正弦定理和余弦定理(含解析)
(完整版)解三角形之正弦定理与余弦定理解析

正弦定理与余弦定理教学目标掌握正弦定理和余弦定理的推导,并能用它们解三角形。
正余弦定理及三角形面积公式.教学重难点掌握正弦定理和余弦定理的推导,并能用它们解三角形。
知识点清单一.正弦定理:1。
正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即R CcB b A a 2sin sin sin ===(其中R 是三角形外接圆的半径) 2。
变形:1)sin sin sin sin sin sin a b c a b cC C++===A +B +A B . 2)化边为角:C B A c b a sin :sin :sin ::=;;sin sin B A b a = ;sin sin C B c b = ;sin sin CA c a = 3)化边为角:C R cB R b A R a sin 2,sin 2,sin 2===4)化角为边:;sin sin b a B A = ;sin sin c b C B =;sin sin caC A = 5)化角为边: RcC R b B R a A 2sin ,2sin ,2sin ===3. 利用正弦定理可以解决下列两类三角形的问题:①已知两个角及任意—边,求其他两边和另一角; 例:已知角B,C,a,解法:由A+B+C=180o ,求角A,由正弦定理;sin sin B A b a = ;sin sin C B c b = ;sin sin CAc a =求出b 与c ②已知两边和其中—边的对角,求其他两个角及另一边。
例:已知边a,b,A, 解法:由正弦定理B A b a sin sin =求出角B,由A+B+C=180o 求出角C ,再使用正弦定理CA c a sin sin =求出c 边4。
△ABC 中,已知锐角A ,边b,则①A b a sin <时,B 无解;②A b a sin =或b a ≥时,B 有一个解; ③b a A b <<sin 时,B 有两个解。
正弦定理和余弦定理考点解读

基础梳理1.正弦定理:a sin A =b sin B =c sin C=2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形为:(1)a ∶b ∶c =sin A ∶sin B ∶sin C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c 2R等形式,以解决不同的三角形问题. 2.余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形为:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab. 3.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (R 是三角形外接圆半径,r 是三角形内切圆的半径),并可由此计算R ,r . 4.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a ,b ,A ,则A 为锐角 A 为钝角或直角图形续表关系 式 a <b sin A a =b sin A b sin A <a <b a ≥b a >b a ≤b 解的 个数 无解 一解 两解 一解 一解 无解一条规律在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B .两类问题在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.情况(2)中结果可能有一解、两解、无解,应注意区分.余弦定理可解决两类问题:(1)已知两边及夹角求第三边和其他两角;(2)已知三边,求各角.两种途径 根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.双基自测1.(人教B 版教材习题改编)在△ABC 中,A =60°,B =75°,a =10,则c 等于( ).A .5 2B .10 2C.1063D .5 6 解析 由A +B +C =180°,知C =45°,由正弦定理得:a sin A =c sin C, 即1032=c 22.∴c =1063. 答案 C2.在△ABC 中,若sin A a =cos B b,则B 的值为( ). A .30° B .45° C .60° D .90°解析 由正弦定理知:sin A sin A =cos B sin B,∴sin B =cos B ,∴B =45°. 答案 B3.(2011·郑州联考)在△ABC 中,a =3,b =1,c =2,则A 等于( ).A .30°B .45°C .60°D .75°解析 由余弦定理得:cos A =b 2+c 2-a 22bc =1+4-32×1×2=12,∵0<A <π,∴A =60°. 答案 C4.在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为( ). A .3 3 B .2 3 C .4 3 D. 3解析 ∵cos C =13,0<C <π, ∴sin C =223, ∴S △ABC =12ab sin C =12×32×23×223=4 3. 答案 C5.已知△ABC 三边满足a 2+b 2=c 2-3ab ,则此三角形的最大内角为________. 解析 ∵a 2+b 2-c 2=-3ab ,∴cos C =a 2+b 2-c 22ab =-32, 故C =150°为三角形的最大内角.答案 150°考向一 利用正弦定理解三角形【例1】►在△ABC 中,a =3,b =2,B =45°.求角A ,C 和边c .[审题视点] 已知两边及一边对角或已知两角及一边,可利用正弦定理解这个三角形,但要注意解的判断.解 由正弦定理得a sin A =b sin B ,3sin A =2sin 45°, ∴sin A =32. ∵a >b ,∴A =60°或A =120°.当A =60°时,C =180°-45°-60°=75°,c =b sin C sin B =6+22; 当A =120°时,C =180°-45°-120°=15°,c =b sin C sin B =6-22. (1)已知两角一边可求第三角,解这样的三角形只需直接用正弦定理代入求解即可.(2)已知两边和一边对角,解三角形时,利用正弦定理求另一边的对角时要注意讨论该角,这是解题的难点,应引起注意.【训练1】 (2011·北京)在△ABC 中,若b =5,∠B =π4,tan A =2,则sin A =________;a =________.解析 因为△ABC 中,tan A =2,所以A 是锐角,且sin A cos A=2,sin 2A +cos 2A =1, 联立解得sin A =255, 再由正弦定理得a sin A =b sin B, 代入数据解得a =210.答案 255210 考向二 利用余弦定理解三角形【例2】►在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cos B cos C =-b 2a +c. (1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积.[审题视点] 由cos B cos C =-b 2a +c,利用余弦定理转化为边的关系求解. 解 (1)由余弦定理知:cos B =a 2+c 2-b 22ac, cos C =a 2+b 2-c 22ab. 将上式代入cos B cos C =-b 2a +c得: a 2+c 2-b 22ac ·2ab a 2+b 2-c 2=-b 2a +c, 整理得:a 2+c 2-b 2=-ac .∴cos B =a 2+c 2-b 22ac =-ac 2ac =-12. ∵B 为三角形的内角,∴B =23π. (2)将b =13,a +c =4,B =23π代入b 2=a 2+c 2-2ac cos B , 得b 2=(a +c )2-2ac -2ac cos B ,∴13=16-2ac ⎝⎛⎭⎫1-12,∴ac =3.∴S △ABC =12ac sin B =334.(1)根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键.(2)熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用.【训练2】 (2011·桂林模拟)已知A ,B ,C 为△ABC 的三个内角,其所对的边分别为a ,b ,c ,且2cos 2 A 2+cos A =0. (1)求角A 的值;(2)若a =23,b +c =4,求△ABC 的面积.解 (1)由2cos 2 A 2+cos A =0,得1+cos A +cos A =0,即cos A =-12, ∵0<A <π,∴A =2π3. (2)由余弦定理得,a 2=b 2+c 2-2bc cos A ,A =2π3, 则a 2=(b +c )2-bc ,又a =23,b +c =4,有12=42-bc ,则bc =4,故S △ABC =12bc sin A = 3. 考向三 正、余弦定理的综合应用【例3】►在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3. (1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin 2A ,求△ABC 的面积.[审题视点] 第(1)问根据三角形的面积公式和余弦定理列出关于a ,b 的方程,通过方程组求解;第(2)问根据sin C +sin(B -A )=2sin 2A 进行三角恒等变换,将角的关系转换为边的关系,求出边a ,b 的值即可解决问题.解 (1)由余弦定理及已知条件,得a 2+b 2-ab =4.又因为△ABC 的面积等于3,所以12ab sin C =3,得ab =4,联立方程组⎩⎪⎨⎪⎧ a 2+b 2-ab =4,ab =4,解得⎩⎪⎨⎪⎧a =2,b =2. (2)由题意,得sin(B +A )+sin(B -A )=4sin A cos A ,即sin B cos A =2sin A cos A .当cos A =0,即A =π2时,B =π6, a =433,b =233; 当cos A ≠0时,得sin B =2sin A ,由正弦定理,得b =2a .联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a , 解得⎩⎨⎧ a =233,b =433.所以△ABC 的面积S =12a b sin C =233.正弦定理、余弦定理、三角形面积公式对任意三角形都成立,通过这些等式就可以把有限的条件纳入到方程中,通过解方程组获得更多的元素,再通过这些新的条件解决问题.【训练3】 (2011·北京西城一模)设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且cos B =45,b =2. (1)当A =30°时,求a 的值;(2)当△ABC 的面积为3时,求a +c 的值.解 (1)因为cos B =45,所以sin B =35. 由正弦定理a sin A =b sin B ,可得a sin 30°=103, 所以a =53. (2)因为△ABC 的面积S =12ac ·sin B ,sin B =35, 所以310ac =3,ac =10. 由余弦定理得b 2=a 2+c 2-2ac cos B ,得4=a 2+c 2-85ac =a 2+c 2-16,即a 2+c 2=20. 所以(a +c )2-2ac =20,(a +c )2=40.所以a +c =210.阅卷报告4——忽视三角形中的边角条件致错【问题诊断】 考查解三角形的题在高考中一般难度不大,但稍不注意,会出现“会而不对,对而不全”的情况,其主要原因就是忽视三角形中的边角条件.【防范措施】 解三角函数的求值问题时,估算是一个重要步骤,估算时应考虑三角形中的边角条件.【示例】►(2011·安徽)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边长,a =3,b =2,1+2cos(B +C )=0,求边BC 上的高.错因 忽视三角形中“大边对大角”的定理,产生了增根.实录 由1+2cos(B +C )=0,知cos A =12,∴A =π3, 根据正弦定理a sin A =b sin B得: sin B =b sin A a =22,∴B =π4或3π4. 以下解答过程略.正解 ∵在△ABC 中,cos(B +C )=-cos A ,∴1+2cos(B +C )=1-2cos A =0,∴A =π3. 在△ABC 中,根据正弦定理a sin A =b sin B, ∴sin B =b sin A a =22.∵a >b ,∴B =π4,∴C =π-(A +B )=512π. ∴sin C =sin(B +A )=sin B cos A +cos B sin A =22×12+22×32=6+24. ∴BC 边上的高为b sin C =2×6+24=3+12. 【试一试】 (2011·辽宁)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2 A =2a .(1)求b a; (2)若c 2=b 2+3a 2,求B .[尝试解答] (1)由正弦定理得,sin 2A sin B +sin B cos 2A =2sin A ,即sin B (sin 2A +cos 2A )=2sin A .故sin B =2sin A ,所以b a= 2. (2)由余弦定理和c 2=b 2+3a 2,得cos B =(1+3)a 2c. 由(1)知b 2=2a 2,故c 2=(2+3)a 2.可得cos 2B =12,又cos B >0,故cos B =22,所以B =45°.。
2023年高考数学一轮复习第四章三角函数与解三角形7正弦定理余弦定理练习含解析

