双重介质定量描述技术在复杂礁灰岩油田开发中的应用——以珠江口盆地流花4-1油田为例

合集下载

流花-油田双分支井钻井技术

流花-油田双分支井钻井技术

双分支井钻井技术应用情况
流花油田双分支井钻井技术应用背 景
双分支井钻井技术应用效果
添加标题
添加标题
双分支井钻井技术应用现状
添加标题
添加标题
双分支井钻井技术未来发展趋势
技术挑战与解决方案
针对技术挑战的解决方案
流花油田双分支井钻井技术 的挑战
解决方案的具体实施步骤 解决方案的效果与影响
双分支井钻井技 术关键技术
政策法规对双分支 井钻井技术的影响
应对策略:加强技 术创新,提高技术 水平
政策法规对行业发 展的推动作用
未来发展趋势与展 望:加强政策引导 ,推动技术创新
感谢您的观看
汇报人:
● a. 机械控制法:通过调整钻头、稳定器等机械部件的位置和姿态来控制井眼轨迹。 ● b. 地质导向法:利用随钻测量仪器获取的地质信息来指导钻头钻进方向,从而控制井眼轨迹。 ● c. 复合控制法:将机械控制法和地质导向法相结合,以获得更好的井眼轨迹控制效果。
● 井眼轨迹控制技术的发展趋势:随着科技的不断发展,井眼轨迹控制技术也在不断进步。未来,该技术将朝着以下方向发展: a. 高精度、高效率:提 高井眼轨迹控制的精度和效率,以减少钻井时间和成本。 b. 智能化:利用人工智能、大数据等技术手段,实现井眼轨迹控制的智能化和自动化。 c. 多 分支井技术:进一步发展多分支井技术,以适应更复杂的地下环境和更高的钻井要求。
构造特征:流花油田位于中国南海东部,是一个由多个小断块组成的复杂断块油田 地层特征:流花油田地层复杂,包括新生界第四系、中生界白垩系和侏罗系以及古生界二叠系等地层
储层特征:流花油田的储层主要为中高渗透性的砂岩储层,具有较好的物性和含油性
油藏特征:流花油田的油藏主要为构造-岩性油藏,油藏埋藏较深,油水关系复杂

双重介质渗流理论

双重介质渗流理论

( pm

p f
)
窜流方程式表示单位时间内单位岩石体积中基质岩 块与裂缝之间的流体质量交换,它描述基岩向裂缝拟稳 态窜流的流量大小。
9 双重介质渗流理论
第二节 双重介质油藏渗流微分方程
四、微分方程
3.6K f
µ
∇2 pf
+ 3.6αKm µ
( pm

p f ) = φ f 0C ft
∂p f ∂t
=
pi
⎪ ⎪⎪q
=
172.8πrw
h
Kf
µ
∂p f ∂r

r =rw
⎪ ⎪⎩
p
f
(r

∞, t)
=
pm (r
→ ∞, t)
=
pi
9 双重介质渗流理论
第三节 双重介质油藏渗流理论
J.E.Warren和P.E.Root给出了近似解析解:
pwf
=
pi
− 0.921×10−3 qBµ
Kfh
⎡ ⎢ln ⎣
η
λ α 定义:
= r Km 2 Kf w
式中:rw——油井半径
α ——形状因子
9 双重介质渗流理论
第一节 双重介质油藏模型
形状因子α 与被切割的岩块大小和正交裂缝组数有关。
岩块越小,裂缝密度越大,则形状因子越大,反之则小。
沃伦等提出的表达式为:
α = 4n(n + 2)
L2
式中:n — 正交裂缝组数,整数; L — 岩块的特征长度,m。
9 双重介质渗流理论
第三节 双重介质油藏渗流理论
一、无限大油藏的压降解
假设在一水平等厚无限大双重介质油藏中有一口完 善井以恒定产量q投产,投产前地层中裂缝及基质系统内 压力均力pi,流动满足达西定律,等温渗流,忽略重力 和毛管力的影响。

连续封隔体控水技术在南海东部油田的应用效果

连续封隔体控水技术在南海东部油田的应用效果

95随着南海东部海域油藏逐渐进入开采中后期,油藏非均质性矛盾加剧、水淹程度越来越严重,在环保要求日益严格、稳油控水难度越来越大的背景下,需整体考虑生产井全寿命周期的控水相关因素,采用合适的控水技术,实现稳油控水的目标[1-4]。

