纤维素酶类糖苷水解酶及其降解机理共56页
纤维素酶降解纤维素机理的研究进展

1 纤维 素 酶 降解 纤 维 素 的 作 用机 理
11 纤维 素 的分子 结构 .
纤维 素(e u s) 由D 吡喃 型葡萄糖 基经 C l l e是 lo 一 D14 ., 糖苷键联结而成的直链多糖 l . 6 直链状大分 , 子纤维素折迭起来 , 形成具有高结晶的基本构成单 位, 由这种基本构成单位集 中起来构成微小的结构 单位 ,再 由很多的微小单位构成纤维素 . ]
维普资讯
第2 O卷 第 1 期
20 0 7年 3月
宁 波 大 学 学 报 (理 工 版 )
J UR A FNI GB NI R I Y( E O N L O N O U VE S T NS E)
VO .O NO I I 2 Ma. 2 0 t 07
简称 B ) G、
晶维 塑 纤素
粥 ]
外糖维 J 葡苷二 l 切糖 糖 萄纤 葡酶 聚
一
Tl uh i eg 等人lJ 纤维素酶拆分研究发现 ,降 b 】 2 对 解纤维素的纤维素酶是 由约 5 D 6 k 球状的催化( 水
中 图分 类号 :Q5 62 5 ;Q5 93 文献标 识码 :A 3
纤维素是地球上最丰富的多糖化合物 , 广泛存 在于如树杆等植物中, 有资料表明, 全世界每年生
产纤 维素 及半 纤维 素 的总量 为 80亿吨 l.但大 部 5 I J
尚不清楚 , 使得 目 前纤维素酶对天然纤维素降解效 率较低 , 从而使纤维素酶降解纤维素的工业化应用 无法实现规模化. 因此 , 进一步了解纤维素酶降解 纤维素的机理有助于提高纤维素的酶解效率 , 是更 加有效地利用纤维素资源的重要途径.
刚性结构 , 以及纤维素酶对纤维素的降解机制研究
纤维素酶简介

1引言纤维素是世界上蕴藏量最丰富的天然高分子化合物,绝大多数由绿色植物通过光合作用合成。
微生物对纤维素的降解、转化是自然界中碳素转化的主要环节。
纤维素酶是降解纤维素生成葡萄糖的多组分酶的总称。
目前,纤维素酶产品广泛应用于纺织、饲料、酿造、制药、造纸等行业,尤其是在纺织行业的应用范围目前正在不断扩大。
2纤维素酶纤维素酶的研究最早是1906年Seilliere在蜗牛的消化液中发现了分解纤维素的纤维素酶。
纤维素酶是能水解纤维素β-1,4-葡萄糖苷键,使纤维素变成纤维二糖和葡萄糖的一组酶的总称,它不是单一酶,而是起协同作用的多组分酶系。
纤维素酶的来源非常广泛,昆虫、软体动物、原生动物、细菌、放线菌和真菌等都能产生纤维素酶。
主要的有:康氏木霉、里氏木霉、黑曲霉、斜卧青霉、芽孢杆菌等。
丝状真菌产生的纤维素酶一般在酸性或中性偏酸性条件下水解纤维素底物,而嗜碱细菌产生的纤维素酶在碱性范围起作用。
纤维素酶分子是由球状的催化结构域(CD)通过一个富含脯氨酸或羟基氨基酸的连接桥(Linker)和纤维素结合结构域(CBD)三部分组成。
连接桥的作用可能是保持CD和CBD之间的距离。
纤维素结合结构域执行着调节酶对可溶和非可溶性底物专一性活力的作用,对酶的催化活力是非常必需的。
催化作用域的三维结构极其复杂,对酶的催化活力起决定作用。
[1,4]3纤维素酶对纤维素的作用机理目前,一种理论认为:纤维素酶水解纤维素是β-1,4-内切葡聚糖(纤维二糖水解)酶(EG,Endo-β-Glucanase),β-1,4-外切葡聚糖(纤维二糖水解)酶(CBH,Cellobiohydrolase)和β-葡萄糖苷酶(BG,β-Glucosidase)协同作用下进行的。
首先,EG酶随机水解切断无定型区的纤维素分子链,使结晶纤维素出现更多的纤维素分子基端,为CBH酶水解纤维素创造条件,CBH酶的水解产物纤维二糖则由BG酶水解成葡萄糖,因而纤维素酶水解纤维素的过程可以简单表示为:EG→CBH→BG。
纤维素酶 ppt课件

