中职高二数学期末试卷
中职数学 2022-2023学年湖北省襄阳市中职学校高二(下)期末数学试卷

2022-2023学年湖北省襄阳市中职学校高二(下)期末数学试卷一、是非选择题。
本大题共10小题,每小题3分,共30分。
对每小题的命题做出选择,对的选A,错的选B。
二、单项选择题。
(本大题共8小题,每小题5分,共40分)1.(3分)已知集合A ={x |x -2≥0},B ={3,4,5},则B ⊆A . (判断对错)2.(3分)若f (x )是定义在R 上的奇函数,则f (-1)+f (1)=0. (判断对错)3.(3分)过点A (0,1),B (0,2)的直线的倾斜角为0°. (判断对错)4.(3分)向量OA −OB =BA . (判断对错)→→→5.(3分)已知a ,b ,c ∈R ,若a >b ,则ac 2>bc 2. (判断对错)6.(3分)若等差数列{a n }的通项公式为a n =1-2n ,则该数列的公差为2. (判断对错)7.(3分)直线2x -y =0与4x -2y +1=0互相平行. (判断对错)8.(3分)若2x =3,2y =6,则2x −y =12. (判断对错)9.(3分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sinA >sinB ,则a >b . (判断对错)10.(3分)已知抛物线y 2=2px (p >0)的焦点为F ,若P 为该抛物线上一点,则以P 为圆心,|PF |为半径的圆与y 轴相切. (判断对错)A .{1,2}B .{2}C .{2,4}D .{4}11.(5分)如图,集合U ={1,2,3,4},A ={1,3},B ={1,2},则图中阴影部分所表示的集合是( )A .(13,12)B .(−∞,13)∪(12,+∞)C .(−∞,13)D .(12,+∞)12.(5分)不等式6x 2-5x +1<0的解集为( )A .28B .40C .56D .6613.(5分)已知数列{a n }的前项和为S n ,若a n -1-a n =2,a 5=6,则S 7=( )A .π2B .πC .2πD .4π14.(5分)函数f (x )=2cos 2x -1的最小正周期为( )A .x 24+y 22=1B .x 212+y 24=1C .x 216+y 24=1D .x 216+y 212=115.(5分)已知椭圆的焦点在x 轴上,离心率为32,且椭圆上任意一点到两个焦点的之间的距离为8,则该椭圆的标准方程为( )√A .(2,+∞)B .[2,+∞)C .(-∞,1)D .(-∞,1]16.(5分)若“1≤x ≤2”是“x ≥m ”的充分不必要条件,则实数m 的范围是( )A .70B .80C .100D .12017.(5分)某工厂对200名员工的体重情况进行了统计,其频率分布直方图如图所示,则体重在[60,65)(单位:kg )内的人数为( )18.(5分)函数y =a −1x 与函数y =log a x (a >0且a ≠1)在同一坐标系下的图像可以是( )三、填空题。
高二职高期末数学试卷

考试时间:120分钟满分:100分一、选择题(每题5分,共50分)1. 下列各数中,属于无理数的是()A. √4B. √9C. √16D. √252. 若函数f(x) = 2x + 1,则f(3)的值为()A. 7B. 8C. 9D. 103. 下列图形中,属于等边三角形的是()A. 图形1B. 图形2C. 图形3D. 图形44. 已知等差数列{an}的前三项分别为1,3,5,则该数列的公差为()A. 1B. 2C. 3D. 45. 若直线y = kx + b与圆x² + y² = 1相切,则k和b的关系为()A. k² + b² = 1B. k² - b² = 1C. k² + b² = 0D. k² - b² = 06. 下列各函数中,为奇函数的是()A. y = x²B. y = x³C. y = x⁴D. y = x⁵7. 若复数z满足|z - 2i| = 3,则复数z在复平面上的轨迹是()A. 一条射线B. 一个圆C. 一条直线D. 一条抛物线8. 下列各数中,属于正数的是()A. -3B. 0C. 1D. -19. 若a,b,c是等差数列,且a + b + c = 12,a² + b² + c² = 42,则ab + bc + ca的值为()A. 18B. 24C. 30D. 3610. 若sinα = 1/2,cosα = √3/2,则tanα的值为()A. 1B. √3C. -1D. -√3二、填空题(每题5分,共50分)1. 函数f(x) = x² - 4x + 3的图像与x轴的交点坐标为__________。
