初中奥数讲义_图形的平移与旋转附答案

合集下载

七年级数学尖子生培优竞赛专题辅导第十八讲 平移、对称、旋转(含答案)

七年级数学尖子生培优竞赛专题辅导第十八讲 平移、对称、旋转(含答案)

第十八讲平移、对称、旋转趣题引路】如图18-1,已知△ABC内有一点M,沿着平行于边BC的直线运动到CA边上时,再沿着平行于AB的直线运动到BC边时,又沿着平行于AC直线运动到AB边时,再重复上述运动,试证:点M最后必能再经过原来的出发点证明设点M运动过程中依次与三角形的边相遇于点A1,B1,B2,C2,C3,A3,A4,B5,….易知△AC2B₂≌△A1CB1≌△A3C3B.按点M平移的路线,△A C2B2可由△A1CB1平移得到;△A3C3B可由△AC2B2平移得到;△A1CB1可由△A3C3B平移得到,此时,A3应平移至A4,所以A4与A1重合.而这时的平移方向恰与点M开始平移时的方向一致,因此从A3平移到A1的过程中必经过点M,这表明在第七步时,点M又回到了原来的出发点.图18-1知识拓展】1.平移、对称和旋转是解决平面几何问题常用的三种图形变换方法,它们零散地分布在初中几何教材之中.例如,平行四边形的对边可以看成是平行移动而形成,这里的平行移动,就是平移变换.2.一般地,把图形F上的所有点都按照一定的方向移动一定距离形成图形F'.则由F到F'的变换叫做平移变换,简称平移.由此可知,线段平移可以保持长短、方向不变,角、三角形等图形平移保持大小不变.将平面图形F变到关于直线l成轴对称的图形F',这样的几何变换简称为对称,它可使线段、角大小不变.3.将平面图形F绕着平面内的一个定点O旋转一个定角a到图形F',由F到F'的变换简称为旋转.旋转变换下两点之间的距离不变,两直线的夹角不变,且对应直线的夹角等于旋转角.4.运用平移、对称或旋转变换,能够集中图形中的已知条件,沟通各条件间的联系.例1 已知:如图18-2,△ABC中,AD平分∠CAB,交BC于D,过BC中点E作AD的平行线交AB于F,交CA的延长线于C.求证:2ACAB=CG=BF.图18-2解析直接证三角形全等或者用角平分线定理显然不能解决问题.注意到要证式的形式,条件中又有角平分线和中点,如果能切分BF、CG,使分出的两部分一部分是AB的一半,余下的是AC的一半,问题就解决了.由中点,我们不难想到中位线,两条有推论效力的辅助线(EH和EI)就产生了,H、I切分了BF、CG,由平行线性质∠1=∠2=∠3=∠4=∠6,再由中位线定理,等腰三角形的判定定理,切分后的结论不难证明.略证过E作AC、AB的平行线交AB、AC于H、I,由平行线性质及已知条件得,∠1=∠2=∠3=∠4=∠6, ∴EI =GI ,EH =FH .∵E 为BC 中点,EH ∥AC ,EI ∥AB , ∴EI =2AB =BH ,EH =2AC=CI , ∴EI =GI =2AB=BH , FH =EH =2AC=CI . 由于BF =BH +FH , CG =GI +CI , ∴2ACAB =BF =CG .例2 如图18-3,E 是正方形ABCD 的BC 边上的一点,F 是∠DAE 的平分线与CD 的交点,求证:AE =FD +BE .图18-3解析 表面上看所要证等式的各边分布在正方形不同的边上,欲证它们之间的关系,似乎不可能.但我们可以将某一条边作适当的延伸,使等量关系转移(比如证某两个三角形全等,中位线的关系等).此题中可将FD 延长至G ,使得DG =BE ,于是易证△AGD ≌△AEB ,则将AE 与AG ,BE 与GD 联系了起来,转而只需证明AG =GF ,即只要证明△AGF 为等腰三角形即可,由∠1=∠2,∠3=∠4及AB ∥CD 即证得.略证 延长FD 至G 使DG =BE , ∵△ADG ≌△ABE ,∴AG =AE ,GD =BE ,∠1=∠2. 又∵ ∠3=∠4, ∴∠1+∠4=∠2+∠3. 由于DC ∥AB ,∴∠DFA =∠2+∠3, ∴∠1+∠4=∠DFA , ∴GF =AG .即GD +DF =BE +FD =AE .例3 已知∠MON =40°,P 为∠MON 内一点,A 为OM 上一点,B 为ON 上的点,则△PAB 的周长取最小值时,求∠APB 的度数.图18-4解析 如图18-4,若在OM 上A 点固定,不难在ON 上找出点B (B 为P 关于ON 的对称点P ''与A 点的连线与ON 的交点),同样若在ON 上B 点已固定,则点P 关于OM 的对称点P'与B 点的连线与OM 交于A ,因此A 、B 应为P'P ''与0M 、ON 的交点,这时可求得∠A .解 作P'为P 关于OM 的对称点,P ''为P 关于ON 的对称点,连接P'P ''分别交OM 、ON 于A 、B 两点,则△PAB 周长为最小,这时△ABP 的周长等于P'P ''的长(连接两点间距离最短).∵OM P P ⊥',ON P P ⊥''垂足分别为C 、D , ∴∠OCP =∠ODP =90°. ∵∠M O N=40°,∴∠CPD =180°-40°=140°.∴∠PP'P ''=∠P P ''P'=180°-140°=40°.由对称性可知:∠PAB =2∠P',∠PBA =2∠P '', ∴∠APB =180°-(∠PAB -∠PBA )=180°-(2∠P'-2∠P '')=100°.例4 如图18-5,在ABC 中,BC =h ,AB +AC =l ,由B ,C 向∠BAC 外角平分线作垂线,垂足为D 、E , 求证:BD ·CE =定值.图18-5解析 BC =h 是定值,AB +AC =l 是定值,要证BD ·CE 是定值,设法使BD ·CE 用h ,l 的代数式来表示,充分利用DE 是BAC 的外角平分线,构造对称图形,再利用勾股定理。

平移与旋转答案及解析

平移与旋转答案及解析

平移与旋转答案及解析1.【答案】B【解析】本题主要考查图形的轴对称和中心对称。

在平面内,如果把一个图形绕某个点旋转180°后,能与自身重合,那么这个图形叫做中心对称图形;在平面内,如果把一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形称为轴对称图象,所以选B.2.【答案】C【解析】 CC’=AB,∠CAB=70°.∴∠C’CA=∠CAB=70°.又 C、C’为对应点,点A为旋转中心∴AC=AC’,即△ACC’为等腰三角形∴∠BAB’=∠CAC’=180°-2∠C’CA=40°∴选C.3.【答案】C【解析】根据平移的特性可知,平移只改变图形的位置,不改变图形的形状和大小,所以C 错误.4.【答案】D【解析】平移只改变图形的位置,不改变图形的形状和大小。