正弦定理、余弦定理考试要求 1.掌握正弦定理、余弦定理及其变形.2.能利用正弦定理、余弦定理解决一些简单的三角形度量问题.知识梳理1.正弦定理与余弦定理定理正弦定理余弦定理内容asin A=b sin B =csin C=2R a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ;(2)a sin B =b sin A ,b sin C =c sin B , a sin C =c sin Acos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2.三角形中常用的面积公式 (1)S =12ah a (h a 表示边a 上的高);(2)S =12ab sin C =12ac sin B =12bc sin A ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).常用结论在△ABC 中,常有以下结论: (1)∠A +∠B +∠C =π.(2)任意两边之和大于第三边,任意两边之差小于第三边. (3)a >b ⇔A >B ⇔sin A >sin B ,cos A <cos B .(4)sin(A +B )=sin C ;cos(A +B )=-cos C ;tan(A +B )=-tan C ;sinA +B2=cosC2;cosA +B2=sin C2. (5)三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)三角形中三边之比等于相应的三个内角之比.( × ) (2)在△ABC 中,若sin A >sin B ,则A >B .( √ )(3)在△ABC 的六个元素中,已知任意三个元素可求其他元素.( × ) (4)当b 2+c 2-a 2>0时,△ABC 为锐角三角形.( × ) 教材改编题1.在△ABC 中,AB =5,AC =3,BC =7,则∠BAC 等于( ) A.π6 B.π3 C.2π3D.5π6答案 C解析 因为在△ABC 中,设AB =c =5,AC =b =3,BC =a =7, 所以由余弦定理得cos∠BAC =b 2+c 2-a 22bc =9+25-4930=-12,因为∠BAC 为△ABC 的内角, 所以∠BAC =2π3.2.在△ABC 中,若A =60°,a =43,b =42,则B =. 答案 45°解析 由正弦定理知a sin A =bsin B ,则sin B =b sin A a =42×3243=22.又a >b ,则A >B ,所以B 为锐角,故B =45°.3.在△ABC 中,a =2,b =3,C =60°,则c =,△ABC 的面积=. 答案7 332解析 易知c =4+9-2×2×3×12=7,△ABC 的面积等于12×2×3×32=332.题型一 利用正弦定理、余弦定理解三角形例1 (12分)(2021·新高考全国Ⅰ)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b 2=ac ,点D 在边AC 上,BD ·sin∠ABC =a sin C . (1)证明:BD =b ;[切入点:角转化为边](2)若AD =2DC ,求cos∠ABC .[关键点:∠BDA 和∠BDC 互补]高考改编在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知b sin C +a sin A =b sin B +c sin C . (1)求A ;(2)设D 是线段BC 的中点,若c =2,AD =13,求a . 解 (1)根据正弦定理,由b sin C +a sin A =b sin B +c sin C , 可得bc +a 2=b 2+c 2, 即bc =b 2+c 2-a 2,由余弦定理可得,cos A =b 2+c 2-a 22bc =12,因为A 为三角形内角,所以A =π3.(2)因为D 是线段BC 的中点,c =2,AD =13, 所以∠ADB +∠ADC =π, 则cos∠ADB +cos∠ADC =0,所以AD 2+BD 2-AB 22AD ·BD +AD 2+DC 2-AC 22AD ·DC=0,即13+a 24-22213·a 2+13+a 24-b2213·a2=0,整理得a 2=2b 2-44,又a 2=b 2+c 2-2bc cos A =b 2+4-2b , 所以b 2+4-2b =2b 2-44, 解得b =6或b =-8(舍), 因此a 2=2b 2-44=28, 所以a =27.思维升华 解三角形问题的技巧(1)解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理,以上特征都不明显时,则要考虑两个定理都有可能用到.(2)三角形解的个数的判断:已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.跟踪训练1 (2021·北京)已知在△ABC 中,c =2b cos B ,C =2π3.(1)求B 的大小;(2)在下列三个条件中选择一个作为已知,使△ABC 存在且唯一确定,并求出BC 边上的中线的长度.①c =2b ;②周长为4+23;③面积为S △ABC =334.解 (1)∵c =2b cos B ,则由正弦定理可得sin C =2sin B cos B , ∴sin2B =sin2π3=32,∵C =2π3, ∴B ∈⎝ ⎛⎭⎪⎫0,π3,2B ∈⎝⎛⎭⎪⎫0,2π3, ∴2B =π3,解得B =π6.(2)若选择①:由正弦定理结合(1)可得 c b =sin C sin B =3212=3, 与c =2b 矛盾,故这样的△ABC 不存在; 若选择②:由(1)可得A =π6,设△ABC 的外接圆半径为R , 则由正弦定理可得a =b =2R sinπ6=R , c =2R sin2π3=3R , 则周长为a +b +c =2R +3R =4+23, 解得R =2,则a =2,c =23, 由余弦定理可得BC 边上的中线的长度为232+12-2×23×1×cosπ6=7; 若选择③:由(1)可得A =π6,即a =b ,则S △ABC =12ab sin C =12a 2×32=334,解得a =3,则由余弦定理可得BC 边上的中线的长度为b 2+⎝ ⎛⎭⎪⎫a 22-2×b ×a 2×cos 2π3=3+34+3×32=212. 题型二 正弦定理、余弦定理的简单应用 命题点1 三角形形状判断 例2 在△ABC 中,c -a 2c =sin 2 B 2(a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形或直角三角形D .等腰直角三角形 答案 A解析 由cos B =1-2sin 2B2,得sin 2B 2=1-cos B2,所以c -a 2c =1-cos B2, 即cos B =ac.方法一 由余弦定理得a 2+c 2-b 22ac =ac,即a 2+c 2-b 2=2a 2,所以a 2+b 2=c 2.所以△ABC 为直角三角形,无法判断两直角边是否相等. 方法二 由正弦定理得cos B =sin Asin C ,又sin A =sin(B +C )=sin B cos C +cos B sin C , 所以cos B sin C =sin B cos C +cos B sin C , 即sin B cos C =0,又sin B ≠0,所以cos C =0,又角C 为三角形的内角,所以C =π2,所以△ABC 为直角三角形,无法判断两直角边是否相等.延伸探究将“c -a 2c =sin 2 B 2”改为“sin A sin B =a c,(b +c +a )(b +c -a )=3bc ”,试判断△ABC 的形状.解 因为sin A sin B =ac ,所以a b =a c,所以b =c . 又(b +c +a )(b +c -a )=3bc , 所以b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =bc 2bc =12.因为A ∈(0,π),所以A =π3, 所以△ABC 是等边三角形.思维升华 判断三角形形状的两种思路(1)化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.(2)化角:通过三角恒等变形,得出内角的关系,从而判断三角形的形状.此时要注意应用A +B +C =π这个结论. 命题点2 三角形的面积例3 (2022·沧州模拟)在①sin A ,sin C ,sin B 成等差数列;②a ∶b ∶c =4∶3∶2;③b cos A =1这三个条件中任选一个,补充在下面问题中.若问题中的三角形存在,求该三角形面积的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC ,它的内角A ,B ,C 的对边分别为a ,b ,c ,且a (sin A -sin B )+b sinB =c sinC ,c =1,?注:如果选择多个条件分别解答,按第一个解答计分. 解 因为a (sin A -sin B )+b sin B =c sin C , 由正弦定理得a (a -b )+b 2=c 2, 即a 2+b 2-c 2=ab ,所以cos C =a 2+b 2-c 22ab =12,又C ∈(0,π), 所以C =π3.选择①:因为sin A ,sin C ,sin B 成等差数列, 所以sin A +sin B =2sin C ,即a +b =2c =2, 由a 2+b 2-c 2=a 2+b 2-1=ab , 得(a +b )2-3ab =1,所以ab =1, 故存在满足题意的△ABC ,S △ABC =12ab sin C =12×1×sin π3=34. 选择②:因为a ∶b ∶c =4∶3∶2, 所以A >B >C =π3,这与A +B +C =π矛盾,所以△ABC 不存在. 选择③: 因为b cos A =1,所以b ·b 2+1-a 22b=1,得b 2=1+a 2=c 2+a 2, 所以B =π2,此时△ABC 存在.又C =π3,所以A =π6,所以a =1×tanπ6=33, 所以S △ABC =12ac =36.思维升华 三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化. 命题点3 与平面几何有关的问题例4 如图,在平面四边形ABCD 中,已知A =π2,B =2π3,AB =6.在AB 边上取点E ,使得BE=1,连接EC ,ED .若∠CED =2π3,EC =7.(1)求sin∠BCE 的值; (2)求CD 的长.解 (1)在△BEC 中,由正弦定理, 知BE sin∠BCE =CEsin B.∵B =2π3,BE =1,CE =7,∴sin∠BCE =BE ·sin B CE =327=2114. (2)∵∠CED =B =2π3,∴∠DEA =∠BCE ,∴cos∠DEA =1-sin 2∠DEA =1-sin 2∠BCE =1-328=5714. ∵A =π2,∴△AED 为直角三角形,又AE =5,∴ED =AE cos∠DEA =55714=27.在△CED 中,CD 2=CE 2+DE 2-2CE ·DE ·cos∠CED=7+28-2×7×27×⎝ ⎛⎭⎪⎫-12=49. ∴CD =7. 教师备选1.在△ABC 中,已知a 2+b 2-c 2=ab ,且2cos A sin B =sin C ,则该三角形的形状是( ) A .直角三角形 B .等腰三角形 C .等边三角形 D .钝角三角形答案 C解析 ∵a 2+b 2-c 2=ab ,∴cos C =a 2+b 2-c 22ab =12,又C ∈(0,π), ∴C =π3,由2cos A sin B =sin C ,得cos A =sin C 2sin B =c 2b =c 2+b 2-a22bc ,∴b 2=a 2,即b =a ,又C =π3,故三角形为等边三角形.2.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a cos C -c cos(B +C )=-b3cos A +B .(1)求tan C ;(2)若c =3,sin A sin B =1627,求△ABC 的面积.解 (1)∵a cos C -c cos(B +C ) =-b3cos A +B ,∴a cos C +c cos A =b3cos C.由正弦定理得sin A cos C +sin C cos A =sin B3cos C ,∴sin(A +C )=sin B3cos C ,即sin B =sin B3cos C ,又∵sin B ≠0, ∴cos C =13,∴sin C =1-⎝ ⎛⎭⎪⎫132=223, tan C =sin Ccos C =2 2.(2)若c =3,由正弦定理asin A =bsin B =csin C,得asin A =b sin B =3223=924, 则a =924sin A ,b =924sin B ,则ab =924sin A ·924sin B =16216sin A sin B=16216×1627=6, ∴S △ABC =12ab sin C =12×6×223=2 2.思维升华 平面几何图形中研究或求与角有关的长度、角度、面积的最值、优化设计等问题,通常是转化到三角形中,利用正、余弦定理通过运算的方法加以解决.在解决某些具体问题时,常先引入变量,如边长、角度等,然后把要解三角形的边或角用所设变量表示出来,再利用正、余弦定理列出方程,解之,若研究最值,常使用函数思想.跟踪训练 2 (1)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,若c -a cos B = (2a -b )cos A ,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形答案 D解析 因为c -a cos B =(2a -b )cos A ,C =π-(A +B ),所以由正弦定理得sin C -sin A cos B=2sin A cos A -sin B cos A ,所以sin A cos B +cos A sin B -sin A cos B=2sin A cos A -sin B cos A ,所以cos A (sin B -sin A )=0,所以cos A =0或sin B =sin A ,所以A =π2或B =A 或B =π-A (舍去), 所以△ABC 为等腰或直角三角形.(2)(2022·郑州模拟)如图,在△ABC 中,AB =9,cos B =23,点D 在BC 边上,AD =7,∠ADB 为锐角.①求BD ;②若∠BAD =∠DAC ,求sin C 的值及CD 的长.解 ①在△ABD 中,由余弦定理得AB 2+BD 2-2AB ·BD ·cos B =AD 2,整理得BD 2-12BD +32=0,所以BD =8或BD =4.当BD =4时,cos∠ADB =16+49-812×4×7=-27,则∠ADB >π2,不符合题意,舍去; 当BD =8时,cos∠ADB =64+49-812×8×7=27,则∠ADB <π2,符合题意,所以BD =8.②在△ABD 中,cos∠BAD =AB 2+AD 2-BD 22AB ·AD =92+72-822×9×7=1121,所以sin∠BAD =8521,又sin∠ADB =357,所以sin C =sin(∠ADB -∠CAD )=sin(∠ADB -∠BAD )=sin∠ADB cos∠BAD -cos∠ADB sin∠BAD=357×1121-27×8521=175147,在△ACD 中,由正弦定理得CD sin∠CAD =ADsin C ,即CD =ADsin C ·sin∠CAD =7175147×8521=39217.课时精练1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为a 2+b 2-c 24,则C 等于() A.π2 B.π3C.π4D.π6答案 C 解析 根据题意及三角形的面积公式知12ab sin C =a 2+b 2-c 24, 所以sin C =a 2+b 2-c 22ab=cos C , 所以在△ABC 中,C =π4. 2.(2022·北京西城区模拟)在△ABC 中,C =60°,a +2b =8,sin A =6sin B ,则c 等于( ) A.35 B.31 C .6D .5答案 B解析 因为sin A =6sin B ,由正弦定理可得a =6b ,又a +2b =8,所以a =6,b =1,因为C =60°,所以c 2=a 2+b 2-2ab cos C ,即c 2=62+12-2×1×6×12, 解得c =31.3.(2022·济南质检)已知△ABC 的内角A ,B ,C 对应的边分别为a ,b ,c ,a =4,cos2A = -725,则△ABC 外接圆半径为( ) A .5B .3C.52D.32答案 C解析 因为cos2A =-725, 所以1-2sin 2A =-725, 解得sin A =±45, 因为A ∈(0,π),所以sin A =45,又a =4,所以2R =a sin A =445=5, 所以R =52. 