2. 若等比数列{an}的首项为a₁,公比为q,则a₃ = _________。
3. 圆的标准方程为(x - 2)² + (y + 3)² = 16,圆心坐标为__________。
中职数学 2023-2024学年河南省洛阳市中等职业学校高二(下)期末数学试卷(选考)

2023-2024学年河南省洛阳市中等职业学校高二(下)期末数学试卷(选考)一、选择题(每小题5分,共30分)二、填空题(每小题5分,共30分)A .(2,-2)B .(2,2)C .(2,0)D .(2,-4)1.(5分)已知a =(0,-2),b =(1,0)则a +2b =( )→→→→A .-4B .-3C .3D .42.(5分)等差数列{a n }的通项公式是a n =-3n +2,则公差d 是( )A .186B .192C .189D .1953.(5分)等比数列{a n }中,若a 2=6,a 3=12,则S 6等于( )A .x =B .x =-C .y =D .y =-4.(5分)抛物线y =2x 2的准线方程是( )18181818A .+=1B .+=1C .+=1D .+=15.(5分)对称中心在原点,焦点坐标为(-2,0),(2,0),椭圆上一点到两个焦点的距离的和等于6的椭圆的标准方程为( )x 29y 25x 25y 29x 236y 232x 232y 236A .y =±x B .y =±x C .y =±x D .y =±x 6.(5分)双曲线-=1的渐近线方程是( )x 29y 24233249947.(5分)已知向量a =(1,2),b =(3,k ),a ∥b ,则实数k = .→→→→三、计算题(每小题10分,共30分)四.证明题(10分)8.(5分)若a 是单位向量,则|a |= .→→9.(5分)双曲线-=1的离心率为 .x 216x 2910.(5分)抛物线x 2=8y 的焦点到准线的距离为 .11.(5分)已知a =(3,-4),则|a |= .→→12.(5分)抛物线16y +x 2=0的焦点坐标是 .13.(10分)求椭圆+=1的焦点、顶点坐标.x 28y 2514.(10分)已知a =(5,m ),b =(3,-1),且a -3b 与a +b 互相垂直,求m 的值.→→→→→→15.(10分)在等比数列{a n }中,若a 3-a 1=1,a 4-a 2=2,求首项a 1和公比q .16.(10分)如图,P -ABCD 的底面ABCD 是平行四边形,E 是PA 中点.求证:PC ∥平面BDE .。
中职数学高二期末试卷含答案

绝密★启用前中职高二第二学期期末数学试卷一、 选择题(每小题3分,共45分) 1. sin15°cos75°+cos15°sin105°的值是( )。
A .0 B. 12 C.√32D.12.计算2cos2π8−1的结果是( )。
A .√32B.√22C.-√22D.13.tan(π4−α)=3,则tan α=( )。
A.-2 B.-12C. 12D.24.∆ABC 的边a,b,c 满足a 2=b 2+c 2+bc ,则A=( )。
A.30° B.60° C.135° D.120°5.函数y =√2sin2xcos2x 是( )。
A.周期为π2的奇函数 B. 周期为π2的偶函数C.周期为π4的奇函数 D. 周期为π4的偶函数6.在∆ABC 中,若a=2,b=√2,c=√3+1 ,则∆ABC 是( )。
A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定7.已知∆ABC 中,a=2,b=√2,A =π4,则∠B=( )。
A.π3B. π6C. π6或5π6D. π3或2π38.如果方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( )。
A. (0,+∞)B. (0,2) C .(1,+∞) D. (0,1) 9.抛物线x =−y 24的焦点坐标是( )。
A. (0,-1)B. (-1,0)C. (0,−116) D. (−116,0) 10.中心在原点,一个焦点的坐标(0,√13),一条渐近线方程式3x-2y=0的双曲线方程是( )。
A.x 22-y 23=1 B.9x 2−4y 2=36C.9y 2−4x 2=36或4y 2−9x 2=36D. 4y 2−9x 2=36 11.在(2x −1)5的展开式中,含x 3项的系数是( )。
A.4C 52B.−4C 52C. 8C 52D. −8C 5212.十个人站成一排,其中甲、乙、丙三人恰好站在一起的概率为( )。