所以平移后的边对应相等,∴D 错误,应为AB=AB’.5.【答案】D【解析】根据旋转的意义,找出菱形AEFG和菱形ABCD的对应点的变化情况,结合等边三角形的性质即可.6.【答案】C【解析】 △ACB平移后得到△EBF∴AC=BE CB=BF AB=EF∴①③④正确,②中点B对应点应为F.7.【答案】A【解析】观察图形可知,△DEF是由△ABC沿BC向右移动BE的长度后得到的∴平移距离就是线段BE的长度∴选A.8.【答案】D【解析】①:由平移和旋转性质可知,平移后对应线段平行,旋转后不一定平行.②③④平移或旋转后,对应线段相等,对应角相等,图形的形状和大小都不会变化.9.【答案】B【解析】A项,平移和旋转均不改变图形的形状和大小B项,平移和旋转的共同点是改变图形位置C项,图形可以向某方向平移一定距离,旋转是围绕中心做圆周运动D项,由平移得到的图形不一定由旋转得到10.【答案】D【解析】由旋转性质可知,AC=AC’又∠CAC’=90°,∴△CAC’是等腰直角三角形∴∠CC’A=45°∠CC’B+∠ACC’=∠AB’C’∴∠CC’B=15°11.【答案】图形的形状、大小不变,改变图形位置.【解析】在图形的平移、旋转、轴对称变换中,相同的性质是:图形的形状和大小不变,只有位置发生改变.12.【答案】平移旋转【解析】平移变换:在平面内,将一个图形沿某个方向移动一定距离旋转变换:在平面内,将一个图形沿某一个定点方向转动一个角度13.【答案】(1,-1)【解析】向右平移则A的横坐标+3,向下平移则A的纵坐标-2,平移后A的坐标为(1,-1).14.【答案】小正方形AEOF;三;△AOD;三【解析】正方形ABCD可看做是由图形小正方形AEOF经过三次平移得到,也可以看作是由图形△AOD绕O点旋转三次得到.15.【答案】150°【解析】根据旋转的定义可知,旋转的角度为:∠AOC=∠AOB+∠BOC=60°+90°=150°∴旋转角度为150°.16.【答案】如图所示,平移后RA’=3,过点B向AA’引垂线,垂足为D∴BD=4,A’D=4∴∠BA’A=45°.【解析】经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.17.【答案】(1)①平移的方向是射线AD方向,距离为AD长度②相等的线段:AD=BE=CF,AB=DE,BC=DE,AC=DF平行的线段:AC∥BE∥CF,AB∥DE,BC∥EF,AC∥DF③∠ABC=∠DEF,∠ACB=∠DEF,∠BAC=∠EDF∠BAD=∠BED,∠ABE=∠EDA,∠EBC=∠CFE∠BCF=∠BEF,∠ACF=∠ADF,∠CAD=∠CFD(2) CC’∥AB∴∠ACC’=∠CAB=75°△ABC绕点A旋转得到△AB’C’∴AC=AC’∴∠CAC’=180°-2∠ACC’=180°-2×75°=30°∴∠CAC’=∠BAB’=30°.【解析】(1)由图形可知,A与D,B与E,C与F是对应点,所以可得平移的方向和距离,也可得出相等的线段.(2)根据两直线平行,内错角相等可得∠ACC’=∠CAB,根据旋转性质可得AC=AC’,然后利用等腰三角形即可求得.18.【答案】(1)①②根据题意,在Rt △ABC 中AC=4,BC=3 ∴5342222=+=+=BC AC AB∴扫过的面积=ππ4253605902=⨯ (2)①AC ⊥BD△DCE 由△ABC 平移而成∴BE=2BC=6,DE=AC=3,CE=∠ACB=60°∴DE=21BE ∴BD ⊥DE又 ∠E=∠ACB=60°∴AC ∥DE ,∴BD ⊥AC△ABC 是等边三角形∴BF 是AC 的中点∴BD ⊥AC ,BD 与AC 互相垂直平分②由(1)知,AC ∥DE ,BD ⊥AC∴△BED 是直角三角形BE=6,DE=3 ∴3322=-=DE BE BD .【解析】(1)①根据题意和图形旋转即可画图.②根据勾股定理求AB 长度.再根据扇形面积公式即可.(2)①由平移的性质可知BE=2BC=6DE=AC=3 ∴BD ⊥DE由∠E=∠ACB=60°可知AC ∥DE②在Rt △BDE 中利用勾股定理即可得出BD 的长.19. 【答案】(1)由△ABO 和△CDO 关于点O 中心对称可知△ABO ≌△CDO∴AO=CO,BO=DOAF=CE∴AO-AF=CO-CE∴FO=EO又 ∠DOF=∠BOE在△DOF 和△BOE 中⎪⎩⎪⎨⎧=∠=∠=EO FO BOE DOF BO DO∴△DOF ≌△BOE (SAS )∴FD=BE(2)①证明: △ABC 、△EDC 是等边三角形∴BC=AC,∠ACB=∠ECD=60°,EC=DC∴∠ACE=∠BCD在△ACE 和△BCD 中⎪⎩⎪⎨⎧=∠=∠=DC EC BCD ACE BC AC∴△ACE ≌△BCD (SAS )∴∠EAC=∠B=60°=∠ACB∴AE ∥BC② △ACE ≌△BCD ∠EAC=∠B=60°=∠ACB∴图中有在旋转关系的三角形,它们是△BCD 和△ACE ,其旋转中心是点C ,旋转角是60°.