4.(2022·河南九师联盟联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若c =2b ,sin 2A -3sin 2B =12sin A sin C ,则角C 等于( ) A.π6B.π3C.π2D.2π3答案 B解析 ∵sin 2A -3sin 2B =12sin A sin C , 由正弦定理可得a 2-3b 2=12ac , ∵c =2b ,∴a 2-3b 2=12a ·2b =ab , 由余弦定理可得cos C =a 2+b 2-c 22ab =a 2-3b 22ab =12, ∵0<C <π,∴C =π3. 5.(多选)(2022·山东多校联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,2b sin A =5a cos B ,AB =2,AC =26,D 为BC 的中点,E 为AC 上的点,且BE 为∠ABC 的平分线,下列结论正确的是( )A .cos∠BAC =-66 B .S △ABC =3 5 C .BE =2D .AD = 5答案 AD解析 由正弦定理可知2sin B sin A =5sin A cos B ,∵sin A ≠0,∴2sin B =5cos B .又sin 2B +cos 2B =1,∴sin B =53,cos B =23,在△ABC 中,AC 2=AB 2+BC 2-2AB ·BC cos B ,得BC =6.A 项,cos∠BAC =AB 2+AC 2-BC 22AB ·AC =4+24-362×2×26=-66;B 项,S △ABC =12AB ·BC sin B =12×2×6×53=25;C 项,由角平分线性质可知AEEC =AB BC =13,∴AE =62.BE 2=AB 2+AE 2-2AB ·AE cos A =4+32-2×2×62×⎝ ⎛⎭⎪⎫-66=152,∴BE =302;D 项,在△ABD 中,AD 2=AB 2+BD 2-2AB ·BD cos B=4+9-2×2×3×23=5,∴AD = 5.6.(多选)(2022·张家口质检)下列命题中,正确的是( )A .在△ABC 中,A >B ,则sin A >sin BB .在锐角△ABC 中,不等式sin A >cos B 恒成立C .在△ABC 中,若a cos A =b cos B ,则△ABC 必是等腰直角三角形D .在△ABC 中,若B =60°,b 2=ac ,则△ABC 必是等边三角形答案 ABD解析 对于A ,由A >B ,可得a >b ,利用正弦定理可得sin A >sin B ,正确;对于B ,在锐角△ABC 中,A ,B ∈⎝ ⎛⎭⎪⎫0,π2,∵A +B >π2, ∴π2>A >π2-B >0, ∴sin A >sin ⎝ ⎛⎭⎪⎫π2-B =cos B , ∴不等式sin A >cos B 恒成立,正确;对于C ,在△ABC 中,由a cos A =b cos B ,利用正弦定理可得sin A cos A =sin B cos B ,∴sin2A =sin2B ,∵A ,B ∈(0,π),∴2A =2B 或2A =π-2B ,∴A =B 或A +B =π2, ∴△ABC 是等腰三角形或直角三角形,∴是假命题,错误;对于D ,由于B =60°,b 2=ac ,由余弦定理可得b 2=ac =a 2+c 2-ac ,可得(a -c )2=0,解得a =c ,可得A =C =B =60°,故正确.7.(2022·潍坊质检)已知△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,且b =3,a -c =2,A =2π3.则△ABC 的面积为. 答案 1534解析 由余弦定理得a 2=b 2+c 2-2bc cos A ,∵b =3,a -c =2,A =2π3, ∴(c +2)2=32+c 2-2×3c ×⎝ ⎛⎭⎪⎫-12, 解得c =5,则△ABC 的面积为S =12bc sin A =12×3×5×32=1534. 8.(2021·全国乙卷)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,面积为3,B =60°,a 2+c 2=3ac ,则b =.答案 2 2解析 由题意得S △ABC =12ac sin B =34ac =3,则ac =4,所以a 2+c 2=3ac =3×4=12,所以b 2=a 2+c 2-2ac cos B =12-2×4×12=8,则b =22(负值舍去).9.(2022·南平模拟)在①2c cos B =2a -b ,②△ABC 的面积为34(a 2+b 2-c 2),③cos 2A -cos 2C =sin 2B -sin A sin B ,这三个条件中任选一个,补充在下面的问题中,并加以解答.(如果选择多个条件作答,则按所选的第一个条件给分)已知△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,且.(1)求角C 的大小;(2)若c =2且4sin A sin B =3,求△ABC 的面积.解 (1)若选条件①2c cos B =2a -b ,则2c ·a 2+c 2-b 22ac=2a -b , 即a 2+b 2-c 2=ab ,所以cos C =12, 又因为C ∈(0,π),所以C =π3. 若选条件②△ABC 的面积为34(a 2+b 2-c 2), 则34(a 2+b 2-c 2)=12ab sin C , 即sin C =3cos C ,所以tan C =3,又因为C ∈(0,π),所以C =π3. 若选条件③cos 2A -cos 2C =sin 2B -sin A sin B ,则(1-sin 2A )-(1-sin 2C )=sin 2B -sin A sin B ,即sin 2A +sin 2B -sin 2C =sin A sin B ,即a 2+b 2-c 2=ab ,所以cos C =12,又因为C ∈(0,π),所以C =π3. (2)因为c =2, 所以a sin A =b sin B =c sin C =2sin π3=43, 所以sin A =34a ,sin B =34b , 又因为4sin A sin B =3,所以ab =4,△ABC 的面积为12ab sin C = 3. 10.(2022·湘豫联盟联考)如图,在△ABC 中,∠B =60°,AB =8,AD =7,点D 在BC 上,且cos∠ADC =17.(1)求BD ;(2)若cos∠CAD =32,求△ABC 的面积. 解 (1)∵cos∠ADB =cos(π-∠ADC )=-cos∠ADC =-17. 在△ABD 中,由余弦定理得82=BD 2+72-2·BD ·7·cos∠ADB ,解得BD =3或BD =-5(舍).(2)由已知sin∠ADC =437,sin∠CAD =12, ∴sin C =sin(∠ADC +∠CAD )=437×32+17×12=1314. 由正弦定理得CD =AD sin∠CAD sin C =7×121314=4913, ∴BC =3+4913=8813,∴S △ABC =12×8×8813×32=176313.11.在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且4S =(a+b )2-c 2,则sin ⎝ ⎛⎭⎪⎫π4+C 等于 ( ) A .1B .-22C.22D.32 答案 C解析 因为S =12ab sin C , cos C =a 2+b 2-c 22ab, 所以2S =ab sin C ,a 2+b 2-c 2=2ab cos C .又4S =(a +b )2-c 2=a 2+b 2-c 2+2ab ,所以2ab sin C =2ab cos C +2ab .因为ab ≠0,所以sin C =cos C +1.因为sin 2C +cos 2C =1,所以(cos C +1)2+cos 2C =1,解得cos C =-1(舍去)或cos C =0,所以sin C =1,则sin ⎝ ⎛⎭⎪⎫π4+C =22(sin C +cos C )=22. 12.(2022·焦作模拟)在△ABC 中,内角A ,B ,C 的对边a ,b ,c 依次成等差数列,△ABC 的周长为15,且(sin A +sin B )2+cos 2C =1+sin A sin B ,则cos B 等于( )A.1314B.1114C.12D .-12答案 B解析 因为(sin A +sin B )2+cos 2C=1+sin A sin B ,所以sin 2A +sin 2B +2sin A ·sin B +1-sin 2C=1+sin A ·sin B ,所以由正弦定理得a 2+b 2-c 2=-ab ,又a ,b ,c 依次成等差数列,△ABC 的周长为15,即a +c =2b ,a +b +c =15, 由⎩⎪⎨⎪⎧ a 2+b 2-c 2=-ab ,a +c =2b ,a +b +c =15,解得⎩⎪⎨⎪⎧ a =3,b =5,c =7.cos B =a 2+c 2-b 22ac =32+72-522×3×7=1114. 13.(2022·开封模拟)在平面四边形ABCD 中,BC ⊥CD ,∠B =3π4,AB =32,AD =210,若AC =35,则CD 为.答案 1或5解析 因为在△ABC 中,∠B =3π4,AB =32, AC =35,由正弦定理可得AC sin B =AB sin∠ACB, 所以sin∠ACB =AB ·sin B AC =32×2235=55, 又BC ⊥CD ,所以∠ACB 与∠ACD 互余,因此cos∠ACD =sin∠ACB =55, 在△ACD 中,AD =210,AC =35,由余弦定理可得cos∠ACD =55=AC 2+CD 2-AD 22AC ·CD =5+CD 265CD, 所以CD 2-6CD +5=0,解得CD =1或CD =5.14.(2022·大连模拟)托勒密(Ptolemy)是古希腊天文学家、地理学家、数学家,托勒密定理就是由其名字命名,该定理指出:圆的内接凸四边形两组对边乘积的和等于两条对角线的乘积.已知凸四边形ABCD 的四个顶点在同一个圆的圆周上,AC ,BD 是其两条对角线,AB =AD ,∠BAD =120°,AC =6,则四边形ABCD 的面积为.答案 9 3 解析 在△ABD 中,设AB =a ,由余弦定理得BD 2=AB 2+AD 2-2AB ·AD ·cos∠BAD =3a 2,所以BD =3a ,由托勒密定理可得a (BC +CD )=AC ·3a ,即BC +CD =3AC ,又∠ABD =∠ACD =30°,所以四边形ABCD 的面积 S =12BC ·AC sin30°+12CD ·AC sin30°=14(BC +CD )·AC =34AC 2=9 3.15.(多选)中国南宋时期杰出数学家秦九韶在《数书九章》中提出了“三斜求积术”,即以小斜幂,并大斜幂,减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约之,为实;一为从隅,开平方得积.把以上文字写成公式,即S =14⎣⎢⎡⎦⎥⎤c 2a 2-⎝ ⎛⎭⎪⎫c 2+a 2-b 222(S 为三角形的面积,a ,b ,c 为三角形的三边).现有△ABC 满足sin A ∶si n B ∶sin C =2∶3∶7,且△ABC 的面积S △ABC =63,则下列结论正确的是( )A .△ABC 的周长为10+27B .△ABC 的三个内角满足A +B =2CC .△ABC 的外接圆半径为4213D .△ABC 的中线CD 的长为3 2答案 AB解析 A 项,设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,因为sin A ∶sin B ∶sin C =2∶3∶7,所以由正弦定理可得a ∶b ∶c =2∶3∶7,设a =2t ,b =3t ,c =7t (t >0),因为S △ABC =63,所以63=14⎣⎢⎡⎦⎥⎤7t 2×4t 2-⎝ ⎛⎭⎪⎫7t 2+4t 2-9t 222,解得t =2,则a =4,b =6,c =27,故△ABC 的周长为10+27,A 正确;B 项,因为cos C =a 2+b 2-c 22ab =16+36-282×4×6=12, 所以C =π3,A +B =π-π3=2π3=2C , 故B 正确;C 项,因为C =π3,所以sin C =32, 由正弦定理得2R =c sin C =2732=4213, R =2213, C 错误;D 项,由余弦定理得cos B =a 2+c 2-b 22ac =16+28-362×4×27=714, 在△BCD 中,BC =4,BD =7,由余弦定理得cos B =16+7-CD 22×4×7=714, 解得CD =19,D 错误.16.(2021·新高考全国Ⅱ)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,b =a +1,c =a +2.(1)若2sin C =3sin A ,求△ABC 的面积;(2)是否存在正整数a ,使得△ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由. 解 (1)因为2sin C =3sin A ,则2c =2(a +2)=3a ,则a =4,故b =5,c =6,cos C =a 2+b 2-c 22ab =18,所以C 为锐角, 则sin C =1-cos 2C =378,因此, S △ABC =12ab sin C =12×4×5×378=1574. (2)显然c >b >a ,若△ABC 为钝角三角形,则C 为钝角,由余弦定理可得cos C =a 2+b 2-c 22ab =a 2+a +12-a +222a a +1=a 2-2a -32a a +1<0,则0<a <3,由三角形三边关系可得a +a +1>a +2, 可得a >1,因为a ∈N *,故a =2.。
第27讲 正弦定理、余弦定理(解析版)

一、课程标准 1、通过对任意三角形边长和角度关系的探索, 2、掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.
二、基础知识回顾 1.正弦定理 a = b = c =2R(R 为△ABC 外接圆的半径). sin A sin B sin C
正弦定 理的常 见变形
2
四、例题选讲 考点一、运用正余弦定理解三角形
例 1、(2020 届山东实验中学高三上期中)在 △ABC 中,若 AB 13, BC 3, C 120 ,则 AC =
(
)
A.1
B.2
C.3
D.4
【答案】A
【解析】
余弦定理 AB2 BC 2 AC 2 2BC·AC cos C 将各值代入 得 AC2 3AC 4 0
a2
c2
2ac cos
B
,得 b2
a2
52
2 a 5
1 2
,
因为 b
10
a
,所以
(10
a)2
a2
52
2
a5
1 2
,
解得 a 3,所以 b 7 .
(2)由
cos
B
1 2
,得
sin
B
3 2
由正弦定理得 sin C c sin B 5 3 5 3 .
b
7 2 14
方法总结:本题考查正弦定理、余弦定理的公式.在解三角形时,如果式子中含有角的余弦或边的二次式, 要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时, 则要考虑两个定理都有可能用到.考查基本运算能力和转化与化归思想.
解得 AC 1 或 AC 4 (舍去)选 A.