浙江省中职卓越联盟2023-2024学年高二上学期1月期末数学试卷(含答案)

浙江省中职卓越联盟2023学年第一学期2022级期末考试数学试卷本试卷共三大题.全卷共4页.满分100分,考试时间90分钟。
注意事项:1.所有试题均须在答题纸上作答,未在规定区域内答题,每错一个区域扣卷面总分1分.在试卷和草稿纸上作答无效。
2.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸和试卷上。
3.选择题每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
非选择题用黑色字迹的签字笔或钢笔将答案写在答题纸上。
4.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑。
一、单项选择题(本大题共18小题,每小题2分,共36分)在每小题列出的四个备选答案中,只有一个是符合题目要求的错涂、多涂或未涂均无分。
1.下列说法:(1)零向量是没有方向的向量;(2)单位向量的方向是任意的; (3)零向量与任意一个向量共线;(4)方向相同的向量叫平行向量 其中,正确说法的个数是( )A .0B .1C .2D .3 2.设x ∈R ,则“2x >22x >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 3.已知两点(3,5),(2,1)A B −−,则与向量AB 同向的单位向量为( ) A .6161⎛⎝B .6161⎛ ⎝C .6161D .61614.某班有男生23人,女生15人,从中选一名同学为数学课代表,则不同的选法的种数为( ) A .345 B .23 C .15 D .38 5.若()2*P 56n n =∈N ,则5C n =( )A .21B .50C .56D .126 6.cos104cos16sin104sin16︒︒−︒︒的值为( ) A .12 B .12− C .3 D .37.抛物线220y x =的焦点到其准线的距离为( ) A .20 B .10 C .5 D .528.如图所示.在ABC △中、6BD DC =,则AD =( )A .1677AB AC + B .6177AB AC + C .1566AB AC + D .5166AB AC + 9.将(1)(2)(4)(5)x x x x −+−−展开,则3x 的系数等于( ) A .10− B .8− C .8 D .1010.已知中心在坐标原点,离心率为53的双曲线的焦点在x 轴上,则它的渐近线方程为( ) A .43y x =± B .45y x = C .43y x =− D .34y x =±1l .已知tan 2θ=,则cos 2θ=( )A .35− B .817 C .817− D .817−或81712.在ABC △中,已知3223a b c bc =+,则A =( ) A .30︒ B .60︒ C .120︒ D .150︒13.美丽的新疆让不少旅游爱好者神往,某人计划去新疆旅游、在火焰山、喀纳斯村、卧龙满、观鱼台、阿克库勒湖、那仁草原、天山天池、赛里木湖、那拉提、葡萄沟这10个景点中选择4个作为目的地.已知天山天池必选,则不同的选法种数为( )A .210B .120C .84D .36 14.函数π3sin 6y x ⎛⎫=+⎪⎝⎭的单调递增区间为( ) A .ππ2π,2π,22k k k ⎛⎫−+∈ ⎪⎝⎭Z B .(2π,2ππ),k k k +∈Z C .2ππ2π,2π,33k k k ⎛⎫−+∈ ⎪⎝⎭Z D .π5π2π,2π,66k k k ⎛⎫−+∈ ⎪⎝⎭Z15.若地物线24y x =上的点M 到焦,点F 的距离为10,则M 到y 轴的距离为( ) A .10 B .9 C .8 D .716.二项式621x x ⎛⎫− ⎪⎝⎭的展开式中常数项为( )A .15−B .6−C .6D .1517.双曲线2212y x −=的离心率为( ) A 6 B .32 C .62D 318、已知圆22(2)9x y −+=与抛物线22(0)x py p =>的准线相切,则p =( ) A .1 B .2 C .6 D .8二、填空题(本大题共6小题,每小题3分,共18分)19.已知向量(4,3),(,1)a b x ==,且a b ∥,则实数x 的值为__________.20.现有甲、乙、丙、丁在内的6名同学在比赛后站成一排合影留念,若甲、乙二人必须相邻,且丙、丁二人不能相邻,则符合要求的排列方法共有__________种.(用数字作答)21.设点12,F F 为椭圆22159x y +=的两个焦点,P 为椭圆上一点,则12PF F △的周长为__________. 