【解析】(1)根据中心对称性质,可知△ABO ≌△CDO ,∴AO=CO,BO=DO,再根据AF=CE ,得FO=EO ,利用SAS 判定△DOF ≌△BOE ,∴FD=BE.(2)①由△ABC 、△EDC 是等边三角形,易证△ACE ≌△BCD ,∴∠EAC=∠B=60°=∠ACB ,∴AE ∥BC②由(1)可得:图中有在旋转关系的三角形,它们是△BCD 和△ACE ,其旋转中心是C ,旋转角是60°.20.【答案】(1)△A 1B 1C 1如图所示(2)△A 2B 2C 2如图所示(3)△PAB 如图所示,由图可得P 点坐标为(2,0)【解析】(1)根据网格结构找出A 、B 、C 平移后的对应点A 1、B 1、C 1的位置,顺次连接(2)根据网格结构找出A 、B 、C 关于原点对称点A 2、B 2、C 2的位置,顺次连接(3)找出点A 关于x 轴的对称点A ’,连接A ’B 与x 轴相交于一点,根据轴对称确定最短路线问题,交点即为P 坐标,再连接AP 、BP .21.【答案】△OAB AD【解析】由平移的性质,可知AB 、AO 、BO 平移AD 的长分别得到DC 、DE 、CE∴△EDC 可以看作是△OAB 平移得到,平移的距离是线段AD 的长22.【答案】400【解析】 △ABC 是等边三角形,∴AB=BC=ACA ’B ’∥AB ,BB ’=B ’C=21BC ∴B ’O=21AB,CO=21AC ∴△B ’OC 是等边三角形,同理阴影的三角形都是等边三角形观察图可知,第1个图形中大等边三角形有2个,小等边三角形有2个依次可将第N 个图形中大等边三角形有2n 个,小等边三角形有2n 个故第100个图形中等边三角形的个数是:2×100+2×100=400个.23.【答案】326-【解析】过点B ’作DB ’∥BC ,交AB 于点D ,由平移和旋转性质可知,DB ’为图形平移的距离 ∠A=∠A ’=30°,AB=A ’B ’=12cm,BC=B ’C ∴2130sin sin ==︒=AB BC A ∴BC=B ’C=21AB=6cm. 由勾股定理得: AC=3622=-BC AB cm∴AB ’=AC-B ’C=(636-)cm又DB ’∥BC∴∠B=∠ADB ’又 ∠A=∠A,∴△ADB ’≌△ABC ∴AC AB BC DB ''=即6'36636DB =- ∴DB ’=(326-)cm.24.【答案】222-【解析】设BA 与B ’A ’、D ’A ’相交的两点分别为E 、F设EF=x ,由题知正方形旋转45°∴重叠部分以外的三角形均为等腰直角三角形∴A ’E=BE=AF=x 22∴AB=2BE+EF=22=+x x222-=x∴边长为222-25.【答案】①③【解析】根据旋转性质可知∠CAD=∠BAF ,AD=AF∠BAC=90° ∠DAE=45°∴∠CAD+∠BAE=45°∴∠EAF=45°∴△AEF ≌△AED∴①正确.②根据①知,CD=BF,DE=EF∴BE+DC=BE+BF>DE=EF.②错③ ∠FBE=45°+45°=90°∴BE 2+BF 2=EF 2△ADC 绕点A 顺时针旋转90度,得△AFB∴△AFB ≌△ADC∴BF=CD又FE=DC∴BE 2=DC 2=DE 2∴①③26.【答案】70°或120°【解析】①如下图点B 在AB 边上时,根据旋转的性质得BD=BD ’, ∠B=55°∴∠BDB ’=180°-2×55°=70°即m=70°②如下图点B 落在AC 上,根据旋转的性质可得BD=B ’D.BD=2CD∴B ’D=2CD∴∠CBD ’=30°在Rt △B ’CD 中,∠CDB ’=90°-30°=60°∠BDB ’=180°-60°=120°即m=120°综上所述,m=70°或120°.27.【答案】由旋转的性质得:△ACE ≌△ABD∴AE=AD=5 CE=BD=6∠DAE=60°∴DE=5作EH ⊥CD 垂足为H设DH=x由勾股定理,得:EH 2=CE 2-CH 2=DE 2-DH 2即62-(4-x)2=52-x 2 解得85=x ,∴DH=85 由勾股定理得:6385)85(52222=-=-=DH DE EH ∴△DCE 的面积=634521=⨯⨯EH CD 【解析】由旋转性质得△ACE ≌△ABD 得出AE=AD=5,CE=BD=6 ∠DAE=60° ∴△ADE 是等边三角形因此DE=AD=5,作EH ⊥CD ,垂足为H设DH=x ,由勾股定理求出EH 、DH即可得出△DCE 的面积。