纤维素酶的发酵
引言
• 纤维素是世界上蕴藏量最丰富的天然高分子化合 物,绝大多数由绿色植物通过光合作用合成。据 估计,地球纤维素每年通过光合作用的更新量约 为4.0X 1010吨。
• 纤维素是地球上最丰富的多糖物质,是植物细胞 壁的主要组分,占植物秸秆干重的l/3~l/2,也 是自然界存在的最多的一类可再生生物聚合物。
纤维素酶理化特性
三:最适温度
• 酶反应存在一个最适温度。一般纤维素酶的最适 温度范围为40—60℃。纤维素酶各组分热稳定性 也存在差异,内切酶(Cx)的最适温度为50~60℃, 热稳定性好,在95℃时仍保留一般的酶活性;不 同来源的β—葡萄糖苷酶的最适温度均为50~60 ℃ 。然而有研究报道,β—葡萄糖苷酶具有很高 的耐温性,在50℃保温60h,仍保持95%以上的 活性,最适温度为70℃。也有报道,康宁木霉中 的外切酶(C1)具有特殊的热稳定性,其最适温度 为40~60℃。
纤维素酶的发酵工艺
一:固体发酵工艺
• 1 固体发酵工艺特点: 固体发酵法又称麸曲培养法,是
以秸秆粉、废纸、玉米秸秆粉为主要原料,拌入种曲 后.装入盘或帘子上,摊成薄层(厚约1 cm),在培养室一 定温度和湿度(RH 90%一100%)下进行发酵。 • 其主要特点是发酵体系没有游离水存在,微生物是在有足 够湿度的固态底物上进行反应,发酵环境接近于自然状态 下的微生物生长习性,产生的酶系更全,有利于降解天然 纤维素,且投资低、能耗低、产量高、操作简易、回收率 高、无泡沫、需控参数少、环境污染小等。但固体发酵法 易被杂菌污染,生产的纤维素酶分离纯化较难.且色素不 易去除。
纤维素酶理化特性
一:分子量
• 不同来源、不同组分的纤维素酶分子量差别较大,其变化 范围很广。
糖苷水解酶7家族蛋白在纤维素降解中作用的研究进展

微生物学杂志2020年2月第44卷第5期JOURNAL OF MICROBIOLOGY Dec.2420Vol:44No:2113糖苷水解酶7家族蛋白在纤维素降解中作用的研究进展高小晓,孟虹,李蓉*,李宪臻(大连工业大学生物工程学院,辽宁大连26534)摘要糖苷水解酶7家族(glycoside nyPoPso family,GH7)是一类来源于真菌的水解酶,作用于纤维素结晶区或不定形区的0-1,4-键,可用于高效降解纤维素转化为可发酵的糖。
GH7的成员具有高度保守序列以及相似三维结构,其催化结构域是由多个loop区围绕反向平行的0-折叠形成的0-三明治结构。
目前已有4个GH7成员的结晶结构得到解析,明确了酶的结构与催化功能之间的关联,对GH7的来源及分类、蛋白序列、结构特征与催化纤维素降解功能关系的研究进展进行阐述。
关键词糖苷水解酶7家族蛋白;纤维素酶结构;纤维素降解;內切葡聚糖酶;外切葡聚糖酶中图分类号Q939.29文献标识码A文章编号445-742((2424)46-412-45doi:4.3969/L issu.445-7441.2020.46.44Advances in Cellulose Degradation by Glycoside Hydrolase Family7ProteinsGAO Xino-xPo,MENG Hony,LI Rony,LI Xinn-zho(Schi.of Bio-Engin.,Dalian Polyiech.Uni.,Dalian22234)AbstrocO Glycoside n yPoPso7family poWius are a Uind of fungal-Perived nyPoPses acting ox02,4-4oxd cestal-Uue co amorphous regioxs of cellulose and car be used to eOicieu/p degrade cellulose and convert into fermeutadle suyao Members of the GH7family have highly coxseeed seqneuces and similar mee-PimeusPhal structures:The cat-amtic domaic is a0Csandwich sNucture formed bp multiple loop regioxs aonod iuvewivep parallel p-FPs.A-pres-eut,the costal sNuctures of17the GH7family poWic have beeu resolved,the oPtWxship betweeu the sNucture of the enzyme and its cataptic fuucboxs was explicit:The advauces iu glycoside hyPoPse7family poWics aPoot the ow igic as well as cPssifica/ox,the poWic seqneuce,the stocmel chaecW/s/cs and the fuucboxal rePFoxs of cellulose degradaFox were expaFateP iu this article:KegWOrOt glycoside hyPomse7family poWius;ceUuPse sNucture;cellulose degradatiox;eudogincabaso;exogp-canase天然纤维素是由葡萄糖单元以0-24-键连接组成的一类大分子多糖物质,结构上具有无序(不定形)和高度有序(结晶)区域。
纤维素酶降解纤维素的机制及其在畜牧业中的应用