22.若4sin 5α=−,且α是第三象限角,则2sin 2cos αα−=_________. 23.已知双曲线过点(2,3),渐近线方程为3y =±,则该双曲线的标准方程为__________.24.已知函数21()sin cos cos 2f x x x x =−+,则()f x 的最小值为__________. 三、解答题(本大题共7小题,共46分)解答时应写出必要的文字说明、证明过程或演算步骤.25.(本题6分)已知nx x ⎛ ⎝二项展开式中,二项式系数之和是64,求:(1)n 的值;(3分) (2)含3x 的项.(3分)26.(本题6分)已知α为第一象限角,且π3sin 25α⎛⎫−= ⎪⎝⎭,求: (1)sin 2cos 2αα−的值;(3分) (2)πtan 4α⎛⎫−⎪⎝⎭的值.(3分) 27(本题6分)设a 为实数,已知双曲线223:1x y C a −=与椭圆22215x y a+=有相同的焦点12,F F .(1)求a 的值;(2分)(2)若点P 在双曲线C 上,且12PF PF ⊥,求12F PF △的面积.(4分) 28(本题6分)已知函数2()2sin cos 12sin f x x x x =+−,求: (1)()f x 的最小正周期;(3分)(2)()f x 的最小值以及取得最小值时x 的集合(3分)29.(本题7分)已知抛物线2:2(0)C y px p =−>过点(1,2)A −. (1)求抛物线的方程,并求其准线方程;(3分)(2)过该抛物线的焦点,作倾斜角为135︒的直线,交抛物线于A ,B 两点,求弦AB 的长度.(4分)30.(本题7分)设椭圆2222:1(0)x y M a b a b+=>>的离心率与双曲线22:1E x y −=的离心率互为倒数,且椭圆的右顶点是抛物线2:8C y x =的焦点. (1)求椭圆M 的方程;(3分)(2)已知点(1,0)N ,若点P 为椭圆M 上任意一点,求||PN 的最值.(4分)31.(本题8分)如图所示,已知村庄B 在村庄A 的东北方向,且村庄A ,B 之间的距离是4(31)千米,村庄C 在村庄A 的西偏北15︒方向,且村庄A ,C 之间的距离是8千米.现要在村庄B 的北偏东30︒方向建立一个农贸市场D ,使得农贸市场D 到村庄C 的距离是到村庄B 3D 到村庄B ,C 的距离之和.浙江省中职卓越联盟2023学年第一学期2022级期末考试数学答案一、单项选择题(本大题共18小题,每小题2分,共36分)1.B 【解析】由零向量的定义及性质知,其方向任意,且与任意向量共线,方向相同或相反的两个非零向量称为平行向量,故(1)(2)(4)错误,(3)正确.故选B . 2.A 【解析】幂函数2y x =,当2x =±222,22,x x x =∴>⇒>∴“2x >22x >”的充分不必要条件.故选A .3.A 【解析】因为点(3,5),(2,1)A B −−,所以(5,6)AB =−,所以与AB 同向的单位向量为||6161AB AB ⎛= ⎝.故选A . 4.D 【解析】由分类加法计数原理可知,共有231538+=种选法.故选D .5.C 【解析】2P (1)56n n n =−=,即2560n n −−=,解得8n =或7n =−(舍),则558C C 56n ==.故选C .6.B 【解析】()1cos104cos16sin104sin16cos 10416cos1202︒︒−︒︒=︒+︒=︒=−.故选B . 7.B 【解析】因为220p =,所以10p =,抛物线220y x =的焦点到其准线的距离为10.故选B . 8.A 【解析】661()777AD AB BD AB AC AB AC AB =+=+−=+.故选A . 9.B 【解析】(1)(2)(4)(5)x x x x −+−−展开式中含3x 的系数为12458−+−−=−.故选B .10.A 【解析】由已知可设双曲线的标准方程为22221(0,0)x y a b a b −=>>.由已知可得53c e a ==,所以53c a =,则2222169b c a a =−=,所以43b a =,所以双曲线的渐近线方程为43b y x x a =±=±.故选A . 11.A 【解析】因为tan 2θ=,所以22222222cos sin 1tan 3cos 2cos sin cos sin 1tan 5θθθθθθθθθ−−=−===−++.故选A . 12.D 【解析】由2223a b c bc =++,变形为2223b c a bc +−=,22232b c a bc +−∴=,3cos A ∴=而A 为三角形内角,150A ∴=︒.