连续封隔体控水技术在南海东部共计实施23口井,其中19井口都有显著的控水增油效果,为油田的稳油控水工作提供了有力的支持。

1 连续封隔体控水基本原理连续封隔体控水技术是通过充填把连续封隔体颗粒充填到井筒与ICD筛管的环空,充填紧实连续封隔体颗粒可以把水平段分隔成无限个小的单元,全水平段限制轴向窜流,ICD筛管可以设置流量天花板,限制流体径向流动,这样就增加高渗段液体流入井筒的阻力,低渗段液体流入井筒不受限制,平衡整个井筒的生产压差,从而实现控水增油[5-7]。

同时连续封隔体控水技术还具备以下技术优势:(1)筛管上金属过滤网+筛管外封隔体颗粒层双重防砂;同时控水作用带来的产液剖面均衡,使得水平生产段任一点达不到冲蚀临界速度,从而达到防冲蚀的目的。

(2)防止泥岩在产出位置的井壁上形成泥饼。

2 连续封隔体控水效果评价由于钻前钻后地质油藏、水平井段的变化、投产时间顺序等因素影响,与同油田、同层位、同油柱高度的相似邻井或本井配产数据进行对比。

采用量化指标体系进行控水效果评价:含水率、日产油、控水有效期、控水有效期内的增油量和产水变化量。

采用式(1)~式(3)分别计算控水有效期、以及控水有效期内的累计增油量和产水变化量。

0t t T -=……()t (1)0t t T -=……………………()t t i Q Q Q tt ot oi o ⋯⋯=-=∆∑000o …… (2)()t ∑0()t t i Q Q Q tt wt wi w ⋯⋯=-=∆∑00o … (3)式中:T 为控水有效期,天;t 0为控水作业结束后开连续封隔体控水技术在南海东部油田的应用效果晁一寒1 徐聪2 王晓通1 陈志德11. 中海油能源发展股份有限公司工程技术深圳分公司 广东 深圳 5180002. 中海石油(中国)有限公司深圳分公司 广东 深圳 518000摘要:在水平井开发生产过程中,由于局部高渗段、水窜裂缝、油水粘度差异等因素导致的产液剖面不均衡,从而引起油井高含水。

8.油藏描述

8.油藏描述

(1)产生的油藏模型的质量依赖于所假设的随机函数的模型和所具有的数据, 在数据很少的情况下,很难验证所假设的模型是否与实际的地质条件相符合;
(2)变异函数的模拟带有许多的主观性,而涉及多变量的交叉变异函数的模拟 受到线性区域化模型的限制,使得模拟很难正确进行;
(3)如何综合应用各种地质信息及生产资料还有待于进一步的发展和完善;
(一)以测井为主体的油藏描述
斯仑贝谢公司于20世纪70年代提出的以测井为主体的油藏描述技术 。重点是应用于油气田开发阶段的油藏动态监测及最终采收率的评 价。
过去油藏模拟,是根据取心井或试井资料把油藏的垂直剖面分成几 个单元,计算每个单元孔渗平均值,忽略了小范围的非均质性和垂 向渗透层屏障(隔夹层)作用。用这样的参数只能建立一个失真的 地质模型,使模拟失效,将导致开发决策的失误。而测井资料是唯 一能控制深度且能逐英尺测试的方法。因而基于测井资料的油藏描 述可能具有最高的精度。同时也强调了岩心、测试及测井资料的综 合应用,以得出一个适用于全油田模拟输入的储集层模型,从而实 现了从单井评价到多井评价的飞跃。
3. 以测井为主体的描述
继70年代斯仑贝谢公司提出的以测井为主体的油藏描述技术,又于1985年将三维 地震及VSP(Vertical Seismic Profile)资料引入油藏描述的井间相关对比研 究中。
研究现状: (1)1992年油藏描述研究内容及方法为: ①关键井研究; ②测井资料标准化; ③单井综合测井评价; ④多井处理研究,井间地层对比; ⑤渗透率及单井动态模拟研究; ⑥储层参数集总及储集层绘图。
开发阶段利用开发地震技术,即高分辨三维地震解释技术、地震层析技术、多 波多分量解释技术、垂直地震剖面技术、振幅炮检距分析等对储层进行井间、 井外地区的储层静态描述及动态监测,查明构造细微变化及油气水层分布。