(复习指导)第4章第6节正弦定理与余弦定理含解析

第6节正弦定理与余弦定理一、教材概念·结论·性质重现1.正弦定理在一个三角形中,各边的长和它所对角的正弦的比相等,即asin A=bsin B=csin C=2R,其中R是三角形外接圆的半径.正弦定理的变形公式:(1)a=2R sin A,b=2R sin B,c=2R sin C.(2)sin A=a2R,sin B=b2R,sin C=c2R.(3)a∶b∶c=sin A∶sin B∶sin C.若已知两边和其中一边的对角,解三角形时,可用正弦定理.在根据另一边所对角的正弦值,确定角的值时,要注意避免增根或漏解,常用的基本方法就是结合“大边对大角,大角对大边”及三角形内角和定理去考虑问题.2.余弦定理三角形任何一边的平方,等于其他两边的平方和减去这两边与它们夹角余弦的积的2倍.即a2=b2+c2-2bc cos A,b2=a2+c2-2ac cos B,c2=a2+b2-2ab cos C.余弦定理的推论:cos A=b2+c2-a22bc,cos B=a2+c2-b22ac,cos C=a2+b2-c22ab.3.三角形的面积公式(1)S=12ah(h表示边a上的高).(2)S =12bc sin A =12ac sin B =12ab sin C .(3)S =12r (a +b +c )(r 为三角形的内切圆半径). 4.常用结论在△ABC 中,常用以下结论: (1)∠A +∠B +∠C =π.(2)在三角形中大边对大角,大角对大边.(3)任意两边之和大于第三边,任意两边之差小于第三边. (4)sin(A +B )=sin C ;cos(A +B )=-cos C ;tan(A +B )=-tan C ;sin A +B 2=cos C 2;cos A +B 2=sin C2.(5)tan A +tan B +tan C =tan A ·tan B ·tan C . (6)A >B ⇔a >b ⇔sin A >sin B ⇔cos A <cos B . 二、基本技能·思想·活动体验1.判断下列说法的正误,对的打“√”,错的打“×”.(1)在三角形中,已知两角和一边或已知两边和一角都能解三角形.( √ ) (2)在△ABC 中,a sin A =a +b +c sin A +sin B +sin C.( √ )(3)在△ABC 中,a 2+b 2>c 2是△ABC 为锐角三角形的必要不充分条件.( √ ) (4)在△ABC 中,若sin A sin B <cos A cos B ,则此三角形是钝角三角形.( √ ) 2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a =5,c =2,cos A =23,则b =( )A . 2B . 3C .2D .3D 解析:由余弦定理,得4+b 2-2×2b cos A =5,整理得3b 2-8b -3=0,解得b =3或b =-13(舍去).故选D.3.在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边.若a =2b cos C ,则此三角形一定是( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形C 解析:在△ABC 中,因为cos C =a 2+b 2-c 22ab ,所以a =2b cos C =2b ·a 2+b 2-c 22ab ,所以a 2=a 2+b 2-c 2,所以b =c ,所以此三角形一定是等腰三角形.4.在△ABC 中,a =3,b =5,sin A =13,则sin B =( ) A.15 B.59 C.53D.1B 解析:根据正弦定理a sin A =b sin B ,有313=5sin B ,得sin B =59.故选B.5.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,A =45°.若三角形有两解,则边b 的取值范围是________.(2,22) 解析:如图,△ABC 有两解的充要条件是b sin 45°<2<b ,解得2<b <2 2.故b 的取值范围是(2,22).考点1 利用正弦定理、余弦定理解三角形——基础性1.(2020·全国卷Ⅲ)在△ABC 中,cos C =23,AC =4,BC =3,则cos B =( )A.19 B.13 C.12D.23A 解析:由余弦定理得 AB 2=AC 2+BC 2-2AC ·BC ·cos C=42+32-2×4×3×23=9,所以AB =3. 又由余弦定理可知cos B =AB 2+BC 2-AC 22AB ·BC =32+32-422×3×3=19.2.(2019·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则bc =( )A .6B .5C .4D .3A 解析:因为a sin A -b sinB =4c ·sinC ,所以由正弦定理得a 2-b 2=4c 2,即a 2=4c 2+b 2.由余弦定理得cos A =b 2+c 2-a 22bc =b 2+c 2-(4c 2+b 2)2bc =-3c22bc=-14,所以bc =6.3.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b =6,c =3,则A =________.75° 解析:由正弦定理,得sin B =b sin Cc =6sin 60°3=22.因为0°<B <180°,且b <c ,所以B <C ,故B =45°,所以A =180°-60°-45°=75°.4.(2019·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =________.3π4 解析:因为b sin A +a cos B =0, 所以a sin A =b-cos B.由正弦定理a sin A =bsin B ,得-cos B =sin B ,所以tan B=-1.又B∈(0,π),所以B=3π4.利用正、余弦定理解三角形的策略(1)已知三角形的两边和其中一边的对角解三角形,可用正弦定理,也可用余弦定理.用正弦定理时,需判断其解的个数;用余弦定理时,可根据一元二次方程根的情况判断解的个数.(2)三角形解的个数的判断:已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角进行判断.结合图像求解较为直观易解.考点2判断三角形的形状——应用性设△ABC的内角A,B,C所对的边分别为a,b,c.若b cos C+c cos B =a sin A,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定B解析:因为b cos C+c cos B=a sin A,由正弦定理得sin B cos C+sin C·cos B=sin2A,所以sin(B+C)=sin2A,即sin A=sin2A.又sin A>0,所以sin A=1,所以A=π2,故△ABC为直角三角形.若本例条件变为ab=cos Bcos A,判断△ABC的形状.解:由ab=cos Bcos A,得sin Asin B=cos Bcos A,所以sin A cos A=cos B sin B,所以sin 2A=sin 2B.因为A,B为△ABC的内角,所以2A=2B或2A=π-2B,所以A =B 或A +B =π2,所以△ABC 为等腰三角形或直角三角形.1.判断三角形形状的常用途径2.判断三角形的形状的注意点在判断三角形的形状时,一定要注意三角形的解是否唯一,并注重挖掘隐含条件.另外,在变形过程中,要注意角A ,B ,C 的范围对三角函数值的影响.在等式变形时,一般两边不要约去公因式,应移项提取公因式,以免漏解.1.在△ABC 中,c -a 2c =sin 2B2(a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形或直角三角形D .等腰直角三角形A 解析:由cosB =1-2sin 2B 2得sin 2B 2=1-cos B2,所以c -a 2c =1-cos B 2,即cos B =ac .(方法一)由余弦定理得cos B =a 2+c 2-b 22ac =a c ,即a 2+c 2-b 2=2a 2,所以a 2+b 2=c 2.所以△ABC 为直角三角形.又无法判断两直角边是否相等.故选A.(方法二)由正弦定理得cos B=sin Asin C,又sin A=sin (B+C)=sin B cos C+cosB·sin C,所以cos B sin C=sin B cos C+cos B·sin C,即sin B cos C=0.又sin B≠0,所以cos C=0.又角C为三角形的内角,所以C=π2,所以△ABC为直角三角形.又因为无法判断两直角边是否相等.故选A.2.给出下列命题:①若tan A tan B>1,则△ABC一定是钝角三角形;②若sin2A+sin2B=sin2C,则△ABC一定是直角三角形;③若cos(A-B)cos(B-C)cos(C-A)=1,则△ABC一定是等边三角形.其中正确命题的序号为________.②③解析:①因为tan A tan B>1,且A,B为三角形内角,所以tan A>0,tan B>0,所以A,B均为锐角.又因为-tan C=tan(A+B)=tan A+tan B1-tan A·tan B<0,所以tan C>0,所以C为锐角,所以△ABC不是钝角三角形,故①错误.②由正弦定理及条件,得a2+b2=c2,所以△ABC一定为直角三角形,故②正确.③由cos(A-B)cos(B-C)cos(C-A)=1及A,B,C为三角形内角,可得cos(A -B)=cos(B-C)=cos(C-A)=1,所以A=B=C.故③正确.考点3三角形的面积——综合性(2020·广东化州二模)在△ABC中,三个内角A,B,C所对的边为a,b,c.若S△ABC=23,a+b=6,a cos B+b cos Ac=2cos C,则c=()A.27 B.2 3 C.4 D.3 3B解析:因为a cos B+b cos Ac=sin A cos B+sin B cos Asin C=sin(A+B)sin(A+B)=1,所以2cos C=1,所以C=60°.若S△ABC =23,则12ab sin C=23,所以ab=8.因为a+b=6,所以c2=a2+b2-2ab·cos C=(a+b)2-2ab-ab=(a+b)2-3ab =62-3×8=12,所以c=2 3.故选B.(2020·全国卷Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知B=150°.(1)若a=3c,b=27,求△ABC的面积;(2)若sin A+3sin C=22,求C.解:(1)由余弦定理得a2+c2-2ac cos B=b2,将a=3c,b=27,B=150°代入,可得(3c)2+c2-2×3c×c cos 150°=(27)2,整理得7c2=28,解得c=2.所以a=2 3.所以S△ABC =12ac sin B=12×23×2×12= 3.(2)因为A+B+C=π,所以sin A=sin(B+C).又因为sin A+3sin C=2 2,所以sin(B+C)+3sin C=2 2,所以sin B cos C+cos B sin C+3sin C=2 2.将B=150°代入,整理得12cos C+32sin C=22,即sin(C+30°)=2 2.因为B=150°,所以0°<C<30°,即0°<C+30°<60°,所以C+30°=45°,解得C=15°.求解三角形面积问题的方法技巧(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积.(2)若已知三角形的三边,可先求其中一个角的余弦值,再求其正弦值,代入公式求面积.总之,结合图形恰当选择面积公式是解题的关键.1.(2019·全国卷Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c.若b=6,a=2c,B=π3,则△ABC的面积为________.63解析:由余弦定理得b2=a2+c2-2ac cos B.又因为b=6,a=2c,B=π3,所以36=4c2+c2-2×2c2×1 2,所以c=23,a=43,所以S△ABC =12ac sin B=12×43×23×32=6 3.2.(2020·全国卷Ⅰ)如图,在三棱锥P–ABC的平面展开图中,AC=1,AB =AD=3,AB⊥AC,AB⊥AD,∠CAE=30°,则cos∠FCB=________.-14解析:AB⊥AC,AB=3,AC=1,由勾股定理得BC=AB2+AC2=2.同理得BD=6,所以BF=BD=6,在△ACE中,AC=1,AE=AD=3,∠CAE=30°,由余弦定理得CE2=AC2+AE2-2AC·AE cos 30°=1+3-2×1×3×3 2=1,所以CF=CE=1,在△BCF 中,BC =2,BF =6,CF =1,由余弦定理得cos ∠FCB =CF 2+BC 2-BF 22CF ·BC =1+4-62×1×2=-14. 3.(2020·菏泽高三联考)在①B =π3,②a =2,③b cos A +a cos B =3+1这三个条件中任选一个,补充在下面问题中,并解决相应问题.已知在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,△ABC 的面积为S .若4S =b 2+c 2-a 2,b =6,且________,求△ABC 的面积S 的大小.解:因为4S =b 2+c 2-a 2,cos A =b 2+c 2-a 22bc ,S =12bc sin A .所以2bc sin A =2bc cos A . 显然cos A ≠0,所以tan A =1. 又A ∈⎝ ⎛⎭⎪⎫0,π2,所以A =π4.若选①,B =π3,由a sin A =b sin B ,得a =b sin Asin B =6×2232=2.又sin C =sin [π-(A +B )]=sin(A +B )=sin A cos B +cos A sin B =6+24,所以S =12ab sin C =12×2×6×6+24=3+32.若选②,a =2,由a sin A =b sin B ,得sin B =b sin A a =6×222=32. 因为B ∈⎝ ⎛⎭⎪⎫0,π2,所以cos B =12.又sin C =sin [π-(A +B )]=sin(A +B )=sin A cos B +cos A sin B =6+24, 所以S =12ab sin C =12×2×6×6+24=3+32. 若选③,b cos A +a cos B =3+1,所以a cos B =1, 即a ·a 2+c 2-62ac =1,所以a 2=6+2c -c 2.又a 2=6+c 2-26c ×22=6+c 2-23c ,所以6+2c -c 2=6+c 2-23c ,解得c =3+1. 所以S =12bc sin A =12×6×(3+1)×sin π4=3+32.已知△ABC 的三边长分别为a ,b ,c ,满足a 2+b 2+2c 2=8,则三角形ABC 面积的最大值为( )A.55B.255C.355D.53[四字程序]读想算思 △ABC 面积的最大值1.面积的表达式; 2.以谁为变量? 用适当的变量表示S 转化与化归a 2+b 2+2c 2=81.S =12ah ; 2.S =12ab sin C ; 3.边作变量; 4.角作变量; 5.海伦公式S 2=14a 2b 2·(1-cos 2C );S ≤2sin C3-2cos C1.均值不等式; 2.函数最值; 3.三角函数的性质思路参考:余弦定理+角化边+二次函数的最值. B 解析:因为a 2+b 2+2c 2=8,即a 2+b 2=8-2c 2, 所以S 2=14a 2b 2sin 2C=14a 2b 2(1-cos 2C ) =14a 2b 2⎣⎢⎡⎦⎥⎤1-⎝⎛⎭⎪⎫a 2+b 2-c 22ab 2 =14a 2b 2-(8-3c 2)216 ≤14⎝⎛⎭⎪⎫a 2+b 222-(8-3c 2)216 =-5c 416+c 2=-516⎝ ⎛⎭⎪⎫c 2-852+45,故当a 2=b 2=125,c 2=85时,S 2有最大值45, 所以△ABC 面积的最大值为255.思路参考:设高转化,利用均值不等式. B 解析:如图,过点C 作CD ⊥AB 于点D . 设AD =m ,BD =n ,CD =h .因为a 2+b 2+2c 2=8,所以m 2+n 2+2h 2+2c 2=8. 因为m 2+n 2≥(m +n )22=c 22,当且仅当m =n 时取等号.故m 2+n 2+2h 2+2c 2≥c 22+2h 2+2c 2=5c 22+2h 2≥25ch =45S ,所以S ≤255,当且仅当m =n ,c =255h 时取等号. 所以△ABC 面积的最大值为255.思路参考:利用海伦公式S =p (p -a )(p -b )(p -c )+均值不等式.B解析:设p=12(a+b+c),则p-a=12(b+c-a),p-b=12(a+c-b),p-c=12(a+b-c).所以S=p(p-a)(p-b)(p-c)=14[(a+b)2-c2][c2-(b-a)2]=144a2b2-⎝⎛⎭⎪⎫a2+b2-c222.因为a2+b2+2c2=8,所以S=144a2b2-(8-3c2)2.因为a2+b2+2c2=8,所以4a2b2≤(a2+b2)2=(8-2c2)2.所以S≤14(8-2c2)2-(8-3c2)2=1416c2-5c4.当c2=85时,S2有最大值45.所以△ABC面积的最大值为25 5.思路参考:建系设点.B解析:如图,以AB所在直线为x轴,以线段AB的中垂线为y轴建立平面直角坐标系.不妨令x1>0,y2>0,设A(-x1,0),B(x1,0),C(x2,y2).因为a2+b2+2c2=8,所以(x1-x2)2+y22+(x1+x2)2+y22+8x21=8,所以5x21+x22+y22=4.因为S=x1y2,所以25S≤5x21+y22=4-x22≤4.所以S≤255,当且仅当x2=0,5x21=y22=2时取等号.所以△ABC面积的最大值为25 5.1.本题考查三角形的面积的最值问题,解法灵活多变,基本解题策略是借助于三角形的相关知识将目标函数转化为边之间的代数关系,借助于三角函数的性质求最值,对于此类多元最值问题要注意合理转化或消元.2.基于课程标准,解答本题一般需要熟练掌握数学阅读技能、运算求解能力、推理能力和表达能力,体现了逻辑推理、数学运算的核心素养,试题的解答过程展现了数学文化的魅力.3.基于高考数学评价体系,本题创设了数学探索创新情景,通过知识之间的联系和转化,将最值转化为熟悉的数学模型.本题的切入点十分开放,可以从不同的角度解答题目,体现了灵活性;同时,解题的过程需要知识之间的转化,体现了综合性.(2020·全国卷Ⅱ)△ABC中,sin2A-sin2B-sin2C=sin B sin C.(1)求A;(2)若BC=3,求△ABC周长的最大值.解:(1)由正弦定理和已知条件sin2A-sin2B-sin2C=sin B sin C,得BC2-AC2-AB2=AC·AB.①由余弦定理得BC2=AC2+AB2-2AC·AB cos A.②由①②得cos A=-1 2.因为0<A<π,所以A=2π3.(2)由正弦定理及(1)得ACsin B=ABsin C=BCsin A=23,从而AC=23sin B,AB=23sin(π-A-B)=3cos B-3sin B.故BC +AC +AB =3+3sin B +3cos B =3+23sin ⎝ ⎛⎭⎪⎫B +π3.又0<B <π3,所以当B =π6时,△ABC 的周长取得最大值3+2 3.。