故选D .13.C 【解析】因为天山天池必选,所以从另外9个景点中选3个的选法有39C 84=种.故选C .14.C 【解析】由πππ2π2π,262k x k k −≤+≤+∈Z ,得2ππ2π,2π,33x k k k ⎛⎫∈−+∈ ⎪⎝⎭Z ,即函数的单调递增区间为2ππ2π,2π,33k k k ⎛⎫−+∈ ⎪⎝⎭Z .故选C . 15.B 【解析】由已知得抛物线的焦点(1,0)F ,准线方程1x =−,设点()00,M x y .由题意可知,||10MF =,00||1102pMF x x ∴=+=+=,09x ∴=,即M 到y 轴的距离为9.故选B . 16.D 【解析】因为二项式621x x ⎛⎫− ⎪⎝⎭的展开式通项为66316621C (1)C rr r r r rr T x x x −−+⎛⎫=−=− ⎪⎝⎭,令630r −=,则2r =,所以二项式621x x ⎛⎫− ⎪⎝⎭的展开式中常数项为226(1)C 15−=.故选D .17.D 【解析】由双曲线方程2212y x −=得1,2a b ==21123c b e a a ⎛⎫==+=+= ⎪⎝⎭D .18.C 【解析】圆22(2)9x y −+=与抛物线22(0)x py p =>的准线相切,32p∴−=,解得6p =±.又0,6p p >∴=.故选C .二、填空题(本大题共6小题,每小题3分,共18分)19.43【解析】因为向量(4,3),(,1)a b x ==,且a b ∥,所以4130x ⨯−=,即43x =.20.144【解析】根据题意,分2步进行分析:①将甲、乙看成一个整体,与甲、乙、丙、丁之外的两人全排列,有2323P P 12=种情况; ②排好后,有4个空位,在其中任选2个,安排丙、丁,有24P 12=种情况. 则有1212144⨯=种排法.21.10【解析】根据题意,12PF F △的周长为226410a c +=+=. 22.35(或填0.6)【解析】因为4sin 5α=−,且a 是第三象限角,所以23cos 1sin 5αα=−−=−,所以2224333sin 2cos 2sin cos cos 25555ααααα⎛⎫⎛⎫⎛⎫−=−=⨯−⨯−−−= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.23.2213y x −=【解析】渐近线方程为3,y x =±∴设双曲线的方程为22(0)3y x λλ−=≠,代入点(2,3),1λ∴=,∴双曲线的标准方程为2213y x −=. 24.22−因为2111cos 212π()sin cos cos sin 22222224x f x x x x x x +⎛⎫=−+=−+=− ⎪⎝⎭,所以当πsin 214x ⎛⎫−=− ⎪⎝⎭时,函数()f x 有最小值,最小值为22−. 三、解答题(本大题共7小题,共46分)25.解:1)由二项式定理可知,在nx x ⎛⎝展开式中,264n =, 2分所以6n =. 1分(2)由二项式定理可知,在6x x ⎛− ⎝展开式中,第1r +项为3662166C C (2)rr r r r r r T x xx −−+⎛=⋅⋅=⋅−⋅ ⎝, 令3632r −=,则2r =, 1分 所以6x x ⎛ ⎝展开式中含3x 的项为22336C (2)60x x ⋅−=. 2分26.解:(1)α为第一象限角,且3cos 5α=,24sin 1cos 5αα∴=−=, 1分 ()231sin 2cos 22sin cos 12sin 25ααααα∴−=−−=. 2分 (2)sin 4tan cos 3ααα==, 1分πtan tan πtan 114tan π41tan 71tan tan 4ααααα−−⎛⎫∴−=== ⎪+⎝⎭+. 2分 27.解:(1)根据题意,显然0a >,且双曲线C 的焦点在x 轴上, 故235a a +=−,即220a a +−=,即(2)(1)0a a +−=,解得2a =−或1a =,又因为0a >,所以1a =. 2分(2)由(1)可得双曲线C 的方程为2213y x −=, 如图所示,设其左、右焦点分别为12,F F ,故可得12(2,0),(2,0)F F −.根据双曲线的对称性,不妨设点P 在双曲线C 的左支上,设1PF x =.由双曲线定义可得212PF PF −=,即22PF x =+. 1分 又因为12F PF △为直角三角形,所以2221212PF PF F F +=,即22(2)16x x ++=,即22260,26x x x x +−=+=, 2分 故12F PF △的面积()211(2)2322S x x x x =+=+=. 