流花4-1油田双分支井钻井技术

流花4-1油田双分支井钻井技术

流花4-1油田双分支井钻井技术
杨继明;苏峰;李波
【期刊名称】《钻采工艺》
【年(卷),期】2018(041)001
【摘要】分支井技术作为一种提高采收率及提高油气开采经济效益的技术手段,已被广泛应用到海上油气田开发.针对流花4-1油田油藏地质情况及原油物性特点,为更大限度提高单井产能和经济效益,在水平井基础上布置一口水平分支井.两分支垂深相差2 m,a分支水平产层段长781 m,b分支水平产层段长1311 m.文章主要分析该双分支井施工难点,重点介绍了双分支井钻井工艺技术,主要包括井身结构设计及优化、套管开窗技术、钻头及钻具组合设计及优化、钻井液设计等,可为今后国内海上油田实施和推广双分支井技术提供借鉴.
【总页数】3页(P25-27)
【作者】杨继明;苏峰;李波
【作者单位】中海石油深圳分公司;中海石油深圳分公司;中海油能源发展股份有限公司工程技术深圳分公司
【正文语种】中文
【相关文献】
1.流花4-1油田水下生产管汇安装海床处理方法研究 [J], 原庆东;冒家友;冯丽梅
2.双重介质定量描述技术在复杂礁灰岩油田开发中的应用——以珠江口盆地流花4-1油田为例 [J], 刘伟新;宁玉萍;王华;程佳;陆嫣;汪莹
3.流花4-1油田水下双电潜泵完井系统设计 [J], 张俊斌;秦世利;李勇;张宁;畅元江
4.流花4-1油田海域近海面风场特性分析 [J], 杜宇;武文华;岳前进;李锋;谢日彬;李平
5.中国船级社中标亚洲第一流花11-1/4-1油田二次开发检验项目 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。

中国南海礁灰岩油田储层电阻率成像特征及产能主控因素分析

中国南海礁灰岩油田储层电阻率成像特征及产能主控因素分析

中国南海礁灰岩油田储层电阻率成像特征及产能主控因素分析张永江;吴意明;李会庚;刘博【摘要】Reef limestone reservoir is characterized by strong heterogeneity , variable lateral thickness and bad correlation between wells ,since it is overlapped both vertically and laterally when depositing .Core is the most direct and effective method for reservoir description ,however the lateral distribution can’t be characterized as is confined by limited wellpoint .Based on the previous research ,integrated with core and resistivity image logging ,the characterization of reef reservoir in Liuhuaoilfield ,Pearl River Mouth Basin ,South China Sea is analyzed and described in detail .It’s considered that ,fracture development shows good regularity ,fracture developed best in core reef w hich has most fractures ;it developed good in backreef platform and better in backreef slope .Secondary porosity analysis show s it developed best in backreef platform ,and better in core reef than in backreef slope .By combining real productivity data ,grey relationship analysis is used to identify the key controlling factors on productivity and the result show s fracture intensity and secondary porosity are the key controlling factors affecting productivity in Liuhua oilfield .%礁灰岩储层由于沉积时礁体纵向和横向上的叠加,储层以非均质性强、横向厚度变化快、邻井对比差为特征。

碳酸盐岩储层裂缝智能预测技术及其应用

碳酸盐岩储层裂缝智能预测技术及其应用

大庆石油地质与开发Petroleum Geology & Oilfield Development in Daqing2023 年 8 月第 42 卷第 4 期Aug. ,2023Vol. 42 No. 4DOI :10.19597/J.ISSN.1000-3754.202208009碳酸盐岩储层裂缝智能预测技术及其应用杨丽娜1 许胜利1 魏莉1 史长林1 张雨1 杨勇2(1.中海油能源发展股份有限公司工程技术分公司,天津300452;2.中海石油(中国)有限公司深圳分公司,广东 深圳518000)摘要: 对不同地震属性裂缝预测体的信息融合是目前碳酸盐岩储层裂缝预测的重难点之一。

针对现有信息融合技术中存在的权重系数随机性强、效率低、耗时长、裂缝预测精度不理想等问题,利用机器学习多属性融合方法,基于神经网络系统的单井裂缝解释和多种地震方法的多尺度裂缝预测,得到机器学习融合的训练样本数据集,通过数据编码及结构化处理、标签数据提取及样本集划分和机器学习算法优选等,建立裂缝预测数据驱动模型,对碳酸盐岩储层裂缝智能预测技术进行研究。