正弦定理和余弦定理 含解析

3-6正弦定理和余弦定理基础巩固强化1.(文)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,如果c =3a ,B =30°,那么角C 等于( )A .120°B .105°C .90°D .75°[答案] A[解析] ∵c =3a ,∴sin C =3sin A =3sin(180°-30°-C )=3sin(30°+C )=3⎝ ⎛⎭⎪⎫32sin C +12cos C =32sin C +32cos C ,即sin C =-3cos C ,∴tan C =- 3.又C ∈(0°,180°),∴C =120°.故选A.(理)(2011·郑州六校质量检测)△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若cb <cos A ,则△ABC 为( )A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形[答案] A[解析] 依题意得sin Csin B <cos A ,sin C <sin B cos A ,所以sin(A +B )<sin B cos A ,即sin B cos A +cos B sin A -sin B cos A <0,所以cos B sin A <0.又sin A >0,于是有cos B <0,B 为钝角,△ABC 是钝角三角形,选A.2.(文)(2011·湖北八校联考)若满足条件C =60°,AB =3,BC =a 的△ABC 有两个,那么a 的取值范围是( )A .(1,2)B .(2,3)C .(3,2)D .(1,2) [答案] C[解析] 由条件知,a sin60°<3<a ,∴3<a <2.(理)在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,若a =2,b =22,且三角形有两解,则角A 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,π4 B.⎝ ⎛⎭⎪⎫π4,π2 C.⎝ ⎛⎭⎪⎫π4,3π4 D.⎝ ⎛⎭⎪⎫π4,π3 [答案] A[解析] 由条件知b sin A <a ,即22sin A <2,∴sin A <22, ∵a <b ,∴A <B ,∴A 为锐角,∴0<A <π4.3.(2011·福建质检)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =42,B =45°,则sin C 等于( )A.441B.45 C.425 D.44141[答案] B[解析] 依题意得b =a 2+c 2-2ac cos B =5,又c sin C =b sin B ,所以sin C =c sin B b =42sin45°5=45,选B.4.(2012·天津理,6)在△ABC 中,内角A 、B 、C 所对的边分别是a 、b 、c ,已知8b =5c ,C =2B ,则cos C =( )A.725 B .-725 C .±725 D.2425[答案] A[解析] 由b sin B =csin C 及8b =5c ,C =2B 得,5sin2B =8sin B ,∴cos B =45,∴cos C =cos2B =2cos 2B -1=725.5.(2011·辽宁理,4)△ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,a sin A sin B +b cos 2A =2a ,则ba =( )A .2 3B .2 2 C. 3 D. 2[答案] D[解析] ∵a sin A sin B +b cos 2A =2a , ∴sin 2A sin B +sin B cos 2A =2sin A , ∴sin B =2sin A ,∴b =2a ,∴ba = 2.6.(文)在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若a 2-b 2=3bc ,sin C =23sin B ,则A =( )A .30°B .60°C .120°D .150°[答案] A[解析] 由余弦定理得:cos A =b 2+c 2-a 22bc ,由题知b 2-a 2=-3bc ,c 2=23bc ,则cos A =32,又A ∈(0°,180°),∴A =30°,故选A.(理)△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,如果a 、b 、c 成等差数列,∠B =30°,△ABC 的面积为0.5,那么b 为( )A .1+ 3B .3+ 3 C.3+33 D .2+ 3[答案] C[解析] 12ac sin B =12,∴ac =2, 又2b =a +c ,∴a 2+c 2=4b 2-4,由余弦定理b 2=a 2+c 2-2ac cos B 得,b =3+33.7.在直角坐标系xOy 中,已知△ABC 的顶点A (-1,0),C (1,0),顶点B 在椭圆x 24+y 23=1上,则sin A +sin C sin B 的值为________.[答案] 2[解析] 由题意知△ABC 中,AC =2,BA +BC =4, 由正弦定理得sin A +sin C sin B =BC +BAAC =2.8.(2011·广州一测)△ABC 的三个内角A 、B 、C 所对边的长分别为a 、b 、c ,已知c =3,C =π3,a =2b ,则b 的值为________.[答案]3[解析] 依题意及余弦定理得c 2=a 2+b 2-2ab cos C ,即9=(2b )2+b 2-2×2b ×b cos π3,解得b 2=3,∴b = 3.9.(文)(2012·石家庄质检)在△ABC 中,∠A =60°,BC =2,AC =263,则∠B =________.[答案] 45°[解析] 利用正弦定理可知:BC sin A =AC sin B , 即2sin60°=263sin B ,∴sin B =22,∵2>263,∴BC >AC ,∴∠A >∠B ,∴∠B =45°.(理)(2012·北京西城区期末)在△ABC 中,三个内角A 、B 、C 的对边分别为a 、b 、c .若b =5,B =π4,tan C =2,则c =________.[答案] 2 2 [解析]⎭⎬⎫sin 2C +cos 2C =1tan C =2⇒sin C cos C =2⇒sin 2C =45⇒sin C =255.由正弦定理,得b sin B =c sin C ,∴c =sin Csin B ×b =2 2.10.(2012·河南商丘模拟)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且b cos C =(3a -c )cos B .(1)求cos B 的值;(2)若BA →·BC →=2,且b =22,求a 和c 的值.[解析] (1)由正弦定理得,sin B cos C =3sin A cos B -sin C cos B , ∴sin(B +C )=3sin A cos B ,可得sin A =3sin A cos B . 又sin A ≠0,∴cos B =13.(2)由BA →·BC →=2,可得ac cos B =2. 又cos B =13,∴ac =6.由b 2=a 2+c 2-2ac cos B ,及b =22, 可得a 2+c 2=12,∴(a -c )2=0,即a =c . ∴a =c = 6.[点评] 本题主要考查正、余弦定理及三角运算等基础知识,同时考查运算求解能力.能力拓展提升11.(文)(2011·泉州质检)△ABC 的三个内角A 、B 、C 的对边分别为a 、b 、c ,且a cos C ,b cos B ,c cos A 成等差数列,则角B 等于( )A .30°B .60°C .90°D .120°[答案] B[解析] 依题意得a cos C +c cos A =2b cos B ,根据正弦定理得,sin A cos C +sin C cos A =2sin B cos B ,则sin(A +C )=2sin B cos B ,即sin B =2sin B cos B ,又0°<B <180°,所以cos B =12,所以B =60°,选B.(理)在△ABC 中,内角A 、B 、C 对边的长度分别是a 、b 、c ,已知c =2,C =π3,△ABC 的面积等于3,则a 、b 的值分别为( )A .a =1,b =4B .a =4,b =1C .a =4,b =4D .a =2,b =2 [答案] D[解析] 由余弦定理得,a 2+b 2-ab =4,又因为△ABC 的面积等于3,所以12ab sin C =3,∴ab =4.联立⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4.解得a =2,b =2.12.(2011·天津理,6)如图,在△ABC 中,D 是边AC 上的点,且AB =AD,2AB =3BD ,BC =2BD ,则sin C 的值为( )A.33B.36C.63D.66[答案] D[解析] 如图,根据条件,设BD =2,则AB =3=AD ,BC =4. 在△ABC 中,由正弦定理得3sin C =4sin A ,在△ABD 中,由余弦定理得, cos A =3+3-42×3×3=13,∴sin A =223,∴sin C =3sin A 4=3×2234=66,故选D. 13.(文)(2011·济南外国语学校质检)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =2,b =2,sin B +cos B =2,则∠A 的大小为________.[答案] π6[解析] ∵sin B +cos B =2sin(B +π4)=2, ∴sin(B +π4)=1, ∵0<B <π,∴B =π4,∵b sin B =a sin A ,∴sin A =a sin B b =2×222=12, ∵a <b ,∴A <B ,∴A =π6.(理)(2011·河南质量调研)在△ABC 中,角A 、B 、C 所对应的边分别为a 、b 、c ,且满足cos A 2=255,AB →·AC →=3,则△ABC 的面积为________.[答案] 2[解析] 依题意得cos A =2cos 2A 2-1=35,∴sin A =1-cos 2A =45,∵AB →·AC →=AB ·AC ·cos A =3,∴AB ·AC =5,∴△ABC 的面积S =12AB ·AC ·sin A =2.14.(2011·安阳月考)在△ABC 中,C =60°,a 、b 、c 分别为A 、B 、C 的对边,则a b +c +bc +a=________.[答案] 1[解析] ∵C =60°,∴a 2+b 2-c 2=ab , ∴(a 2+ac )+(b 2+bc )=(b +c )(a +c ), ∴a b +c +b a +c=1. 15.(2012·天津文,16)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知a =2,c =2,cos A =-24.(1)求sin C 和b 的值; (2)求cos(2A +π3)的值.[分析] (1)由cos A =-24及0<A <π,sin 2A +cos 2A =1可求sin A ,再由正弦定理求sin C ,由余弦定理a 2=b 2+c 2-2bc cos A ,可求b 的值.(2)由(1)知道sin A ,cos A ,用正弦、余弦二倍角公式求sin2A ,cos2A ,展开cos(2A +π3)代入即可.[解析] (1)在△ABC 中, 由cos A =-24,可得sin A =144.又由a sin A =c sin C 及a =2,c =2,可得sin C =74. 由a 2=b 2+c 2-2bc cos A ,得b 2+b -2=0, 因为b >0,故解得b =1. 所以sin C =74,b =1.(2)由cos A =-24,sin A =144得, cos2A =2cos 2A -1=-34, sin2A =2sin A cos A =-74.所以,cos(2A +π3)=cos2A cos π3-sin2A sin π3 =-3+218. [点评] 本题主要考查同角三角函数的基本关系、二倍角的正弦与余弦关系、两角和的余弦公式以及正弦定理、余弦定理等基础知识.考查基本运算求解能力.16.(文)在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,向量m =(2sin B ,-3),n =(cos2B,2cos 2B2-1)且m ∥n .(1)求锐角B 的大小;(2)如果b =2,求△ABC 的面积S △ABC 的最大值.[分析] (1)问利用平行向量的坐标表示将向量知识转化为三角函数,利用三角恒等变换知识解决;(2)问利用余弦定理与基本不等式结合三角形面积公式解决.[解析] (1)∵m ∥n ,∴2sin B ⎝ ⎛⎭⎪⎫2cos 2B 2-1=-3cos2B , ∴sin2B =-3cos2B ,即tan2B =-3, 又∵B 为锐角,∴2B ∈(0,π), ∴2B =2π3,∴B =π3.(2)∵B =π3,b =2,∴由余弦定理cos B =a 2+c 2-b 22ac 得,a 2+c 2-ac -4=0,又∵a 2+c 2≥2ac ,∴ac ≤4(当且仅当a =c =2时等号成立),S △ABC =12ac sin B =34ac ≤3(当且仅当a =c =2时等号成立).[点评] 本题将三角函数、向量与解三角形有机的结合在一起,题目新颖精巧,难度也不大,即符合在知识“交汇点”处命题,又能加强对双基的考查,特别是向量的坐标表示及运算,大大简化了向量的关系的运算,该类问题的解题思路通常是将向量的关系用坐标运算后转化为三角函数问题,然后用三角函数基本公式结合正、余弦定理求解.(理)已知A 、B 、C 分别为△ABC 的三边a 、b 、c 所对的角,向量m =(sin A ,sin B ),n =(cos B ,cos A ),且m ·n =sin2C .(1)求角C 的大小;(2)若sin A 、sin C 、sin B 成等差数列,且CA →·(AB →-AC →)=18,求边c 的长.[解析] (1)m ·n =sin A ·cos B +sin B ·cos A =sin(A +B ).在△ABC 中,由于sin(A +B )=sin C .∴m ·n =sin C .又∵m ·n =sin2C ,∴sin2C =sin C ,∴2sin C cos C =sin C .又sin C ≠0,所以cos C =12.而0<C <π,因此C =π3.(2)由sin A ,sin C ,sin B 成等差数列得,2sin C =sin A +sin B ,由正弦定理得,2c =a +b . ∵CA →·(AB →-AC →)=18,∴CA →·CB →=18.即ab cos C =18,由(1)知,cos C =12,所以ab =36.由余弦定理得,c 2=a 2+b 2-2ab cos C =(a +b )2-3ab .∴c 2=4c 2-3×36,∴c 2=36.∴c =6.。
正弦定理和余弦定理 (含详解)