1分 28.解:(1)2π()2sin cos 12sin sin 2cos 2224f x x x x x x x ⎛⎫=+−=+=+ ⎪⎝⎭, 1分∴函数()f x 的最小正周期2ππ2T ==. 2分 (2)π()22,24f x x A ⎛⎫=+= ⎪⎝⎭min ()2f x ∴=−, 2分此时ππ3π22π,π428x k x k +=−∴=−, ∴()f x 取得最小值时x 的集合为3ππ8x x k k ⎧⎫=−∈⎨⎬⎩⎭Z ,. 1分 29.解:(1)22(0)y px p =−>过点(1,2)A −,24p ∴=,即2p =, 1分 ∴抛物线的方程为24y x =−, 1分准线方程为1x =. 1分(2)由(1)知,抛物线的焦点为(1,0)F −,则直线:(1)AB y x =−+,设点()()1122,,,A x y B x y , 1分 由2(1),4y x y x=−+⎧⎨=−⎩得2610x x ++=, 由韦达定理可知,12126,1x x x x +=−=, 1分212||1AB k x ∴=+−()2121224x x x x =+−2364=−242=8=. 2分30.解:(1)由题意可知,双曲线22:1E x y −=2, 抛物线2:8C y x =的焦点为(2,0), 则椭圆M 的离心率222c e a ===, 1分 由2222,22a c e a a b c =⎧⎪⎪==⎨⎪=+⎪⎩,得2,2,2a c b === 故椭圆M 的方程为22142x y +=. 2分 (2)设点P 的坐标为()00,x y ,则()2200012242x y x +=−≤≤, ()()()222220000011||1122122PN x y x x x =−+=−+−=−+ 2分 因为022x −≤≤,所以当02x =时,||PN 取得最小值,即min ||1PN =;当02x =−时,||PN 取得最大值, 即max ||3PN =. 2分31.解:由题意可得434,8,120,3AB AC BAC CD BD =−=∠=︒=. 在ABC △中,由余弦定理可得2222cos BC AB AC AB AC BAC =+−⋅∠, 则222131)]8284(31)962BC ⎛⎫=−+−⨯⨯⨯−= ⎪⎝⎭, 2分 故46BC =即村庄B ,C 之间的距离为6 1分 在ABC △中,由正弦定理可得sin sin BC ACBAC ABC=∠∠, 则38sin 22sin 246AC BAC ABC BC ⨯∠∠===,从而45ABC ∠=︒, 故村庄C 在村庄B 的正西方向. 2分 因为农贸市场D 在村庄B 的北偏东30︒的方向,所以120CBD ∠=︒.在BCD △中,由余弦定理可得2222cos D BC BD BC BD CBD =+−⋅∠,因为3CD BD =,所以2223(46)46BD BD BD =++,解得46BD =122CD = 2分 故46122BD CD +=即农贸市场D 到村庄B ,C 的距离之和为(46122)+千米. 1分。
职教中心高二数学试卷期末

考试时间:120分钟满分:100分一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 下列函数中,在定义域内是增函数的是:A. \( f(x) = -x^2 + 2x \)B. \( f(x) = x^3 - 3x \)C. \( f(x) = \sqrt{x} \)D. \( f(x) = e^{-x} \)2. 若 \( a^2 + b^2 = 1 \),则 \( a + b \) 的取值范围是:A. \( (-\sqrt{2}, \sqrt{2}) \)B. \( (-1, 1) \)C. \( [-\sqrt{2}, \sqrt{2}] \)D. \( [1, \sqrt{2}] \)3. 已知 \( \sin A = \frac{3}{5} \),\( \cos B = \frac{4}{5} \),且 \( A \) 和 \( B \) 均为锐角,则 \( \sin(A + B) \) 的值为:A. \( \frac{7}{25} \)B. \( \frac{24}{25} \)C. \( \frac{17}{25} \)D. \( \frac{13}{25} \)4. 下列命题中,正确的是:A. 若 \( f(x) \) 是奇函数,则 \( f(x) \) 的图像关于原点对称B. 若 \( f(x) \) 是偶函数,则 \( f(x) \) 的图像关于 \( y \) 轴对称C. 若 \( f(x) \) 是周期函数,则 \( f(x) \) 的图像是一条封闭曲线D. 