通过上述方法,得到一个多信息融合的智能裂缝预测强度体,该体能够反映不同尺度裂缝在三维空间的发育强度,反映裂缝各向异性。

将技术方法应用至南海流花11‑1油田表明,基于机器学习的多属性裂缝融合方法不仅提高工作效率,且有效提高裂缝预测精度,很好地反映裂缝的各向异性,与生产动态特征符合率达90%。

研究结果为基于机器学习的高效、高精度多属性裂缝融合预测提供了技术支撑。

关键词:碳酸盐岩储层;机器学习;多属性融合;裂缝智能预测;单井裂缝解释中图分类号:P618 文献标识码:A 文章编号:1000-3754(2023)04-0131-08Intelligent prediction technique and its application for carbonatereservoir fracturesYANG Lina 1,XU Shengli 1,WEI Li 1,SHI Changlin 1,ZHANG Yu 1,YANG Yong 2(1.Drilling & Production Company of CNOOC Energy Technology & Services Ltd ,Tianjin 300452,China ;2.Shenzhen Branch of CNOOC (China )Ltd ,Shenzhen 518000,China )Abstract :Information fusion of fracture prediction bodies with different seismic attributes is one of the major diffi‑culties in current carbonate rock reservoir fracture prediction. In view of the problems existing in present informa‑tion fusion techniques , such as strong randomness of weight coefficient , low efficiency , long time consumption , and not satisfactory accuracy of fracture prediction , by using machine learning multi -attributes fusion method , training samples data set of machine learning fusion is obtained based on single -well fracture interpretation of neu‑ral network system and multi -scales fracture prediction with multiple seismic methods. Through data coding and structural processing , label data extraction , sample set division and machine learning algorithm optimization , datadriven model for fracture prediction is established to study intelligent prediction technique for carbonate rock reser‑voir fractures.Through the above method, a multi information fusion intelligent fracture prediction strength volume is收稿日期:2022-08-03 改回日期:2023-04-18基金项目:中国海洋石油集团有限公司科技攻关项目“双重介质碳酸盐岩油藏调驱/堵控水技术研究与应用”(CNOOC -KJ135KJXM NFGJ2019-05);中国海洋石油集团有限公司科技攻关项目“基于深度机器学习的油气储层预测技术”(CNOOC -KJ 135KJXM NFGJ2019-06)。