第三章第七节正弦定理和余弦定理1.(2009·广东高考)已知△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c .若a =c =6+2,且∠A =75°,则b = ( )A .2B .4+2 3C .4-2 3 D.6- 2解析:如图所示.在△ABC 中,由正弦定理得sin 30b == =4, ∴b=2. 答案:A2.在锐角△ABC 中,BC =1,B =2A ,则AC cos A的值等于______,AC 的取值范围为________. 解析:由正弦定理得AC sin2A =BC sin A. 即AC 2sin A cos A =1sin A .∴AC cos A =2. ∵△ABC 是锐角三角形,∴0<A <π2,0<2A <π2,0<π-3A <π2,解得π6<A <π4. 由AC =2cos A 得AC 的取值范围为(2,3).答案:2 (2,3)3.(2009·全国卷Ⅰ)在△ABC 中,内角A 、B 、C 的对边长分别为a 、b 、c .已知a 2-c 2=2b ,且sin A cos C =3cos A sin C ,求b .解:由余弦定理得a 2-c 2=b 2-2bc cos A .又a 2-c 2=2b ,b ≠0,所以b =2c cos A +2.①又sin A cos C =3cos A sin C ,sin A cos C +cos A sin C =4cos A sin C ,sin(A +C )=4cos A sin C ,sin B =4sin C cos A .由正弦定理得sin B =b c sin C ,故b =4c cos A .②由①、②解得b =4.4.(2010·天津模拟)在△ABC 中,cos 2B 2=a +c 2c,(a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为 ( )A .正三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形解析:∵cos 2B 2=a +c 2c ,∴cos B +12=a +c 2c,∴cos B =a c , ∴a 2+c 2-b 22ac=a c , ∴a 2+c 2-b 2=2a 2,即a 2+b 2=c 2,∴△ABC 为直角三角形.答案:B5.在△ABC 中,已知2sin A cos B =sin C ,那么△ABC 一定是 ( )A .直角三角形B .等腰三角形C .等腰直角三角形D .正三角形解析:法一:因为在△ABC 中,A +B +C =π,即C =π-(A +B ),所以sin C =sin(A +B ).由2sin A cos B =sin C ,得2sin A cos B =sin A cos B +cos A sin B ,即sin A cos B -cos A sin B =0,即sin(A -B )=0.又因为-π<A -B <π,所以A -B =0,即A =B .所以△ABC 是等腰三角形.法二:利用正弦定理和余弦定理2sin A cos B =sin C 可化为2a ·a 2+c 2-b 22ac=c ,即a 2+c 2-b 2=c 2,即a 2-b 2=0, 即a 2=b 2,故a =b .所以△ABC 是等腰三角形.答案:B6.在△ABC 中,AB =3,AC =1,B =π6,则△ABC 的面积等于 ( ) A.32 B.34 C.32或 3 D.32或34解析:由正弦定理知AB sin C =AC sin B ,∴sin C =AB sin B AC =32, ∴C =π3或2π3,A =π2或π6,∴S =32或34. 答案:D7.在△ABC 中,面积S =a 2-(b -c )2,则cos A = ( )A.817B.1517C.1315D.1317解析:S =a 2-(b -c )2=a 2-b 2-c 2+2bc =2bc -2bc cos A =12bc sin A ,∴sin A =4(1-cos A ),16(1-cos A )2+cos 2A =1,∴cos A =1517. 答案:B8.(2009·浙江高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos A 2=255,AB ·AC =3. (1)求△ABC 的面积;(2)若c =1,求a 的值.解:(1)因为cos A 2=255, 所以cos A =2cos 2A 2-1=35,sin A =45. 又由AB ·AC =3,得bc cos A =3,所以bc =5. 因此S △ABC =12bc sin A =2. (2)由(1)知,bc =5,又c =1,所以b =5,由余弦定理,得a 2=b 2+c 2-2bc cos A =20,所以a =2 5.9.若△ABC ( )A .5B .6C .7D .8解析:依题意及面积公式S =12bc sin A , 得103=12bc sin60°,得bc =40. 又周长为20,故a +b +c =20,b +c =20-a ,由余弦定理得:a 2=b 2+c 2-2bc cos A =b 2+c 2-2bc cos60°=b 2+c 2-bc =(b +c )2-3bc ,故a 2=(20-a )2-120,解得a =7.答案:C10.(文)在三角形ABC 中,已知∠B =60°,最大边与最小边的比为3+12,则三角形的最大角为 ( )A .60°B .75°C .90°D .115°解析:不妨设a 为最大边.由题意,a c =sin A sin C =3+12, 即sin A sin(120°-A )=3+12, ∴sin A 32cos A +12sin A =3+12, (3-3)sin A =(3+3)cos A ,∴tan A =2+3,∴A =75°.答案:B(理)锐角△ABC 中,若A =2B ,则a b的取值范围是 ( ) A .(1,2) B .(1,3) C .(2,2) D .(2,3)解析:∵△ABC 为锐角三角形,且A =2B ,∴⎩⎨⎧0<2B <π2,0<π-3B <π2,∴π6<B <π4, ∴sin A =sin2B =2sin B cos B ,a b =sin Asin B =2cos B ∈(2,3).答案:D11.已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(3,-1),n =(cos A ,sin A ),若m ⊥n ,且a cos B +b cos A =c sin C ,则角B =________.解析:∵m ⊥n ,∴3cos A -sin A =0,∴tan A =3,∴A =π3. ∵a cos B +b cos A =c sin C ,∴sin A cos B +sin B cos A =sin C sin C ,∴sin(A +B )=sin 2C ,∴sin C =sin 2C ,∵sin C ≠0,∴sin C =1.∴C =π2,∴B =π6. 答案:π612.(文)(2010·长郡模拟)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,π3<C <π2且b a -b =sin2C sin A -sin2C(1)判断△ABC 的性状;(2)若|BA +BC |=2,求BA ·BC 的取值范围.解:(1)由b a -b =sin2C sin A -sin2C及正弦定理得sin B =sin2C , ∴B =2C ,且B +2C =π,若B =2C ,π3<C <π2, ∴23π<B <π,B +C >π(舍); ∴B +2C =π,则A =C ,∴△ABC 为等腰三角形.(2)∵|BA +BC |=2,∴a 2+c 2+2ac ·cos B =4,∴cos B =2-a 2a 2(∵a =c ), 而cos B =-cos2C ,π3<C <π2, ∴12<cos B <1, ∴1<a 2<43, 又BA ·BC =ac cos B =2-a 2,∴BA ·BC ∈(23,1).(理)(2010·广州模拟)在△ABC 中,A ,B ,C 分别是三边a ,b ,c 的对角.设m =(cos C 2,sin C 2),n =(cos C 2,-sin C 2),m ,n 的夹角为π3. (1)求C 的大小;(2)已知c =72,三角形的面积S =332,求a +b 的值. 解:(1)m ·n =cos 2C 2-sin 2C 2=cos C , 又m ·n =|m ||n |cos π3=12, 故cos C =12,∵0<C <π,∴C =π3. (2)S =12ab sin C =12ab sin π3=34ab , 又已知S =332,故34ab =332,∴ab =6. ∵c 2=a 2+b 2-2ab cos C ,c =72, ∴494=a 2+b 2-2ab ×12=(a +b )2-3ab . ∴(a +b )2=494+3ab =494+18=1214, ∴a +b =112.。
最新正弦定理和余弦定理(含解析)

第七节正弦定理和余弦定理[知识能否忆起]1.正弦定理 分类 内容定理a sin A =b sin B =c sin C=2R (R 是△ABC 外接圆的半径) 变形 公式 ①a =2R sin_A ,b =2R sin_B ,c =2R sin_C ,②sin A ∶sin B ∶sin C =a ∶b ∶c , ③sin A =a 2R ,sin B =b 2R ,sin C =c2R解决的 问题 ①已知两角和任一边,求其他两边和另一角, ②已知两边和其中一边的对角,求另一边的对角2.余弦定理 分类 内容定理在△ABC 中,有a 2=b 2+c 2-2bc cos_A ; b 2=a 2+c 2-2ac cos_B ;c 2=a 2+b 2-2ab cos_C 变形 公式 cos A =b 2+c 2-a 22bc ;cos B =a 2+c 2-b 22ac ;cos C =a 2+b 2-c 22ab解决的 问题 ①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两个角 3.三角形中常用的面积公式 (1)S =12ah (h 表示边a 上的高);(2)S =12bc sin A =12ac sin B =12ab sin C ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).[小题能否全取]1.(2012·广东高考)在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC =( ) A .43 B .2 3 C. 3D.32解析:选B 由正弦定理得:BC sin A =AC sin B ,即32sin 60°=AC sin 45°,所以AC =3232×22=2 3.2.在△ABC 中,a =3,b =1,c =2,则A 等于( ) A .30° B .45° C .60°D .75°解析:选C ∵cos A =b 2+c 2-a 22bc =1+4-32×1×2=12,又∵0°<A <180°,∴A =60°.3.(教材习题改编)在△ABC 中,若a =18,b =24,A =45°,则此三角形有( ) A .无解 B .两解C .一解D .解的个数不确定解析:选B ∵a sin A =bsin B ,∴sin B =b a sin A =2418sin 45°,∴sin B =223.又∵a <b ,∴B 有两个.4.(2012·陕西高考)在△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c .若a =2,B =π6,c =23,则b =________. 解析:由余弦定理得b 2=a 2+c 2-2ac cos B =4+12-2×2×23×32=4,所以b =2. 答案:25.△ABC 中,B =120°,AC =7,AB =5,则△ABC 的面积为________. 解析:设BC =x ,由余弦定理得49=25+x 2-10x cos 120°, 整理得x 2+5x -24=0,即x =3.因此S △ABC =12AB ×BC ×sin B =12×3×5×32=1534.答案:1534(1)在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B .(2)在△ABC 中,已知a 、b 和A 时,解的情况如下:A 为锐角A 为钝角 或直角图形关系式 a =b sin A b sin A <a <ba ≥ba >b解的个数一解两解一解一解利用正弦、余弦定理解三角形典题导入[例1] (2012·浙江高考)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b sin A =3a cos B .(1)求角B 的大小;(2)若b =3,sin C =2sin A ,求a ,c 的值. [自主解答] (1)由b sin A =3a cos B 及正弦定理 a sin A =bsin B,得sin B =3cos B , 所以tan B =3,所以B =π3.(2)由sin C =2sin A 及a sin A =csin C ,得c =2a .由b =3及余弦定理b 2=a 2+c 2-2ac cos B ,得9=a 2+c 2-ac . 所以a =3,c =2 3.在本例(2)的条件下,试求角A 的大小. 解:∵a sin A =bsin B ,∴sin A =a sin Bb =3·sin π33=12. ∴A =π6.由题悟法1.应熟练掌握正、余弦定理及其变形.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.2.已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.以题试法1.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a . (1)求b a;(2)若c 2=b 2+3a 2,求B . 解:(1)由正弦定理得,sin 2A sin B +sin B cos 2A = 2sin A ,即 sin B (sin 2A +cos 2A )=2sin A . 故sin B = 2sin A ,所以ba= 2.(2)由余弦定理和c 2=b 2+3a 2,得cos B =(1+3)a2c .由(1)知b 2=2a 2,故c 2=(2+3)a 2.可得cos 2B =12,又cos B >0,故cos B =22,所以B =45°.利用正弦、余弦定理判定三角形的形状典题导入[例2] 在△ABC 中a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.[自主解答] (1)由已知,根据正弦定理得2a 2=(2b +c )·b +(2c +b )c ,即a 2=b 2+c 2+bc . 由余弦定理得a 2=b 2+c 2-2bc cos A , 故cos A =-12,∵0<A <180°,∴A =120°.(2)由(1)得sin 2A =sin 2B +sin 2C +sin B sin C =34.又sin B +sin C =1, 解得sin B =sin C =12.∵0°<B <60°,0°<C <60°,故B =C , ∴△ABC 是等腰的钝角三角形.由题悟法依据已知条件中的边角关系判断三角形的形状时,主要有如下两种方法:(1)利用正、余弦定理把已知条件转化为边边关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状;(2)利用正、余弦定理把已知条件转化为内角的三角函数间的关系,通过三角函数恒等变形,得出内角的关系,从而判断出三角形的形状,此时要注意应用A +B +C =π这个结论.[注意] 在上述两种方法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解.以题试法2.(2012·安徽名校模拟)已知△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,向量m =(4,-1),n =⎝⎛⎭⎫cos 2A 2,cos 2A ,且m ·n =72. (1)求角A 的大小;(2)若b +c =2a =23,试判断△ABC 的形状.解:(1)∵m =(4,-1),n =⎝⎛⎭⎫cos 2A2,cos 2A , ∴m ·n =4cos 2A2-cos 2A =4·1+cos A 2-(2cos 2A -1)=-2cos 2A +2cos A +3.又∵m ·n =72,∴-2cos 2A +2cos A +3=72,解得cos A =12.∵0<A <π,∴A =π3.(2)在△ABC 中,a 2=b 2+c 2-2bc cos A ,且a =3, ∴(3)2=b 2+c 2-2bc ·12=b 2+c 2-bc .①又∵b +c =23,∴b =23-c ,代入①式整理得c 2-23c +3=0,解得c =3,∴b = 3,于是a =b =c = 3,即△ABC 为等边三角形.与三角形面积有关的问题典题导入[例3] (2012·新课标全国卷)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cos C +3a sin C -b -c =0.(1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c .[自主解答] (1)由a cos C +3a sin C -b -c =0及正弦定理得sin A cos C +3sin A sin C -sin B -sin C =0.因为B =π-A -C ,所以3sin A sin C -cos A sin C -sin C =0. 由于sin C ≠0,所以sin ⎝⎛⎭⎫A -π6=12. 又0<A <π,故A =π3.(2)△ABC 的面积S =12bc sin A =3,故bc =4.而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8. 解得b =c =2.由题悟法1.正弦定理和余弦定理并不是孤立的.解题时要根据具体题目合理选用,有时还需要交替使用.2.在解决三角形问题中,面积公式S =12ab sin C =12bc sin A =12ac sin B 最常用,因为公式中既有边也有角,容易和正弦定理、余弦定理结合应用.以题试法3.(2012·江西重点中学联考)在△ABC 中,12cos 2A =cos 2A -cos A .