培优专题5 平移与旋转 (含解答)-

培优专题5 平移与旋转 (含解答)-

培优专题5 平移与旋转平移是几何变换中最常用的变换之一,用它可以将一些不在同一三角形中要证的两条线段或两角,进行“搬家”,把它们搬到同一个三角形(或平行四边形)中,再利用图形的性质与题设条件,找到解(或比)的途径.平移法能把分散的条件集中起来,收到事半功倍的效果.旋转也是几何变换中较常用的变换之一,在解决问题中主要应用在以下两个方面:一是在题设条件和结论间联系不易沟通或条件不易集中利用的情形下,通过旋转起到铺路架桥作用;二是图形错综复杂,但图形中的量与量之间的关系多,这时也可以看能否使用旋转的办法,移动部分图形,使题目中隐蔽着的关系明朗起来,从而找到解题途径.平移、旋转两种变换在使用中,一定要善于观察变换前后哪些量变了,哪些量没变.只有这样,我们才能充分发挥两种变换的功能,达到有效解决相关问题的目的.例1如图,在△ABC中,D、E是BC边上两点,BD=CE,试说明AB+AC>AD+AE.分析利用平移变换,•将图中已知条件转化为梯形的对角线之和大于两腰之和.解:把△ABD作平移,使BD与EC重合,分别过点E作AB的平行线,过点A作BC•的平行线,两线交于点F,连结CF.再连结EF交AC于O.则AB=EF,∠ABD=∠FEC.∵BD=CE,∴△ABD≌△FEC.∴AD=CF.在梯形AECF中,AO+OE>AE,FO+OC>CF,∴AO+OE+FO+OC>AE+CF.即AC+EF>AE+CF.∴AB+AC>AD+AE.练习11.如图,梯形ABCD中,AD∥BC,已知AD+BC=3,AC=3,BD=6,求此梯形的面积.2.如图,长方形花园ABCD中,AB=a,AD=b,花园中建有一条长方形道路LMPQ•及一条平行四边形道路RSTK,若LM=RS=c,求花园中可绿化部分的面积.3.如图,△ABC中,E、F分别为AB、AC边上的点,且BE=CF,试说明EF<BC.例2 如图,△ABC中,∠ACB=90°,M是AB的中点,∠PMQ=90°,请说明PQ2=•AP2+BQ2.分析本题中PQ、AP、BQ不在同一个三角形中,•如果将它们平移,•使PQ、BQ分别转化为PD、AD,将三线段转化在同一三角形中,巧妙运用直角三角形中的勾股定理求解.解:将BQ平移到AD,连结PD、MD.∵BQ∥AD,∴∠BAD=∠ABC.∵MA=MB,BQ=AD,∴△AMD≌△BMQ,∴∠AMD=∠BMQ.而∠AMQ+∠BMQ=180°,∴∠AMQ+∠AMD=180°.∴D、M、Q三点共线.∴∠PMD=∠PMQ=90°,MD=MQ.∴PQ=PD.∵∠PAD=∠BAC+∠BAD=∠BAC+∠ABC=90°.∴△PAD为直角三角形,PD2=AP2+AD2.∴PQ2=AP2+BQ2.1.如图,EFGH是正方形ABCD的内接四边形,∠BEG与∠CFH都是锐角,•已知EG=3,FH=4,四边形EFGH的面积为5,求正方形ABCD的面积.2.如图,△ABC中,∠B=90°,M、N分别是AB、BC上的点,AN、CM•交于点P,•若BC=AM,BM=CN,求∠APM的度数.3.如图,六边形ABCDEF中,AB∥DE,BC∥EF,CD∥AF,且AB-ED=CD-AF=EF-BC>0,请问,六边形ABCDEF的六个角是否都相等.例3如图,在正方形ABCD的边BC和CD上分别取点M和点K,并且∠BAM=∠MAK.求证:BM+KD=KA.分析把Rt△BAM绕点A顺时针旋转90°到△ADM′,使BM与DN拼成一条线段的KM′,只要证明KM′=KA即可.证明:把Rt△ABM绕点A旋转90°,则点B变为点D,M变为M′,则Rt•△BAM•≌Rt•△ADM′,∴∠M′=∠BMA∴DM′=BM.∵∠BAM=∠MAK,∴∠KAM′=∠MAD.∴∠KAM′=∠M′.∴AK=KM′.∴BM+KD=AM.1.如图,在正方形ABCD中,N是DC的中点,M是AD上异于D•的点,•且∠NMB=∠MBC,求AMAB的值.2.如图,P是等边△ABC内一点,∠APB、∠BPC、∠CPA的大小之比为5:6:7,•求以PA、PB、PC之比为边的三角形三内角之比(从小到大).3.如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,AH⊥BC,且AH=1,•求四边形ABCD的面积.例4如图,在等腰三角形ABC中,∠CAB=90°,P是△ABC内一点,且PA=1,PB=3,PC=7,求∠APC 的度数.分析本题将△BAP绕点A旋转90°,得到△CAQ,构造直角三角形,利用勾股定理求解解:将△BAP绕点A旋转90°,使AB与AC重合,得△CAQ,则△CAQ≌△BAP.∴AQ=AP=1,CQ=BP=3,∠CAQ=∠PAB,∴∠PAQ=∠PAC+∠CAQ=∠PAC+∠PAB=90°Rt△AQP中,PQ2=AQ2+AP2=2,∴PQ=2,∴∠APQ=45°.在△CPQ中,PQ=2,CQ=3CP=7,CQ2=CP2+PQ2.∴△CPQ是直角三角形,∠CPQ=90°.∴∠APC=∠CPQ+∠APQ=135°.练习41.等边三角形内一点到三个顶点距离分别为3、4、5,则此等边三角形边长的平方为________.2.如图,P是正方形内的点,若PA=1,PB=2,PC=3,求∠APB的度数.3.如图,正方形ABCD的边长为1,AB、AD各有一点P、Q,若△APQ的周长为2,•求∠PCQ.例5 如图,在△ABC中,AB=3,AC=2,以BC为边的三角形BPC是等边三角形,求AP的最大、最小值.分析通过旋转把AP转移到有两条边确定的三角形中,利用三角形的性质求最值.解:把△ABP绕B点顺时针旋转60°得△DBC,则△ABP≌△DBC.∴DC=AP,BD=BA,∠DBA=60°.∴△ABD是等边三角形,AD=AB=3.在△ACD中,有DC<AD+AC=5,当C在DA的延长线上时才有DC=AD+AC=5,说明DC≤5,•即AP≤5.……①在△ACD中,有DC>AD-AC=1时,当C在DA线段上时才有DC=AD-AC=1,说明DC≥1,•即AP≥1.……②由①②得AP最大值为5,最小值为1.练习51.如图,正方形ABCD中,有一个内接三角形AEF,若∠EAF=45°,AB=8,EF=7,•求△EFC的面积.2.如图,在△ABC中,AB=5,AC=13,过BC上的中线AD=6,求BC的长.3.如图,已知△ABC中,AB=AC,D为三角形内一点,∠ADB>∠ADC.试证明:•CD>BD.答案:练习11.解:将BD 平移到CE 交AD 延长线于点E , 则四边形BDEC 为平行四边形∴DE=BC ,CE=BD ,S △BCD =S △CDE ∵△ABC 与△DBC 同底等高, ∴S △ABC = S △BCD = S △CDE∵S 梯形ABCD = S △ABC + S △ACD = S △CDE + S △ACD = S △ACE . 