程林松 7、第七章-双重介质渗流

程林松 7、第七章-双重介质渗流

22
第三节 双重介质简化渗流模型的无限大地层典型解
实例:假设有一等厚无限大地层,被一完善井打开,并设井半 径为零,此处有一点源,其产量为Q,则流动为平面径向流, 流动模型如图所示,此时公式(3)就可以展开为:
∂p f ∂t
−η ∂
∂t
⎧⎪1
⎨ ⎪⎩
r
∂ ∂r
⎛ ⎜ ⎝
r
∂p f ∂r
⎞⎫⎪ ⎟⎠⎬⎪⎭
将双重介质油藏简化为正交裂缝
裂缝
切割基质岩块呈六面体的地质模
型,裂缝方向与主渗透率方向一
基质
致,并假设裂缝的宽度为常数。
裂缝网络可以是均匀分布,也可以是非均匀分布的,采 用非均匀的裂缝网格可研究裂缝网络的各向异性或在某一方 向上变化的情况。
5
第一节 双重介质油藏模型
2.Kazemi模型
该模型是把实际的双重介 质油藏简化为由一组平行层理 的裂缝分割基质岩块呈层状的 地质模型,即模型由水平裂缝 和水平基质层相间组成。
13
第二节 双重介质单相渗流的数学模型
二、窜流方程
在基岩与裂缝之间存在着压力差异,因而存在流体交换,
但这种流体交换进行是较缓慢,可将其视为稳定过程。一般认为
单位时间内从基岩排至裂缝中的流量与以下因素有关:
(1) 流体粘度; (2) 孔隙和裂缝之间的压差; (3) 基岩团块的特征量,如长度、面积和体积等; (4) 基岩的渗透率。 通过分析可以得出窜流速度q为:
r
∂U ∂r
⎞⎫ ⎟⎠⎬⎭
=
β
1 r
1 ∂r
⎛ ⎜⎝
r
∂U ∂r
⎞ ⎟⎠
(5)
U
(r, 0)
=
0,U
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双重介质定量描述技术在复杂礁灰岩油田开发中的应用——以珠江口盆地流花4-1油田为例刘伟新;宁玉萍;王华;程佳;陆嫣;汪莹【摘要】裂缝作为礁灰岩储层的主要流体渗流通道,其空间展布规律对油田开发有着重要的意义,但如何实现定量描述一直存在技术困难.以珠江口盆地流花4-1礁灰岩油田为例,依托钻井、取心、测井、GVR成像及地震等资料,利用沉积演化模拟和离散裂缝网络建模,探索对复杂礁灰岩油田储层和裂缝空间展布规律的定量表征技术,建立了该油田裂缝孔隙型双重介质模型,开展了基于双重介质模型的油藏数值模拟研究,并在充分考虑裂缝影响下分析了复杂礁灰岩油田开发过程中的影响因素,进而立体评价了剩余油分布情况,为该油田开发后期调整挖潜提供了依据.【期刊名称】《中国海上油气》【年(卷),期】2014(026)003【总页数】7页(P65-71)【关键词】礁灰岩油田;裂缝-孔隙双重介质;建模与数模;沉积演化模拟;离散裂缝网络;剩余油分布【作者】刘伟新;宁玉萍;王华;程佳;陆嫣;汪莹【作者单位】中海石油(中国)有限公司深圳分公司;中海石油(中国)有限公司深圳分公司;中海石油(中国)有限公司深圳分公司;中海石油(中国)有限公司深圳分公司;中海石油(中国)有限公司深圳分公司;中海石油(中国)有限公司深圳分公司【正文语种】中文裂缝-孔隙双重介质是碳酸盐岩储层最大的特性[1-2]。

作为沟通流体的渗流通道,裂缝在碳酸盐岩油田开发中起着重要的作用,而基于单孔介质地质建模而建立的油藏模型难以真实反映地下流体的实际渗流特征。

因此,在珠江口盆地流花4-1复杂礁灰岩油田开发中必须寻求裂缝的定量描述技术,精细模拟研究裂缝-孔隙双重介质油藏动态特征。

流花4-1油田是在台地边缘上发育的生物礁块状油田。

作为典型的礁灰岩油田,无论是从钻井、测井、取心还是生产动态,流花4-1油田储层均表现出明显的裂缝-孔隙双重介质特征[3]。

储层研究显示,该油田礁灰岩储层储集空间中裂缝非常发育(图1),包括基质孔缝和宏观裂缝,其中基质孔缝主要是由压实、压溶和溶蚀等成岩作用形成,而宏观裂缝主要是由构造变形产生的构造裂缝。

因此,如何准确预测孔洞和裂缝发育规律、储层连通性与物性以及含油性空间展布规律,是流花4-1油田开发过程中必须解决的问题,具体难点表现在以下3个方面:①礁灰岩储层非均质性强,成层性差,岩相作为基质物性和含油性模型建立的基础,其空间分布规律预测难度高;②裂缝作为主要渗流通道,复杂多变,其空间展布对油藏工程研究起着决定性作用,但对裂缝的识别和预测等定量表征难度大;③礁灰岩中基质系统和裂缝系统间存在流体交换,且都直接向油井供油,因此这2个系统间合理耦合关系的模拟难度大。

针对流花4-1油田地质油藏研究面临的困难与挑战,提出采用双重介质建模与数模一体化,以提升地质油藏研究精度。

总体研究思路和对策如下:1)相控建模由传统的平面相控转变为立体相控。

从地震、测井和岩心资料入手,在地震相、单井相、基底初始水深等初始沉积环境分析的基础上,进行沉积演化动态模拟,建立三维的沉积相模型,通过立体相控指导三维基质属性模型的建立。

2)裂缝描述由传统的半定量描述转变为定量描述。

利用岩心、GVR成像测井以及地震方差体和蚂蚁体等属性,应用先进的裂缝网络建模技术,建立三维离散裂缝网络模型(DFN),实现真正意义的裂缝-孔隙双重介质建模,对裂缝三维空间展布规律进行定量表征。