一一一一一下半月1纤维素酶的分子结构及作用特征1906年,Seilliere 发现蜗牛的消化液能够水解棉花纤维素并产生葡萄糖,这是人类首次发现纤维素酶;1933年,Grassman 等研究了一种真菌的纤维素酶系,分离出两个组分,这是人们首次从真菌中分离出纤维素酶,此后纤维素酶的研究和应用便逐步受到世界各国的普遍关注。
纤维素分解酶是一种多组分的复合酶系,是能够将纤维素降解转化生成葡萄糖的一组酶的总称。
纤维素酶主要通过水解作用,使连接葡萄糖分子的β-l ,4-糖苷键断裂,最终将纤维素分解成单个的葡萄糖分子。
诸多研究普遍表明,纤维素的完全降解至少需要三种酶,根据其催化作用不同,分为:①内切-β-1,4-葡聚糖酶(endo-β-1,4-glucanase ,EG ):该酶是纤维素酶系中最重要的酶,由于此酶的活性经常由CMC 作为底物测量,因此也称CMCase 、Cx 酶。
这类酶主要作用于纤维素分子内部的非结晶区,随机水解β-l ,4-糖苷键,从而将纤维素长链分子截短,产生大量具有还原性末端的小分子纤维素。
②外切-β-1,4-葡聚糖酶(exo-β-1,4-glucanase ,CBH ):这类酶可从纤维素分子的还原或非还原端切割糖苷键,每作用一次可生成一个纤维二糖分子,但是经过该酶充分作用的微晶纤维素则最终生成纤维糊精和纤维二糖,所以也叫纤维二糖水解酶(简称CBH )或C1酶。
③β-1,4-葡萄糖苷酶(β-1,4-glucosidase ,BG ):它能水解纤维二糖生成单个的葡萄糖分子,由于该酶不直接作用于纤维素,可以消除上述两种酶产物对水解反应的抑制作用,因此可快速水解纤维二糖和纤维三糖。
这三种酶功能虽不同,但具有互补作用的活性酶组分,三者以接力方式把长链纤维素逐步降解成短链,再降解成二糖结构,最后生成单糖,整个反应过程需要各种酶之间相互配合作用,缺一不可。
当然实际的纤维素酶系远不止三种,一些纤维素酶也不仅仅只参与纤维素降解的单个步骤。
纤维素酶水解作用机制

纤维素酶水解作用机制00000纤维素酶由三类组成1)内切葡聚糖酶(endo-1,4-β-D-glucanase,EC3-2-1-4,也称EG酶或Cx酶);(2)外切葡聚糖酶(exo-1,4-β-D-glucanase,EC3-2-1-91),又称纤维二糖水解酶(cellobiohydrolase,CBH)或C1酶;(3)β-葡萄糖苷酶(β-glucosidase,EC3-2-1-21),简称BG。
纤维素酶解是一个复杂的过程,其最大特点是协同作用。
内切葡聚糖酶首先作用于微纤维素的无定型区,随机水解β-1,4-糖苷键,产生大量带非还原性末端的小分子纤维素,外切葡聚糖酶从这些非还原性末端上依次水解β-1,4糖苷键,生成纤维二糖及其它低分子纤维糊精,在β-葡萄糖苷酶作用下水解成葡萄糖分子。
这种协同作用普遍存在,除了上述协同作用,还可以发生在内切酶之间,外切酶之间,甚至发生在不同菌源的内切酶与外切酶之间。
一般地说,协同作用与酶解底物的结晶度成正比。
纤维素酶优先作用于纤维素的无定形区域,对结晶纤维素有一定的降解,但难度较大"值得庆幸的是,通过研究,我们对结晶纤维素降解的作用机制已有了一定的认识在纤维素酶解的最初阶段,EG和CBH能引起纤维素的分散化和脱纤化,使纤维素结晶结构被打乱导致变性,纤维素酶深入到纤维素分子界面之间,使其孔壁!腔壁和微裂隙壁的压力增大,水分子介入其中,破坏纤维素分子之间的氢键,产生部分可溶性的微结晶。
纤维素酶中单个组分的作用机制与溶菌酶相似,遵循双置换机制。
2影响纤维素水解的主要因素2.1酶复合物的组分及其比例微生物产生的纤维素酶复合物不一定都有前述三类酶,而是因种类不同,差异较大。
酶复合物的组分及其比例决定了它对纤维素的水解程度,组分较齐,比例适当的酶复合物对纤维素的水解能力较强。
以研究得较多的菌种为例,丝状真菌能产生大量的纤维素酶(20g/L),三类酶都有,而且比例适当,一般不聚集形成多酶复合体,能降解无定纤维素和结晶纤维素。
第五章糖代谢-1-59页PPT资料