又AE=AD+DE=3=2236AC CE +=+,∴△ACE 为直角三角形,∠ACE=90°. ∴S 梯形ABCD = S △ACE =12·AC·CE=322.2.解:把长方形和平行四边形道路平移,在移动过程中道路面积不变,如图,则四块空白可组成长(b-c ),宽(a-c )的空白长方形,其面积为(b-c )(a-c )=ab-bc-ac+c 2.3.解:将EF 平移为BG ,BF 平移为FG ,作∠CFG 的角平分线交BC 于D ,连结DG ,•则由平移知四边形BEFG 是平行四边形. ∴EF=BG ,BE=FG . ∵BE=CF ,∴FG=CF . ∵∠1=∠2,FD=FD . ∴△FGD ≌△FCD (SAS ). ∴DG=CD .在△BGD 中, ∵BG<BD+DG ,∴EF<BC .练习21.解:过E 、F 、G 、H 分别平移AD 、AB ,交点分别为P 、Q 、R 、T ,则四边形PQRT•为矩形.设正方形边长为a ,PQ=b ,PT=c ,由勾股定理得b= 223a -,c=224a -, ∵S △AEH =S △TEH ,S △BEF =S △PEF , S △CFG =S △QFG , S △DGH =S △RGH 则S 正方形ABCD +S 矩形PQRT =2S 四边形EFGH ∴a 2+b·c=10. 即a 2+223a -·224a -=10.∴5a2=44,a2=445.∴S正方形ABCD=445.2.解:把MC平移,使点M至A点,过A作MC的平行线,过点C作AB的平行线,•两线交于点D,则MC=AD.∠APM=∠NPC=∠NAD……①∵BM=NC,CD=AM=BC,∠DCN=∠CBM=90°,∴△DCN≌△CBM.从而DN=MC,∴DN=DA……②∴∠CMB=∠DNC.∵∠BCM+∠DMB=90°,∴∠BCM+∠DNC=90°.即MC∥AD.∴ND⊥AD.……③由①,②,③得∠APM=45°.3.解:六个角都相等且都等于120°.将AB沿着BC平移到QC,CD沿着DE平移到ER,EF沿着FA平移到AP,∵AB∥ED,BC∥EF,CD∥AF,∴AB=QC,BC=AQ,CD=ER,DE=CR,EF=AP,FA=PE.∵AB-ED=CD-AF=EF-BC,∴QC-CR=ER-PE=AP-AQ.即PQ=PR=QR.∴∠1=∠2=∠3=60°.由平行线性质知:∠A=∠B=∠C=∠D=∠E=∠F=120°.练习31.解:将△BAM绕B点旋转90°,A点变为C点,M点变为P点,连结MP,则△BAM≌△BCP.∴∠BPC=∠BMA=∠CBM=∠NMB.∵BM=BP,∴∠NMP=∠NPM.∴MN=NP=NC+CP=NC+AM.设AB=1,AM=x,在Rt△MND中,则有12+x=221()(1)2x+-.∴x=13.即AMAB=13.2.解:将△ABP绕B点顺时针旋转60°得△BCP′,连结PP′,则△ABP≌△CBP′.∴AP=P′C,BP=BP′,∠APB=∠CP′B.∵∠PBP′=60°,∴△BPP′是等边三角形.∴PP′=BP,∠BPP′=60°=∠BP′P.∵∠APB:∠BPC:∠CAP=5:6:7,又∠APB+∠BPC+∠CPA=360°,∴∠APB=100°,∠BPC=120°,∠CPA=140°,∴∠1=120°-60°=60°,∠2=100°-60°=40°,∠PCP′=180°-60°-40°=80°.由PA=P′C,PP′=PB,∴△PP′C是由PA、PB、PC组成的三角形.∴三内角之比为2:3:4.3.解:将△ABH绕A点旋转90°得△ADP,则△ABH≌△ADP.∴∠APD=∠AHB=90°,AH=AP.∵∠BAD=∠BCD=90°,∠HAP=90°.∴四边形AHCP是正方形.∵AH=1,∴S正方形AHCP=1=S四边形AHCD+S△ADP.S四边形ABCD=S四边形AHCD+S△ABH.又∵S△AOP =S△ABH.∴S四边形ABCD=S正方形AHCP=1.练习41.解:如图,以A为中心将△ACP绕A顺时针旋转60°,则C与B重合,P与P′重合,连结AP′,BP′,PP′则AP′=AP,BP′=CP,∠PAP′=60°.∴△APP′是等边三角形,PP′=3.△BPP′中,BP=4,PP′=3,BP′=CP=5.由32+42=52.∴△BPP′为直角三角形,∠BPP′=90°.∴∠BPA=150°.过B作BE⊥AP,交AP延长线于E.∵∠EPB=180°-150°=30°,在Rt△BEP中,BP=4,BE=2,EP=23,Rt△ABE中,BE=2,AE=23+3,AB2=22+(23+3)2=25+123.2.解:将△ABP绕B点旋转90°,得△CBP′,连结PP′,则△ABP≌△CBP′.∴PB=BP′=2,AP=P′C=1,∠APB=∠CP′B.在Rt△PBP′中,BP=BP′=2,∴PP′=22,∠BP′P=45°.在△PP′C中,PC=3,P′C=1,PP′=22.有PC2=P′C2+P′P2,∴△PP′C是直角三角形,∠PP′C=90°.∴∠APB=∠CP′B=∠BP′P+∠PP′C=135°.3.解:将△CDQ绕C点旋转90°,得△CBM,则△CDO≌△CBM,∠QCM=90°.∵∠D=90°,∠CBA=90°,∴P、B、M在一条直线上.∵QA+AP+QP=2,DQ+AQ+AP+BP=2,∴QP=DQ+BP.∵BM=DQ,PM=PB+BM,∴QP=PM.又CP=CP,CQ=CM.∴△CQP≌△CMP.∴∠QCP=∠PCM.又∠QCP+∠PCM=∠QCM=900∴∠PCQ=45°.练习51.解:把△ADF绕A点旋转到△ABD′的位置.∵∠D和∠ABC均为直角,∴D′、B、E三点在一条直线上,∵∠EAF=45°,∴∠D′AE=45°.在△AD′E和△AEF中,AD′=AF,AE=AE,∠D′AE=∠EAF,∴△AD′E≌△AFE.∴S△D`EF =2S△AD`E =S ABEFD=S正方形ABCD-S△EFC.∴S△EFC =S正方形ABCD-S ABEFD=S正方形ABCD-2S△AD`E =82-2×12×8×7=8.2.解:将△ADC绕D点旋转180°得△BDE.∵BD=CD.- 11 - ∴C 与B 重合,设A 落到E 处,显然A 、D 、E 共线.在△ABE 中,BE=AC=13,AB=5,AE=2AD=12. 则有132=122+52.∴△ABE 为直角三角形,∠BAE=90°. 在Rt △ABD 中,AB=5,AD=6,则有BD=2256 =61.∴BC=2BD=261.3.证明:将△ABD 绕A 点旋转∠BAC 的度数, 得△ACE ,连结DE .由于AB=AC . ∴B 与C 重合,则△ABD ≌△ACE . ∵AD=AE ,∴∠1=∠2.∵∠AEC=∠ADB>∠ADC .∴∠4>∠3,∴CE<DC .∵BD=CE ,∴CD>BD .。