若 \( f(x) \) 是单调函数,则 \( f(x) \) 的图像是一条直线5. 若 \( \frac{1}{a} + \frac{1}{b} = 1 \),则 \( ab \) 的最大值为:A. 2B. 1C. \( \frac{1}{2} \)D. \( \frac{1}{4} \)6. 下列数列中,不是等比数列的是:A. \( 2, 4, 8, 16, \ldots \)B. \( 1, 3, 9, 27, \ldots \)C. \( 1, -1, 1, -1, \ldots \)D. \( 1, 2, 4, 8, \ldots \)7. 若 \( \triangle ABC \) 中,\( a = 3 \),\( b = 4 \),\( c = 5 \),则\( \sin A \) 的值为:A. \( \frac{3}{5} \)B. \( \frac{4}{5} \)C. \( \frac{5}{3} \)D. \( \frac{3}{4} \)8. 下列方程中,解集为空集的是:A. \( x^2 - 2x + 1 = 0 \)B. \( x^2 - 4 = 0 \)C. \( x^2 + 1 = 0 \)D. \( x^2 - 3x + 2 = 0 \)9. 若 \( \log_2 x + \log_4 x = 3 \),则 \( x \) 的值为:A. 8B. 16C. 32D. 6410. 下列函数中,是双曲函数的是:A. \( y = \sinh x \)B. \( y = \cosh x \)C. \( y = \tanh x \)D. \( y = \coth x \)二、填空题(本大题共5小题,每小题5分,共25分。
中职数学练习题 2023-2024学年浙江省杭州市汽车高级技工学校高二(上)期末数学试卷(A卷)

2023-2024学年浙江省杭州市汽车高级技工学校高二(上)期末数学试卷(A卷)一、单项选择题:本题共10小题,每小题5分,共计50分。
A .1B .-1C .±1D .01.(5分)已知集合A ={0,a ,a 2},且1∈A ,则a =( )A .{1,3,5}B .{1,2,3,4,5}C .{7,9}D .{2,4}2.(5分)设U =Z ,A ={1,3,5,7,9},B ={1,2,3,4,5},则图中阴影部分表示的集合是( )A .7B .8C .15D .163.(5分)已知集合A ={x |-3≤x -1<1},B ={-3,-2,-1,0,1,2},若C ⊆(A ∩B ),则满足条件的集合C 的个数是( )A .{a |-1≤a ≤1}B .{a |-1<a <1}C .{a |-1<a <1且a ≠0}D .{a |-1≤a ≤1且a ≠0}4.(5分)已知集合P ={x |-1≤x ≤1},M ={-a ,a }.若P ∪M =P ,则实数a 的取值范围是( )A .{x |x <1}B .{x |-2<x <1}C .{x |-3<x <-1}D .{x |x >3}5.(5分)设集合A ={x |x 2-5x +6>0},B ={x |x -1<0},则A ∩B =( )A .{m |3<m <4}B .{m |-4<m <3}C .{m |m <3或m >4}D .{m |m <-4或m >-3}6.(5分)已知x >0,y >0,且32x +6y =2。
若4x +y >7m -m 2恒成立,则m 的取值范围为( )A .72B .4C .92D .57.(5分)已知a >0,b >0,a +b =2,则y =1a +4b 的最小值是( )二、填空题:本题共5小题,每小题4分,共计20分。
职业高中高二下学期期末数学试题卷3(含答案)

职业高中下学期期末考试高二《数学》试题一、选择题(每小题3分,共30分)1、已知,235sin )(παπα<<=13-,则sin()4πα-等于 ( )A.726 B. 7226 C. 7226- D. 726-2、若,则( )A.B.1C.-1D.23、函数函数的最大值是 ( )A. -2B.C.2D.14、到点与点距离之和为10的点的轨迹方程为( )A. B.C.D.5、顶点为原点,准线为的抛物线的标准方程为 ( )A. B. C. D.6、双曲线的渐近线方程为 ( ) A.B.C.D.7、将5个小球放入4个盒子里,不同的方法种数为 ( )A. B. C. D.8、1名教师与4名学生随机的站成一排,教师恰好站在中间位置的概率为( )A. B. C. D.9、事件A 在一次试验中发生的概率为,求在3次独立重复试验中,事件A 恰好发生2次的概率为 ( )A. B. C. D.10、在,A , ( )A.B.C.D.专业 班级 姓名 学籍号 考场 座号二、填空题(每题3分,共24分)11、sin19512、将函数的图像向平移个单位可以得到函数的图像。