3)油藏动态模型由传统的拟双重介质转变为真双重介质。

基于三维基质属性模型和三维裂缝分布模型,以油藏数值模拟及油藏工程方法为主,结合特殊岩性分析、流体分析、DST压力动态校正和生产历史拟合等手段,打破利用单孔模型等效双重模型的传统方法,建立真正意义的裂缝与基质耦合的双重介质油藏数值模型。

2.1 立体相控指导基质属性模型的建立沉积相控制了储集层基质孔隙度和渗透率的分布,因此通常采用相控技术建立基质属性模型[4]。

相模型决定着基质属性模型的精度,传统的相模型大多依据平面沉积相格架而建立,缺乏沉积相纵向叠置关系的分析。

为了弥补平面相模型的不足,本次研究中利用沉积演化模拟技术对沉积相立体空间展布规律进行刻画,应用立体相模型约束基质属性模型的建立。

2.1.1 沉积演化模拟造礁生物的生长与富集受光照程度、含氧量、温度、营养成分和浊度等因素的影响。

相对海平面的变化既决定了可容空间的变化,也影响了水深、光照、含氧量、温度的变化[5],从而最终控制了生物礁复合体沉积的叠置样式。

基于上述造礁生物宏观主控因素的分析,针对礁灰岩储层的特殊性和复杂性,从流花4-1油田常规取心着手,在前人对珠江口盆地三级海平面变化曲线的研究基础上[6],依据关键井LH4-1-1井的岩性和测井曲线特征制作了珠江组礁灰岩段沉积时期海平面变化曲线,并根据礁灰岩产率主控因素开展了生物礁灰岩沉积演化模拟。

图2为流花4-1油田礁灰岩储层沉积演化模拟的沉积相三维栅状图。

模拟结果显示,C和D段在LH4-1-1和LH4-1-2井区发育台地边缘生物礁相; B和A段下部在LH 4-1-1和LH 4-1-2井区发育对称式的堤礁,以礁核、礁翼亚相为主,礁后滩相不发育;A段上部沉积时由于水体过深,只有LH4-1-1井区发育礁体。

2.1.2 立体相控建立基质属性模型在沉积演化模拟基础上,结合沉积模式研究,生成相分布边界概率体,以约束纵向上沉积相的变化趋势;同时,利用地震反演数据,生成井间相分布趋势概率体,以约束横向上沉积相的变化趋势。

通过数据分析,应用序贯指示模拟,在纵向和横向相趋势双重约束之下,建立了流花4-1油田礁灰岩储层相模型(图3a)。

该方法建立的相模型,既能通过沉积演化模拟反映礁灰岩沉积相边界,又能通过地震反演体现井间沉积相的分布,从纵向和横向上对沉积相进行控制和约束,是真正意义上的立体相模型。

然后在立体相模型约束之下,将地震反演体和密度体作为协模拟条件,采用序贯高斯算法对孔隙度属性进行模拟,建立了流花4-1油田的基质物性模型(图3b)。

2.2 离散裂缝网络建模实现裂缝的定量表征碳酸盐岩储层特性,裂缝的空间展布规律以及裂缝对油藏的影响研究一直是较大难题。

目前国内研究多为半定量裂缝等效模型,并非真正意义上建立裂缝模型。

本次研究中通过岩心裂缝观察和GVR成像测井研究,对单井裂缝产状及分布规律开展研究,逐点模式识别。

通过定义裂缝强度、几何特征和产状等参数,利用方差体和蚂蚁体等地震属性,应用先进的裂缝网络建模技术,模拟礁灰岩裂缝空间发育和分布,建立三维离散裂缝网络模型(DFN),实现对裂缝的空间展布规律的定量表征。

在DFN裂缝建模中,须分步对大尺度裂缝和小尺度裂缝进行预测。

大尺度裂缝主要是从地震数据体上确定性获得,其位置和空间几何形态完全依靠地震资料进行识别;而小尺度裂缝主要是应用地质统计的方法随机生成,是由大量小裂缝片组成的裂缝系统。