初二数学图形的对称平移与旋转试题答案及解析

初二数学图形的对称平移与旋转试题答案及解析

初二数学图形的对称平移与旋转试题答案及解析1.如图①,将两个完全相同的三角形纸片ABC与DEC重合放置,其中∠C=90°,∠B=∠E=30°。

(1)如图②,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,DE交BC于点F,则线段DF与AC有怎样的关系?请说明理由。

(2)当△DEC绕点C旋转到图③所示的位置时,设△BDC的面积为S1,△AEC的面积为S2。

猜想:S1与S2有怎样的数量关系?并证明你的猜想。

【答案】(1) DF∥AC;(2) S1=S2.【解析】(1)根据旋转的性质可得AC=CD,然后求出△ACD是等边三角形,根据等边三角形的性质可得∠ACD=60°,然后根据内错角相等,两直线平行解答;(2)过D点作DN⊥BC于N,AM⊥CE于M,先依据ASA求得△ACM≌△DCN求得AM=DN,然后根据等底等高的三角形面积相等.试题解析:(1)DF∥AC;解:如图②所示,∵∠ACB=90°,∠B=∠E=30°,∴∠A=∠CDE=60°,∵AC=DC,∴△ACD是等边三角形,∴∠ACD=60°=∠CDE,∴DF∥AC,∴∠CFD=90°,∠DCF=30°,∴DF=DC=AC;(2)猜想:S1=S2;证明:过D点作DN⊥BC于N,AM⊥CE于M,∵∠ECD=90°,∴∠DCM=90°∴∠DCN=90°-∠NCM,又∵∠ACM=90°-∠NCM,∴∠ACM=∠DCN,在△ACM与△DCN中∠ACM=∠DCNAC=CD∠AMC=∠DNC,∴△ACM≌△DCN(ASA),∴AM=DN,又∵CE=BC,∴BC•DN=CE•AM,即S1=S2.【考点】全等三角形的判定与性质;等边三角形的判定与性质.2.下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个【答案】B.【解析】①是轴对称图形,也是中心对称图形;②是轴对称图形,不是中心对称图形;③是轴对称图形,也是中心对称图形;④是轴对称图形,也是中心对称图形.故选B.【考点】1.中心对称图形;2.轴对称图形.3.如图,在平面直角坐标系中,,,.(1)求出的面积.(2分)(2)在图中作出绕点B顺时针旋转90度得到的.(2分)(3)写出点的坐标.(2分)【答案】(1)S△ABC =7.5;(2)图形见解析;(3).【解析】(1)由A、B的坐标,易求得AB的长,以AB为底,C到AB的距离为高,即可求出△ABC的面积;(2)找出将△ABC绕点B顺时针旋转90°的三角形各顶点的对应点,然后顺次连接即可;(3)根据图形写出即可.试题解析:(1)根据题意,得:AB=5﹣0=5;∴S △ABC =AB•(|x C |﹣1)=×5×3=7.5;(2)如图:(3)根据图形可得:.【考点】作图-旋转变换.4. 下列图形中,是轴对称图形的有( ) 个①角;②线段;③等腰三角形;④直角三角形;⑤圆;⑥锐角三角形A .2B .3C .4D .5【答案】C .【解析】根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,因此,是轴对称图形的有①角;②线段;③等腰三角形;⑤圆4个. 故选C .【考点】轴对称图形.5. 如图,在正方形ABCD 中,E 是AB 上一点,BE=2,AE=3BE ,P 是AC 上一动点,则PB+PE 的最小值是______________【答案】10.【解析】由正方形性质的得出B 、D 关于AC 对称,根据两点之间线段最短可知,连接DE ,交AC 于P ,连接BP ,则此时PB+PE 的值最小,进而利用勾股定理求出即可.试题解析:如图,连接DE ,交AC 于P ,连接BP ,则此时PB+PE 的值最小. ∵四边形ABCD 是正方形, ∴B 、D 关于AC 对称,∴PB=PD , ∴PB+PE=PD+PE=DE . ∵BE=2,AE=3BE , ∴AE=6,AB=8,∴DE=.故PB+PE 的最小值是10.【考点】1.轴对称-最短路线问题;2.正方形的性质.6. 如图1,将矩形纸片沿虚线AB 按箭头方向向右对折, 再将对折后的纸片沿虚线CD 向下对折,然后剪下一个小三角形,最后,把纸片打开,所得展开图为( )【答案】D.【解析】∵第三个图形是三角形,∴将第三个图形展开,可得,即可排除答案A,∵再展开可知两个短边正对着,∴选择答案D,排除B与C.故选D.【考点】剪纸问题.7.下列说法错误的是()A.关于某直线对称的两个图形一定能完全重合B.全等的两个三角形一定关于某直线对称C.轴对称图形的对称轴至少有一条D.线段是轴对称图形【答案】B.【解析】 A.两个关于某直线对称的图形是全等的,此说法正确;B.平面内两个全等的图形不一定关于某直线对称,此说法错误;C.轴对称图形的对称轴至少有一条,此说法正确;D.线段是轴对称图形,此说法正确.故选;B.【考点】轴对称的性质.8.正九边形绕它的旋转中心至少旋转°后才能与原图形重合.【答案】400.【解析】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与原来的图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.要与原来的正九边形重合.可用一个圆周角的度数(即360度)除以9,便可知道至少要旋转多少度才能和原来的九边形重合.因为3600÷9=400,故填400.【考点】旋转对称图形.9.在俄罗斯方块游戏中,若某行被小方格块填满,则该行中的所有小方格会自动消失.