+19d =16+38=54……………………(3分) (2)S n =(a 1+a 20 )n2…………………………(1分)=(16+54)2x20=700……………………(1分)700>698答:巨幕厅的最后一排有54个座位;该巨幕厅的座位可以坐下698名学生。

(1分)39. 解:(1)设与一直直线垂直的直线为x −y +c =0…………………………(1分) 过点(1,2),∴1−2+c =0,c =1………………………………(1分) ∴与x +y −1=0垂直的直线为x −y +1=0……………………(1分) (2)d =√1+1=√2……………………………………………………(2分)∴圆的方程为(x −1)2+(y −2)2=2………………………………(1分)1)3sin(2x 123232cos 232sin 21 13sin 23)1cos 2(23sinxcosx) (221 13sin cos 3cos sin )(1.4022++=+-++=+-+-+=+-+=πππx x x x x x x f )解:(ππ==∴22T()()()[]20:211011)2(max min ,的值域为x f x f x f ∴=+==+-=。

相关文档
最新文档