2.2.1 大尺度裂缝预测主要利用地震相干体、地震蚂蚁体以及与断裂相关的地震边缘检测等手段,采用人机交互的方式拾取断裂信息,对大尺度裂缝分布进行描述。

受珠江口盆地张扭地层应力的控制,流花4-1油田区内断裂非常发育,断裂性质均为正断层。

在地震资料解释中,除了古台地边缘大断层外,该油田范围内大断层的最大垂向断距为80 m,最小断距小于5 m,基本为北西-南东走向,延伸长度为0.4~9.5km。

通过地球物理手段识别出来的大尺度裂缝近400条,主要表现为断距小、延伸短。

从统计结果看,该油田区发育两组走向差异明显的大尺度裂缝,一组平行于主断层,另一组垂直于主断层。

平行于主断层的裂缝的断距和延伸长度明显要大于垂直于主断层的裂缝,但垂直于主断层的裂缝的数量要多于平行于主断层的裂缝。

总体上,该油田的西、北部大尺度裂缝发育的密度较大,东南部裂缝发育密度较小。

本文建立的流花4-1油田礁灰岩储层大尺度裂缝网络分布模型如图4所示。

2.2.2 小尺度裂缝预测地震资料无法识别的裂缝均为小尺度裂缝。

在岩心观察、测井裂缝解释及GVR成像测井资料建立的单井裂缝模型基础上,以裂缝发育密度体及距断裂距离信息等为约束,采用随机模拟的方法建立小尺度三维离散裂缝网络分布模型,并根据小尺度裂缝的分布密度、方位密度、大小和开度等统计信息,利用地质统计的方法对生成裂缝片组成的裂缝系统进行修正,使之满足各种先验统计和认识条件。

图5为本文建立的流花4-1油田礁灰岩储层小尺度裂缝网络分布模型。

可以看出该油田的西、北部小尺度裂缝发育密度较大,东南部密度较小,与大尺度裂缝密度分布规律一致性较好。

2.2.3 离散裂缝网络模型与裂缝等效参数模型的建立在大尺度和小尺度裂缝预测基础上,将两者叠加建立离散裂缝网络模型。

离散裂缝网络是目前描述裂缝的一项先进技术,它是通过展布于三维空间中的各类裂缝片组成的裂缝网络集团来构建整体的裂缝模型,可以实现对裂缝系统从几何形态到渗流行为的细致、有效描述,并通过定义裂缝的倾角、倾向、延伸长度、开度、传导率及裂缝发育密度等参数对次级断裂和微裂缝进行模拟。

依据地层系数、生产测试及钻杆测试等数据,对裂缝建模中的参数进行动态调整和优化,降低裂缝模型的不确定性,最终得到流花4-1油田礁灰岩储层离散裂缝网络模型。

离散裂缝网络模型的建立是裂缝等效参数如孔隙度、渗透率等计算的基础。

裂缝等效参数是指裂缝系统在各油藏网格中所表现出的储存能力、渗透能力及被裂缝系统所切割的基质岩块几何形态参数[7]。

根据各组裂缝的网络分布、开度和传导率参数对裂缝的孔隙度和渗透率参数进行计算,其基本原理如下:①根据网格节点内裂缝条数及各裂缝的长度、高度、开度等参数,求取网格节点内裂缝总体积与该网格体积之比,即为裂缝等效孔隙度;②在实际三维裂缝网络模型基础上,采用不可压缩稳态流动方法,根据达西定律得到不同方向对应的等效渗透率。

依据该原理,利用FracaFlow软件完成了该油田礁灰岩储层裂缝孔隙度和裂缝各向异性渗透率的计算,得到了最终的裂缝等效孔隙度和等效渗透率模型(图6)。

根据统计结果,流花4-1油田礁灰岩储层断裂系统的孔隙度小、贡献少,裂缝系统的孔隙度仅为0.01%~0.27%,平均为0.08%。

裂缝系统的渗透率较高,起主导作用,是最重要的流体渗流通道,但在不同方向上有一定的差异,其中X方向最大渗透率达到8 000 mD,高渗裂缝比例低于0.1%;Y方向最大渗透率为5 500 mD,高渗裂缝比例低于0.1%;Z方向最大渗透率为8 000 mD,高渗裂缝所占比例达0.1%,对流体渗流作用的贡献最大。

2.3 一体化建模思路精细化油藏模型在保证充分反映地质特征及流动响应的前提下,对流花4-1油田礁灰岩储层构造模型、基质属性模型和裂缝属性模型进行粗化,结合特殊岩性分析和流体分析确定静态参数场,选用Eclipse黑油模拟器建立了双重介质油藏模型。

相关文档
最新文档