13、在14、椭圆的焦点坐标为,长轴长为,短轴长为15、抛物线的的准线方程为16、双曲线的焦距为17、用0、1、2、3、4、这5个数字,可以组成没有重复数字的三位数的个数为18、在的展开式中,第4项的二项式系数为,第4项的系数为三、解答题(共46分)19、当x分别取何值时,函数取得最大值及最小值,最大值与最小值各是多少?(6分)20、已知在中.(8分)21、已知双曲线经过点P(3,6),且双曲线的一条渐近线方程为,求双曲线的标准方程。
(8分)22、求顶点在原点,对称抽为坐标轴,且经过点(-6,-4)的抛物线的标准方程。
(6分)23、停车场有12个车位,有8辆车停放,(6分)(1)共有多少种不同的停车方法?(2)若要求4个空车位要连在一起,那么有多少种不同的停车方法?24、从含有2件次品的5件产品中,(6分)(1)任取2件,求恰有1件次品的概率P1;(2)每次取1件,取后不放回,连续取2次,求恰好有1件次品的概率P2;(3)每次取1件,取后放回,连续取2次,求恰好有1件次品的概率P3. 25、指出正弦函数的图像经过如何变化可以得到正弦型函数的图像。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中职高二数学期末试
卷
职中高二级下学期数学期末模拟试卷
一、选择题(将唯一正确答案代号填入表格对应题号内,每题3分,共计36分)
1.点A (-3,-4)到x 轴的距离是:
A.3
B.4
C.5
D.7 2.点A (0,4),B (-2,0)的中点是:
A.(-2,4)
B.(-1,2)
C.(-2,2)
D.(0,2)
3.已知直线l 的斜率是3,则直线l 的倾斜角是:
A.060
B.045
C.030
D.0240
4.已知直线l 的倾斜角β=090,则直线l 的斜率是:
A.1
B.-1
C.不能确定
D.不存在 5.直线1=x 与y 轴:
A.平行
B.相交
C.重合
D.不能确定 6.圆16)7()2(22=-+-y x 的圆心坐标是:
A.(2,7)
B.(-2,-7)
C.(-2,7)
D.(2,-7) 7.圆25)6()3(22=-+-y x 的半径长为:
A.10
B.25
C.5
D.5
8.一个棱锥的底面积是402cm ,高是12cm ,则它的体积是 3cm π。
A.130
B.140
C.150
D.160
9.一个球的半径增大一倍,那么它的体积增大了几倍。
A.1
B.2
C.7
D.8
10.一个圆锥的母线是10cm ,侧面展开图是半圆,则圆锥的底面半径是:
A.10 cm
B.8cm
C.6 cm
D.5cm
11.直线06=+-y x 与直线0=+y x 的交点坐标为
A .(-3,3)
B .(3,-3)
C .(4,2)
D .(3,3) 12.某中职学校二年级有12名女排运动员,要从中选出3人调查学习负担情况,调查应采用的抽样方法是:
A.随机抽样法
B.分层抽样法
C.系统抽样法
D.无法确定 二、填空题(将最合适的答案填写在对应的位置,每题3分,共15分)。
1.过点A (1,-1)且与x 轴平行的直线方程为 2.一个正方体的体积是83cm ,则它的表面积为 2cm 3.抛一枚硬币,出现一枚正面在上的概率是
4.已知一直线的倾斜角是 45,则该直线的斜率是 5.过直线外一点作直线的垂线有 条
三、判断(正确的记“√”,错误的记“╳”,每题2分,共10分)。
( )1.直线23
y x =与直线6410x y ++=垂直.
( )2.如果直线1l 与直线2l 的斜率都存在且不等于0,那么12l l ⊥⇔121k k ⋅=-.
( )3.不在同一条直线上的三个点,可以确定一个平面. ( )4.直线 3=x 的斜率是0.
( )5.把直径是10的一个铁球融化最多可以做成直径是它5
1
的小球50个.
四、请在横线上用一种方法算出下列各牌组的24点(每题2分,共14分)。
(1)2、1、4、10 (2)2、6、8、5 (3)2、7、10、10 (4)2、8、8、8 (5)3、3、5、6
(6)3、3、3、8
(7)3、4、6、6
五、先填写数独,然后将每行填写的数字顺次写在右边对应的横线上(10分)。
(特别提醒:必须将数独填写数字写在每行横线上,且顺序正确)
第2行:
第3行:
第4行:
第5行:
第6行:
第7行:
第8行:
第9行:
六、按规律将表格填写完整。
要求:字迹工整,不能涂改(共15分,涂改或写
错一处扣0.5分,扣完15分为止)。