(1)求角A 的大小;(2)若a =3,sin B =2sin C ,求S △ABC .解:(1)由已知得12(2cos 2A -1)=cos 2A -cos A ,则cos A =12.因为0<A <π,所以A =π3.(2)由b sin B =c sin C ,可得sin B sin C =b c=2, 即b =2c .所以cos A =b 2+c 2-a 22bc =4c 2+c 2-94c 2=12,解得c =3,b =23,所以S △ABC =12bc sin A =12×23×3×32=332.1.在△ABC 中,a 、b 分别是角A 、B 所对的边,条件“a <b ”是使“cos A >cos B ”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选C a <b ⇔A <B ⇔cos A >cos B .2.(2012·泉州模拟)在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边.若A =π3,b =1,△ABC 的面积为32,则a 的值为( ) A .1 B .2 C.32D. 3解析:选D 由已知得12bc sin A =12×1×c ×sin π3=32,解得c =2,则由余弦定理可得a 2=4+1-2×2×1×cos π3=3⇒a = 3.3.(2013·“江南十校”联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =23,c =22,1+tan A tan B =2c b,则C =( )A .30°B .45°C .45°或135°D .60°解析:选B 由1+tan A tan B =2c b 和正弦定理得cos A sin B +sin A cos B =2sin C cos A , 即sin C =2sin C cos A , 所以cos A =12,则A =60°.由正弦定理得23sin A =22sin C ,则sin C =22, 又c <a ,则C <60°,故C =45°.4.(2012·陕西高考)在△ABC 中 ,角A ,B ,C 所对边的长分别为a ,b ,c ,若a 2+b 2=2c 2,则cos C 的最小值为( )A.32B.22C.12D .-12解析:选C 由余弦定理得a 2+b 2-c 2=2ab cos C ,又c 2=12(a 2+b 2),得2ab cos C =12(a 2+b 2),即cos C =a 2+b 24ab ≥2ab 4ab =12.5.(2012·上海高考)在△ABC 中,若sin 2 A +sin 2B <sin 2C ,则△ABC 的形状是( ) A .锐角三角形B .直角三角形C .钝角三角形D .不能确定解析:选C 由正弦定理得a 2+b 2<c 2,所以cos C =a 2+b 2-c 22ab<0,所以C 是钝角,故△ABC 是钝角三角形.6.在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c .若b =2a sin B ,则角A 的大小为________.解析:由正弦定理得sin B =2sin A sin B ,∵sin B ≠0, ∴sin A =12,∴A =30°或A =150°.答案:30°或150°7.在△ABC 中,若a =3,b =3,A =π3,则C 的大小为________.解析:由正弦定理可知sin B =b sin Aa =3sin π33=12,所以B =π6或5π6(舍去),所以C =π-A -B =π-π3-π6=π2.答案:π28.(2012·北京西城期末)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c .若b =25,B =π4,sin C =55,则c =________;a =________.解析:根据正弦定理得b sin B =c sin C ,则c =b sin Csin B=22,再由余弦定理得b 2=a 2+c 2-2ac cos B ,即a 2-4a -12=0,(a +2)(a -6)=0,解得a =6或a =-2(舍去).答案:22 69.(2012·北京高考)在△ABC 中,若a =2,b +c =7,cos B =-14,则b =________.解析:根据余弦定理代入b 2=4+(7-b )2-2×2×(7-b )×⎝⎛⎭⎫-14,解得b =4. 答案:410.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a sin A +c sin C -2a sin C =b sin B . (1)求B ;(2)若A =75°,b =2,求a ,c .解:(1)由正弦定理得a 2+c 2-2ac =b 2. 由余弦定理得b 2=a 2+c 2-2ac cos B .故cos B =22,因此B =45°. (2)sin A =sin(30°+45°)=sin 30°cos 45°+cos 30°sin 45°=2+64.故a =b ×sin Asin B =2+62=1+3,c =b ×sin C sin B =2×sin 60°sin 45°= 6.11.(2013·北京朝阳统考)在锐角三角形ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,且满足3a -2b sin A =0.(1)求角B 的大小;(2)若a +c =5,且a >c ,b =7,求AB u u u r ·AC u u ur 的值.解:(1)因为3a -2b sin A =0, 所以 3sin A -2sin B sin A =0, 因为sin A ≠0,所以sin B =32. 又B 为锐角,所以B =π3.(2)由(1)可知,B =π3.因为b = 7.根据余弦定理,得7=a 2+c 2-2ac cos π3,整理,得(a +c )2-3ac =7. 由已知a +c =5,得ac =6. 又a >c ,故a =3,c =2.于是cos A =b 2+c 2-a 22bc =7+4-947=714,所以AB u u u r ·AC u u u r =|AB u u u r |·|AC u u ur |cos A =cb cos A=2×7×714=1. 12.(2012·山东高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin B (tan A +tan C )=tan A tan C .(1)求证:a ,b ,c 成等比数列; (2)若a =1,c =2,求△ABC 的面积S .解:(1)证明:在△ABC 中,由于sin B (tan A +tan C )=tan A tan C ,所以sin B ⎝⎛⎭⎫sin A cos A +sin C cos C =sin A cos A ·sin C cos C, 因此sin B (sin A cos C +cos A sin C )=sin A sin C ,所以sin B sin(A +C )=sin A sin C .又A +B +C =π,所以sin(A +C )=sin B ,因此sin 2B =sin A sin C .由正弦定理得b 2=ac ,即a ,b ,c 成等比数列.(2)因为a =1,c =2,所以b =2,由余弦定理得cos B =a 2+c 2-b 22ac =12+22-22×1×2=34, 因为0<B <π,所以sin B =1-cos 2B =74, 故△ABC 的面积S =12ac sin B =12×1×2×74=74.1.(2012·湖北高考)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若三边的长为连续的三个正整数,且A >B >C ,3b =20a cos A ,则sin A ∶sin B ∶sin C 为( )A .4∶3∶2B .5∶6∶7C .5∶4∶3D .6∶5∶4解析:选D 由题意可得a >b >c ,且为连续正整数,设c =n ,b =n +1,a =n +2(n >1,且n ∈N *),则由余弦定理可得3(n +1)=20(n +2)·(n +1)2+n 2-(n +2)22n (n +1),化简得7n 2-13n -60=0,n ∈N *,解得n =4,由正弦定理可得sin A ∶sin B ∶sin C =a ∶b ∶c =6∶5∶4.2.(2012·长春调研)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知4sin 2A +B 2-cos 2C =72,且a +b =5,c =7,则△ABC 的面积为________.解析:因为4sin 2A +B 2-cos 2C =72, 所以2[1-cos(A +B )]-2cos 2C +1=72, 2+2cos C -2cos 2C +1=72,cos 2C -cos C +14=0, 解得cos C =12.根据余弦定理有cos C =12=a 2+b 2-72ab, ab =a 2+b 2-7,3ab =a 2+b 2+2ab -7=(a +b )2-7=25-7=18,ab =6,所以△ABC 的面积S △ABC =12ab sin C =12×6×32=332. 答案:3323.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(2b -c )cos A -a cos C =0.(1)求角A 的大小;(2)若a =3,S △ABC =334,试判断△ABC 的形状,并说明理由. 解:(1)法一:由(2b -c )cos A -a cos C =0及正弦定理,得(2sin B -sin C )cos A -sin A cos C =0,∴2sin B cos A -sin(A +C )=0,sin B (2cos A -1)=0.∵0<B <π,∴sin B ≠0, ∴cos A =12. ∵0<A <π,∴A =π3. 法二:由(2b -c )cos A -a cos C =0,及余弦定理,得(2b -c )·b 2+c 2-a 22bc -a ·a 2+b 2-c 22ab=0,整理,得b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =12, ∵0<A <π,∴A =π3. (2)∵S △ABC =12bc sin A =334,即12bc sin π3=334, ∴bc =3,①∵a 2=b 2+c 2-2bc cos A ,a =3,A =π3,∴b 2+c 2=6,②由①②得b =c =3,∴△ABC 为等边三角形.1.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边.若a =1,b =3,A +C =2B ,则sin C =________.解析:在△ABC 中,A +C =2B ,∴B =60°.又∵sin A =a sin B b =12,∴A =30°或150°(舍),∴C =90°,∴sin C =1.答案:12.在△ABC 中,a =2b cos C ,则这个三角形一定是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形解析:选A 法一:(化边为角)由正弦定理知:sin A =2sin B cos C ,又A =π-(B +C ),∴sin A =sin(B +C )=2sin B cos C .∴sin B cos C +cos B sin C =2sin B cos C ,∴sin B cos C -cos B sin C =0,∴sin(B -C )=0.又∵B 、C 为三角形内角,∴B =C .法二:(化角为边)由余弦定理知cos C =a 2+b 2-c 22ab, ∴a =2b ·a 2+b 2-c 22ab =a 2+b 2-c 2a, ∴a 2=a 2+b 2-c 2,∴b 2=c 2,∴b =c .3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cos 2C =-14. (1)求sin C 的值;(2)当a =2,2sin A =sin C 时,求b 及c 的长.解:(1)因为cos 2C =1-2sin 2C =-14,且0<C <π, 所以sin C =104. (2)当a =2,2sin A =sin C 时,由正弦定理a sin A =c sin C,得c =4.由cos 2C =2cos 2C -1=-14,及0<C <π得cos C =±64. 由余弦定理c 2=a 2+b 2-2ab cos C ,得b 2±6b -12=0,解得b =6或26,所以⎩⎪⎨⎪⎧ b =6,c =4或⎩⎪⎨⎪⎧b =26,c =4.4.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且cos B =45,b =2. (1)当A =30°时,求a 的值;(2)当△ABC 的面积为3时,求a +c 的值.解:(1)因为cos B =45,所以sin B =35. 由正弦定理a sin A =b sin B ,可得a sin 30°=103,所以a =53. (2)因为△ABC 的面积S =12ac ·sin B ,sin B =35,所以310ac=3,ac=10.由余弦定理得b2=a2+c2-2ac cos B,得4=a2+c2-82+c2-16,5ac=a即a2+c2=20.所以(a+c)2-2ac=20,(a+c)2=40. 所以a+c=210.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弦定理和余弦定理(含解析)第七节正弦定理和余弦定理[知识能否忆起]1.正弦定理分类内容定理asin A=bsin B=csin C=2R(R是△ABC 外接圆的半径)变形公式①a=2R sin_A,b=2R sin_B,c=2R sin_C,②sin A∶sin B∶sin C=a∶b∶c,③sin A=a2R,sin B=b2R,sin C=c2R解决的问题①已知两角和任一边,求其他两边和另一角,②已知两边和其中一边的对角,求另一边的对角 2.余弦定理 分类内容定理在△ABC 中,有a 2=b 2+c 2-2bc cos_A ;b 2=a 2+c 2-2ac cos_B ;c 2=a 2+b 2-2ab cos_C变形 公式cos A =b 2+c 2-a 22bc ;cos B =a 2+c 2-b 22ac ;cos C =a 2+b 2-c 22ab解决的 问题 ①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两个角3.三角形中常用的面积公式 (1)S =12ah (h 表示边a 上的高);(2)S =12bc sin A =12ac sin B =12ab sin C ;(3)S=12r(a+b+c)(r为三角形的内切圆半径).[小题能否全取]1.(2012·广东高考)在△ABC中,若∠A=60°,∠B=45°,BC=32,则AC=() A.43B.2 3C. 3D.3 2解析:选B由正弦定理得:BCsin A=AC sin B,即32sin 60°=ACsin 45°,所以AC=3232×22=2 3.2.在△ABC中,a=3,b=1,c=2,则A 等于()A.30°B.45°C.60°D.75°解析:选C∵cos A=b2+c2-a22bc=1+4-32×1×2=12, 又∵0°<A <180°,∴A =60°.3.(教材习题改编)在△ABC 中,若a =18,b =24,A =45°,则此三角形有( )A .无解B .两解C .一解D .解的个数不确定 解析:选B ∵a sin A =b sin B ,∴sin B =b a sin A =2418sin 45°,∴sin B =223.又∵a <b ,∴B 有两个.4.(2012·陕西高考)在△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c .若a =2,B =π6,c=23,则b =________.解析:由余弦定理得b 2=a 2+c 2-2ac cos B=4+12-2×2×23×32=4,所以b=2.答案:25.△ABC中,B=120°,AC=7,AB=5,则△ABC的面积为________.解析:设BC=x,由余弦定理得49=25+x2-10x cos 120°,整理得x2+5x-24=0,即x=3.因此S△ABC =12AB×BC×sin B=12×3×5×32=1534.答案:153 4(1)在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC中,A>B⇔a>b⇔sin A>sin B.(2)在△ABC中,已知a、b和A时,解的情况如下:A为锐角A为钝角或直角图形关系式a=b sinAb sinA<a<ba≥b a>b解的个数一解两解一解一解利用正弦、余弦定理解三角形典题导入[例1](2012·浙江高考)在△ABC中,内角A,B,C的对边分别为a,b,c,且b sin A=3a cos B.(1)求角B的大小;(2)若b=3,sin C=2sin A,求a,c的值.[自主解答](1)由b sin A=3a cos B及正弦定理asin A=bsin B,得sin B=3cos B,所以tan B=3,所以B=π3.(2)由sin C=2sin A及asin A=csin C,得c=2a.由b=3及余弦定理b2=a2+c2-2ac cos B,得9=a2+c2-ac.所以a=3,c=23.在本例(2)的条件下,试求角A的大小.解:∵asin A=bsin B,∴sin A=a sin Bb=3·sinπ33=12.∴A=π6.由题悟法1.应熟练掌握正、余弦定理及其变形.