现在游戏机屏幕下面三行已拼成如图所示的图案,屏幕上方又出现一小方格块正向下运动,为了使屏幕下面三行中的小方格都自动消失,你可以进行以下哪项操作()A.先逆时针旋转90°,再向左平移B.先顺时针旋转90°,再向左平移C.先逆时针旋转90°,再向右平移D.先顺时针旋转90°,再向右平移【答案】A.【解析】本题结合游戏,考查了旋转与平移的性质.在旋转和平移变换中,图形的形状和大小均不发生改变,由图可以看出,将屏幕上方出现一小方格块逆时针旋转90°,再向左平移后,竖直下来正好使屏幕下面三行中的小方格都自动消失.故选A.【考点】旋转与平移的性质.10.如图,直线MN和EF相交于点O,∠EON=45°,AO=2,∠AOE=15°,设点A关于EF的对称点是B,点B关于MN的对称点是C,则AC的距离为()A.2B.C.D.【答案】D【解析】根据轴对称的性质得出∠AOB=∠BON=∠NOC=30°,进而利用勾股定理得出即可.解:∵∠EON=45°,AO=2,∠AOE=15°,点A关于EF的对称点是B,点B关于MN的对称点是C,∴∠A0E=∠EOB,∠BON=∠NOC,AO=BO=CO=2,∴∠AOB=∠BON=∠NOC=30°,∴∠AOC=90°,则AC的距离为:=2.故选:D.点评:此题主要考查了轴对称图形的性质,根据已知得出∠A0E=∠EOB,∠BON=∠NOC,AO=BO=CO=2是解题关键.11.将△ABC的三个顶点坐标的横坐标和纵坐标都乘以﹣1,则所得图形与原图形的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.将原图形向x轴负方向平移了1个单位【答案】C【解析】根据题意可得新的坐标都是原坐标的相反数,则所得图形与原图形的关系是关于原点对称.解:△ABC的三个顶点坐标的横坐标和纵坐标都乘以﹣1,则所得新的坐标都是原坐标的相反数,则所得图形与原图形的关系是关于原点对称,故选:C.点评:此题主要考查了关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y).12.下列几何图形中:(1)平行四边形;(2)线段;(3)角;(4)圆;(5)正方形;(6)任意三角形.其中一定是轴对称图形的有_____________.【答案】(2)(3)(4)(5)【解析】轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.由题意其中一定是轴对称图形的有(2)线段;(3)角;(4)圆;(5)正方形.【考点】轴对称图形的定义点评:本题属于基础应用题,只需学生熟练掌握轴对称图形的定义,即可完成.13.如图,△ABC中,AB=AC,∠BAC=40°,D为△ABC内一点,如果将△ACD绕点A按逆时针方向旋转到△ABD′的位置,则∠ADD′的度数是A.40°B.50°C.60°D.70°【答案】D【解析】根据旋转的性质可得∠DAD′=∠BAC=40°,AD′=AD,再根据三角形的内角和定理求解即可.由题意得∠DAD′=∠BAC=40°,AD′=AD则∠ADD′=(180°-∠DAD′)÷2=70°故选D.【考点】旋转的性质,三角形的内角和定理点评:解题的关键是熟练掌握旋转的性质:每一条边旋转的角度相等,均等于旋转角.14.小明上午在理发店理发时,•从镜子内看到背后墙上普通时钟的时针与分针的位置如图所示,此时时间是__________.【答案】10点45分【解析】轴对称图形,由题意分析,此类试题属于对轴对称图形的基本运算和对称的分析,指示是反过来是10点45分【考点】轴对称点评:此类试题属于对轴对称图形的基本运算和对称的分析15.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行【答案】B【解析】已知条件,根据轴对称的性质和平移的基本性质可得答案.观察原图,有用进行了平移,所以有垂直的一定不正确,A、C是错误的;对应点连线是不可能平行的,D是错误的;找对应点的位置关系可得:对应点连线被对称轴平分.故选B.【考点】轴对称的性质,平移的性质点评:本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等及轴对称的性质;按要求画出图形是正确解答本题的关键16.如图,点P在∠AOB的内部,点M、N分别是点P关于直线OA、OB的对称点,线段MN 交OA、OB于点E、F,若△PEF的周长是20cm,则线段MN的长是( )A.10cmB. 20cmC. 在10cm和20cm之间D.不能确定【答案】B【解析】根据轴对称的性质可得ME=PE,NF=PF,再结合△PEF的周长即可求得结果.∵点M、N分别是点P关于直线OA、OB的对称点∴ME=PE,NF=PF∵△PEF的周长=PE+EF+PF=20cm∴ME+EF+NF=20cm,即MN=20cm故选B.【考点】轴对称的性质点评:本题属于基础应用题,只需学生熟练掌握轴对称的性质,即可完成.17.如图,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).(1)在图中作出关于轴对称的.(2)写出点的坐标(直接写答案).A1 _____________,B1______________,C1______________【答案】(1)如图所示:(2)A1(1,-2),B1(3,-1),C1(-2,1)【解析】(1)分别作出的三个顶点关于轴对称的对称点,再顺序连接即可.(2)根据(1)中所作的图形即可作出判断.(1)如图所示:【考点】基本作图,点的坐标点评:解题的关键是熟练掌握轴对称变换的作图方法,正确找到关键点的对称点.18.(本题满分6分)如下图,直线L是一条河,A,B是两个村庄。