人类和高等动、植物都不能合成纤维
素酶类,因而自身都不能消化纤维素。反 刍动物之所以能以纤维素作为营养,是因 为其瘤胃中生存有大量纤维素微生物。
目前,国际市场上已经有纤维素酶的
工业酶制剂商品,可用于果蔬加工、洗涤 剂、饲料添加剂等方面。但是,从经济上 考虑,仍不能用于大规模处理植物纤维废 料回收葡萄糖。
微生物果胶酶制剂已被普遍用于果汁、果 酒澄清,提高果汁、菜汁出率等。
谢 谢!
高等动物,植物和绝大多数微生物都 能利用葡萄糖作为能源和碳源。因此,葡 萄糖的分解代谢,能量转化和物质转化规 律,具有生物学的普遍意义。
从发酵工程角度考虑,葡萄糖的无氧 和有氧代谢途径及调节机理,还涉及诸如 酒精、甘油、乳酸、有机酸、氨基酸等多 种发酵产品的产生机理和实现产品大量积 累的机理,因此,其实践意义亦很突出。
一、酵解与发酵的涵义 二、酵解途径的反应历程 三、酵解的生理意义 四、无氧条件下丙酮酸的去路
一、酵解与发酵的涵义
1.酵解 葡萄糖经1,6-二磷酸果糖和3-磷酸甘油酸
第一节 多糖的酶促降解 第二节 葡萄糖的酵解(EMP途径) 第三节 葡萄糖的有氧分解代谢 第四节 单磷酸己糖支路(HMP途径) 第五节 磷酸解酮酶(PK途径) 第六节 脱氧酮糖酸途径(ED途径) 第七节 葡萄糖分解代谢途径的相互联系
第一节 多糖的酶促降解
多糖分子不能进入细胞,动物或微生 物在利用多糖作为碳源和能源时,需要分 泌降解酶类,将多糖分子在胞外降解(即所 谓消化)成单糖或双糖,才能被细胞吸收, 进入中间代谢。
α-淀粉酶作用于淀粉时,随着粘度下降, 碘反应由蓝→紫→红→无色。
α-淀粉酶可以看作是淀粉酶法水解的先导 酶。大分子淀粉经其作用断裂,产生很多 非还原性末端,为β-淀粉酶或葡萄糖淀粉酶 提供了更多的作用点。因此,大凡采用酶 法工艺进行淀粉的工业水解转化者,都要 用α-淀粉酶开路。
纤维素酶

目前已成功地将柑橘皮渣酶解制取 全果饮料,其中的粗纤维有50% 降解为短链低聚糖,全果饮料中的 膳食纤维,具有一定的保健医疗价 值
返 回
纤维素酶的功能
可激活内源酶的分泌,补 充内源酶的不足,保证动 物正常的消化吸收功能, 起到防病,促生长的作用 可提高纤维、半纤维 素 分解,有利于动物胃 肠道的消化吸
消除抗营养因子,促进 生物健康生长。可降低 粘度,增加内源酶的扩 散,促进饲料的良好消 化
功能
可直接降解纤维素,和其 他酶共同作用提高奶牛对 饲料营养物质的分解和消 化 具有维持小肠绒毛 形态完整,促进营 养物质吸收的功能
01
纤维素酶的结构 纤维素酶的原理
02
03
纤维素酶的功能 纤维素酶的应用
04
纤维素酶的结构
纤维素酶纤维素酶是一组能够降解纤维素生成葡萄糖的酶的 总称,属于四级结构,是一种复合酶。主要由外切β -葡聚糖 酶、内切β -葡聚糖酶和β -葡萄糖苷酶等组成。 大多数纤维素酶都有由一个或多个催化结构域(CD)和纤维素 结合区(CBD)组成,中间由一段可辨认的连接肽所连接,只有少数 微生物和高等植物产生的纤维素酶不具有这类结构域。
返 回
纤维素酶的原理
首 先
由葡聚糖内切 酶作用于微纤 维的非结晶区 ,使其露出许 多末端供外切 酶作用,纤维 二糖水解酶从 非还原末端依 次分解,,产 生纤维二糖
然 后
部分降解的纤 维素进一步由 葡聚糖内切酶 和外切酶协同 作用,分解生 成纤维二糖、 三糖等低聚糖 ,最后由β -葡 萄糖苷酶作用 分解成葡萄糖