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.2.已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.以题试法1.△ABC的三个内角A,B,C所对的边分别为a,b,c,a sin A sin B+b cos2A=2a.(1)求ba;(2)若c2=b2+3a2,求B.解:(1)由正弦定理得,sin2A sin B+sin B cos2A=2sin A,即sin B(sin2A+cos2A)=2sin A.故sin B=2sin A,所以ba= 2.(2)由余弦定理和c2=b2+3a2,得cos B=(1+3)a2c.由(1)知b2=2a2,故c2=(2+3)a2.可得cos2B=1 2,又cos B>0,故cos B=22,所以B=45°.利用正弦、余弦定理判定三角形的形状典题导入[例2] 在△ABC 中a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.[自主解答] (1)由已知,根据正弦定理得2a 2=(2b +c )·b +(2c +b )c ,即a 2=b 2+c 2+bc . 由余弦定理得a 2=b 2+c 2-2bc cos A ,故cos A =-12,∵0<A <180°,∴A =120°. (2)由(1)得sin 2A =sin 2B +sin 2C +sin B sin C =34.又sin B+sin C=1,解得sin B=sin C=1 2.∵0°<B<60°,0°<C<60°,故B=C,∴△ABC是等腰的钝角三角形.由题悟法依据已知条件中的边角关系判断三角形的形状时,主要有如下两种方法:(1)利用正、余弦定理把已知条件转化为边边关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状;(2)利用正、余弦定理把已知条件转化为内角的三角函数间的关系,通过三角函数恒等变形,得出内角的关系,从而判断出三角形的形状,此时要注意应用A+B+C=π这个结论.[注意]在上述两种方法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解.以题试法2.(2012·安徽名校模拟)已知△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,向量m=(4,-1),n =⎝⎛⎭⎪⎪⎫cos 2A 2,cos 2A ,且m ·n =72. (1)求角A 的大小;(2)若b +c =2a =23,试判断△ABC 的形状.解:(1)∵m =(4,-1),n =⎝⎛⎭⎪⎪⎫cos 2A 2,cos 2A , ∴m ·n =4cos 2A 2-cos 2A =4·1+cos A 2-(2cos 2A -1)=-2cos 2A +2cos A +3.又∵m ·n =72, ∴-2cos 2A +2cos A +3=72, 解得cos A =12. ∵0<A <π,∴A =π3.(2)在△ABC 中,a 2=b 2+c 2-2bc cos A ,且a =3, ∴(3)2=b 2+c 2-2bc ·12=b 2+c 2-bc .① 又∵b +c =23,∴b =23-c ,代入①式整理得c 2-23c +3=0,解得c =3,∴b = 3,于是a =b =c = 3,即△ABC 为等边三角形.与三角形面积有关的问题典题导入[例3] (2012·新课标全国卷)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cos C +3a sin C -b -c =0.(1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c .[自主解答] (1)由a cos C +3a sin C -b -c =0及正弦定理得sin A cos C +3sin A sin C -sin B -sin C =0.因为B =π-A -C ,所以3sin A sin C -cos A sin C -sin C =0.由于sin C ≠0,所以sin ⎝⎛⎭⎪⎪⎫A -π6=12. 又0<A <π,故A =π3. (2)△ABC 的面积S =12bc sin A =3,故bc =4.而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8. 解得b =c =2.由题悟法1.正弦定理和余弦定理并不是孤立的.解题时要根据具体题目合理选用,有时还需要交替使用.2.在解决三角形问题中,面积公式S =12ab sin C=12bc sin A=12ac sin B最常用,因为公式中既有边也有角,容易和正弦定理、余弦定理结合应用.以题试法3.(2012·江西重点中学联考)在△ABC中,12cos 2A=cos2A-cos A.(1)求角A的大小;(2)若a=3,sin B=2sin C,求S△ABC.解:(1)由已知得12(2cos2A-1)=cos2A-cosA,则cos A=12.因为0<A<π,所以A=π3.(2)由bsin B=csin C,可得sin Bsin C=bc=2,即b=2c.所以cos A=b2+c2-a22bc=4c2+c2-94c2=12,解得c =3,b =23, 所以S △ABC =12bc sin A =12×23×3×32=332.1.在△ABC 中,a 、b 分别是角A 、B 所对的边,条件“a <b ”是使“cos A >cos B ”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C a <b ⇔A <B ⇔cos A >cos B .2.(2012·泉州模拟)在△ABC 中,a ,b ,c分别是角A ,B ,C 所对的边.若A =π3,b =1,△ABC 的面积为2,则a 的值为( ) A .1 B .2 C.32D. 3 解析:选D 由已知得12bc sin A =12×1×c ×sin π3=32,解得c =2,则由余弦定理可得a 2=4+1-2×2×1×cos π3=3⇒a = 3. 3.(2013·“江南十校”联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =23,c =22,1+tan A tan B=2c b ,则C =( ) A .30° B .45°C .45°或135°D .60°解析:选B 由1+tan A tan B=2c b 和正弦定理得 cos A sin B +sin A cos B =2sin C cos A , 即sin C =2sin C cos A ,所以cos A =2,则A =60°. 由正弦定理得23sin A =22sin C, 则sin C =22, 又c <a ,则C <60°,故C =45°.4.(2012·陕西高考)在△ABC 中 ,角A ,B ,C 所对边的长分别为a ,b ,c ,若a 2+b 2=2c 2,则cos C 的最小值为( )A.32B.22C.12 D .-12解析:选C 由余弦定理得a 2+b 2-c 2=2ab cos C ,又c 2=12(a 2+b 2),得2ab cos C =12(a 2+b 2),即cos C =a 2+b 24ab ≥2ab 4ab =12. 5.(2012·上海高考)在△ABC 中,若sin 2 A +sin 2B <sin 2C ,则△ABC 的形状是( )A.锐角三角形B.直角三角形C.钝角三角形D.不能确定解析:选C由正弦定理得a2+b2<c2,所以cos C=a2+b2-c22ab<0,所以C是钝角,故△ABC是钝角三角形.6.在△ABC中,角A、B、C所对的边分别是a、b、c.若b=2a sin B,则角A的大小为________.解析:由正弦定理得sin B=2sin A sin B,∵sin B≠0,∴sin A=12,∴A=30°或A=150°.答案:30°或150°7.在△ABC中,若a=3,b=3,A=π3,则C的大小为________.解析:由正弦定理可知sin B=b sin A a=3sin π33=12,所以B =π6或5π6(舍去),所以C =π-A -B =π-π3-π6=π2. 答案:π28.(2012·北京西城期末)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c .若b =25,B =π4,sinC =55,则c =________;a =________. 解析:根据正弦定理得b sin B =c sin C,则c =b sin C sin B =22,再由余弦定理得b 2=a 2+c 2-2ac cos B ,即a 2-4a -12=0,(a +2)(a -6)=0,解得a =6或a =-2(舍去). 答案:22 69.(2012·北京高考)在△ABC 中,若a =2,b +c =7,cos B =-14,则b =________.解析:根据余弦定理代入b 2=4+(7-b )2-2×2×(7-b )×⎝⎛⎭⎪⎪⎫-14,解得b =4. 答案:410.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a sin A +c sin C -2a sin C =b sin B .(1)求B ;(2)若A =75°,b =2,求a ,c .解:(1)由正弦定理得a 2+c 2-2ac =b 2. 由余弦定理得b 2=a 2+c 2-2ac cos B .故cos B =22,因此B =45°. (2)sin A =sin(30°+45°)=sin 30°cos 45°+cos 30°sin 45°=2+64. 故a =b ×sin A sin B =2+62=1+3, c =b ×sin C sin B =2×sin 60°sin 45°= 6. 11.(2013·北京朝阳统考)在锐角三角形ABC中,a ,b ,c 分别为内角A ,B ,C 所对的边,且满足3a -2b sin A =0.(1)求角B 的大小;(2)若a +c =5,且a >c ,b =7,求AB ·AC 的值.解:(1)因为3a -2b sin A =0,所以 3sin A -2sin B sin A =0,因为sin A ≠0,所以sin B =32. 又B 为锐角,所以B =π3. (2)由(1)可知,B =π3.因为b = 7. 根据余弦定理,得7=a 2+c 2-2ac cos π3, 整理,得(a +c )2-3ac =7.由已知a +c =5,得ac =6.又a >c ,故a =3,c =2.于是cos A =b 2+c 2-a 22bc =7+4-947=714,所以AB ·AC =|AB |·|AC |cos A =cb cos A=2×7×714=1. 12.(2012·山东高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin B (tan A +tan C )=tan A tan C .(1)求证:a ,b ,c 成等比数列;(2)若a =1,c =2,求△ABC 的面积S . 解:(1)证明:在△ABC 中,由于sin B (tan A +tan C )=tan A tan C ,所以sin B ⎝⎛⎭⎪⎪⎫sin A cos A +sin C cos C =sin A cos A ·sin C cos C , 因此sin B (sin A cos C +cos A sin C )=sin A sin C ,所以sin B sin(A +C )=sin A sin C .又A +B +C =π,所以sin(A +C )=sin B ,因此sin 2B =sin A sin C .由正弦定理得b 2=ac ,即a ,b ,c 成等比数列.(2)因为a =1,c =2,所以b =2, 由余弦定理得cos B =a 2+c 2-b 22ac=12+22-22×1×2=34, 因为0<B <π,所以sin B =1-cos 2B =74, 故△ABC 的面积S =12ac sin B =12×1×2×74=74.1.(2012·湖北高考)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若三边的长为连续的三个正整数,且A >B >C ,3b =20a cos A ,则sin A ∶sin B ∶sin C 为( )A .4∶3∶2B .5∶6∶7C .5∶4∶3D .6∶5∶4解析:选D 由题意可得a >b >c ,且为连续正整数,设c =n ,b =n +1,a =n +2(n >1,且n ∈N *),则由余弦定理可得3(n +1)=20(n +2)·(n +1)2+n 2-(n +2)22n (n +1),化简得7n 2-13n -60=0,n ∈N *,解得n =4,由正弦定理可得sin A ∶sin B ∶sin C =a ∶b ∶c =6∶5∶4.2.(2012·长春调研)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知4sin 2A +B 2-cos 2C =72,且a +b =5,c =7,则△ABC 的面积为________.解析:因为4sin 2A +B 2-cos 2C =72, 所以2[1-cos(A +B )]-2cos 2C +1=72, 2+2cos C -2cos 2C +1=72,cos 2C -cos C +14=0,解得cos C=12.根据余弦定理有cos C=1 2=a2+b2-72ab,ab=a2+b2-7,3ab=a2+b2+2ab-7=(a+b)2-7=25-7=18,ab=6,所以△ABC的面积S△ABC=12ab sin C=12×6×32=332.答案:33 23.在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2b-c)cos A-a cos C=0.(1)求角A的大小;(2)若a=3,S△ABC=334,试判断△ABC的形状,并说明理由.解:(1)法一:由(2b-c)cos A-a cos C=0及正弦定理,得(2sin B-sin C)cos A-sin A cos C=0,∴2sin B cos A-sin(A+C)=0,sin B (2cos A -1)=0.∵0<B <π,∴sin B ≠0,∴cos A =12. ∵0<A <π,∴A =π3. 法二:由(2b -c )cos A -a cos C =0,及余弦定理,得(2b -c )·b 2+c 2-a 22bc-a ·a 2+b 2-c 22ab=0, 整理,得b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =12, ∵0<A <π,∴A =π3. (2)∵S △ABC =12bc sin A =334, 即12bc sin π3=334, ∴bc =3,①∵a2=b2+c2-2bc cos A,a=3,A=π3,∴b2+c2=6,②由①②得b=c=3,∴△ABC为等边三角形.1.已知a,b,c分别是△ABC的三个内角A,B,C所对的边.若a=1,b=3,A+C=2B,则sin C=________.解析:在△ABC中,A+C=2B,∴B=60°.又∵sin A=a sin Bb=12,∴A=30°或150°(舍),∴C=90°,∴sin C=1.答案:12.在△ABC中,a=2b cos C,则这个三角形一定是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形解析:选A 法一:(化边为角)由正弦定理知:sin A =2sin B cos C ,又A =π-(B +C ), ∴sin A =sin(B +C )=2sin B cos C .∴sin B cos C +cos B sin C =2sin B cos C , ∴sin B cos C -cos B sin C =0,∴sin(B -C )=0.又∵B 、C 为三角形内角,∴B =C .法二:(化角为边)由余弦定理知cos C =a 2+b 2-c 22ab, ∴a =2b ·a 2+b 2-c 22ab=a 2+b 2-c 2a , ∴a 2=a 2+b 2-c 2,∴b 2=c 2,∴b =c .3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cos 2C =-14.(1)求sin C 的值;(2)当a =2,2sin A =sin C 时,求b 及c 的长.解:(1)因为cos 2C =1-2sin 2C =-14,且0<C <π,所以sin C =104. (2)当a =2,2sin A =sin C 时,由正弦定理a sin A =c sin C,得c =4.由cos 2C =2cos 2C -1=-14,及0<C <π得cos C =±64. 由余弦定理c 2=a 2+b 2-2ab cos C ,得b 2±6b -12=0,解得b =6或26,所以⎩⎨⎧ b =6,c =4或⎩⎨⎧b =26,c =4. 4.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且cos B =45,b =2.(1)当A =30°时,求a 的值;(2)当△ABC 的面积为3时,求a +c 的值.解:(1)因为cos B =45,所以sin B =35. 由正弦定理a sin A =b sin B ,可得a sin 30°=103,所以a =53. (2)因为△ABC 的面积S =12ac ·sin B ,sin B =35, 所以310ac =3,ac =10. 由余弦定理得b 2=a 2+c 2-2ac cos B ,得4=a 2+c 2-85ac =a 2+c 2-16, 即a 2+c 2=20.所以(a +c )2-2ac =20,(a +c )2=40. 所以a +c =210.。