新初中数学图形的平移,对称与旋转的知识点总复习附答案解析(1)

新初中数学图形的平移,对称与旋转的知识点总复习附答案解析(1)

新初中数学图形的平移,对称与旋转的知识点总复习附答案解析(1)一、选择题1.如图是一个由7个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是( )A .俯视图B .主视图C .俯视图和左视图D .主视图和俯视图【答案】A【解析】画出三视图,由此可知俯视图既是轴对称图形又是中心对称图形,故选A.2.下列图形中,是轴对称图形但不是中心对称图形的是( )A .B .C .D .【答案】A【解析】A.是轴对称图形不是中心对称图形,正确;B.是轴对称图形也是中心对称图形,错误;C.是中心对称图形不是轴对称图形,错误;D. 是轴对称图形也是中心对称图形,错误, 故选A.【点睛】本题考查轴对称图形与中心对称图形,正确地识别是解题的关键.3.如图,将▱ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若ABD 48∠=o ,CFD 40∠=o ,则E ∠为( )A .102oB .112oC .122oD .92o【答案】B【解析】【分析】 由平行四边形的性质和折叠的性质,得出ADB BDF DBC ∠∠∠==,由三角形的外角性质求出1BDF DBC DFC 202∠∠∠===o ,再由三角形内角和定理求出A ∠,即可得到结果.【详解】 AD //BC Q ,ADB DBC ∠∠∴=,由折叠可得ADB BDF ∠∠=,DBC BDF ∠∠∴=,又DFC 40∠=o Q ,DBC BDF ADB 20∠∠∠∴===o ,又ABD 48∠=o Q ,ABD ∴V 中,A 1802048112∠=--=o o o o ,E A 112∠∠∴==o ,故选B .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用,熟练掌握平行四边形的性质,求出ADB ∠的度数是解决问题的关键.4.如图,在边长为1522的正方形ABCD 中,点E ,F 是对角线AC 的三等分点,点P 在正方形的边上,则满足PE+PF=55的点P 的个数是( )A .0B .4C .8D .16【答案】B【解析】【分析】作点F关于BC的对称点M,连接EM交BC于点P,则PE+PF的最小值为EM,由对称性可得CM=5,∠BCM=45°,根据勾股定理得EM=55,进而即可得到结论.【详解】作点F关于BC的对称点M,连接EM交BC于点P,则PE+PF的最小值为EM.∵正方形ABCD中,边长为1522,∴AC=1522×2=15,∵点E,F是对角线AC的三等分点,∴EC=10,FC=AE=5,∵点M与点F关于BC对称,∴CF=CM=5,∠ACB=∠BCM=45°,∴∠ACM=90°,∴EM=222210555EC CM+=+=,∴在BC边上,只有一个点P满足PE+PF=55,同理:在AB,AD,CD边上都存在一个点P,满足PE+PF=55,∴满足PE+PF=55的点P的个数是4个.故选B.【点睛】本题主要考查正方形的性质,勾股定理,轴对称的性质,熟练掌握利用轴对称的性质求两线段和的最小值,是解题的关键.5.如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60︒得到线段AQ,连接BQ.若6PA=,8PB=,10PC=,则四边形APBQ的面积为()A.2493+B.483+C.243+D.48183+【答案】A【解析】【分析】连结PQ,先根据等边三角形的性质和旋转的性质证明△APQ为等边三角形,则P Q=AP=6,再证明△APC≌△AQB,可得PC=QB=10,然后利用勾股定理的逆定理证明△PBQ为直角三角形,再根据三角形面积公式求出面积,最后利用S四边形APBQ=S△BPQ+S△APQ即可解答.【详解】解:如图,连结PQ,∵△ABC为等边三角形,∴∠BAC=60°,AB=AC,∵线段AP绕点A顺时针旋转60°得到线段AQ,∴AP=PQ=6,∠PAQ=60°,∴△APQ为等边三角形,∴PQ=AP=6,∵∠CAP+∠BAP=60°,∠BAP+∠BAQ=60°,∴∠CAP=∠BAQ,∵在△APC和△ABQ中,AC=AB,∠CAP=∠BAQ,AP=AQ∴△APC≌△AQB,∴PC=QB=10,在△BPQ中, PB2=82=64,PQ2=62=36,BQ2=102=100,∴PB2+PQ2=BQ2,∴△PBQ为直角三角形,∴∠BPQ=90°,∴S四边形APBQ=S△BPQ+S△APQ=12×6×8+34×623故答案为A..【点睛】本题考查了旋转的性质和勾股定理的逆定理,掌握旋转的定义、旋转角以及旋转前、后的图形全等是解答本题的关键.6.在平行四边形、菱形、矩形、正方形这四种图形中,是轴对称图形的有( ) A .1个 B .2个 C .3个 D .4个【答案】C【解析】【分析】根据轴对称图形的概念求解.【详解】解:平行四边形不是轴对称图形,菱形、矩形、正方形都是轴对称图形.故选:C .【点睛】本题考查轴对称图形的概念,解题关键是寻找轴对称图形的对称轴,图形两部分沿对称轴折叠后可重合.7.如图,在Rt ABC V 中,BAC 90∠=︒,B 36∠=︒,AD 是斜边BC 上的中线,将△ACD 沿AD 对折,使点C 落在点F 处,线段DF 与AB 相交于点E ,则∠BED 等于( )A .120°B .108°C .72°D .36° 【答案】B【解析】【分析】 根据三角形内角和定理求出C 90B 54∠∠=︒-=︒.由直角三角形斜边上的中线的性质得出AD =BD =CD ,利用等腰三角形的性质求出BAD B 36∠∠==︒,DAC C 54∠∠==︒,利用三角形内角和定理求出ADC 180DAC C 72∠∠∠=︒--=︒.再根据折叠的性质得出ADF ADC 72∠∠==︒,然后根据三角形外角的性质得出BED BAD ADF 108∠∠∠=+=︒.【详解】∵在Rt ABC V 中,BAC 90∠=︒,B 36∠=︒,∴C 90B 54∠∠=︒-=︒.∵AD 是斜边BC 上的中线,∴AD BD CD ==,∴BAD B 36∠∠==︒,DAC C 54∠∠==︒,∴ADC=180DAC C 72∠∠∠︒--=︒.∵将△ACD 沿AD 对折,使点C 落在点F 处,∴ADF ADC 72∠∠==︒,∴BED BAD ADF 108∠∠∠=+=︒.故选B .【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了直角三角形斜边上的中线的性质、等腰三角形的性质、三角形内角和定理以及三角形外角的性质.8.如图,在ABC ∆中,5AB =,3AC =,4BC =,将ABC ∆绕一逆时针方向旋转40︒得到ADE ∆,点B 经过的路径为弧BD ,则图中阴影部分的面积为( )A .1463π- B .33π+ C .3338π- D .259π 【答案】D【解析】【分析】 由旋转的性质可得△ACB ≌△AED ,∠DAB=40°,可得AD=AB=5,S △ACB =S △AED ,根据图形可得S 阴影=S △AED +S 扇形ADB -S △ACB =S 扇形ADB ,再根据扇形面积公式可求阴影部分面积.【详解】∵将△ABC 绕A 逆时针方向旋转40°得到△ADE ,∴△ACB ≌△AED ,∠DAB=40°,∴AD=AB=5,S △ACB =S △AED ,∵S 阴影=S △AED +S 扇形ADB -S △ACB =S 扇形ADB ,∴S 阴影=4025360π⨯=259π,故选D.【点睛】本题考查了旋转的性质,扇形面积公式,熟练掌握旋转的性质:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.9.如图,在菱形纸片ABCD 中,∠A=60°,点E 在BC 边上,将菱形纸片ABCD 沿DE 折叠,点C 落在AB 边的垂直平分线上的点C′处,则∠DEC 的大小为( )A .30°B .45°C .60°D .75°【答案】D【解析】【分析】 连接BD ,由菱形的性质及60A ∠=︒,得到ABD △为等边三角形,P 为AB 的中点,利用三线合一得到DP 为角平分线,得到30ADP ∠=︒,120ADC =∠︒,60C ∠=°,进而求出90PDC ∠=︒,由折叠的性质得到45CDE PDE ∠=∠=︒,利用三角形的内角和定理即可求出所求角的度数.【详解】解:连接BD ,如图所示:∵四边形ABCD 为菱形,∴AB AD =,∵60A ∠=︒,∴ABD △为等边三角形,120ADC =∠︒,60C ∠=°,∵P 为AB 的中点,∴DP 为ADB ∠的平分线,即30ADP BDP ∠=∠=︒,∴90PDC ∠=︒,∴由折叠的性质得到45CDE PDE ∠=∠=︒,在DEC V 中,()18075DEC CDE C ∠=︒-∠+∠=︒.故选:D【点睛】此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及三角形内角和定理,熟练掌握折叠的性质是解本题的关键.10.下列图形中,不是中心对称图形的是()A.平行四边形B.圆C.等边三角形D.正六边形【答案】C【解析】【分析】根据中心对称图形的定义依次判断各项即可解答.【详解】选项A、平行四边形是中心对称图形;选项B、圆是中心对称图形;选项C、等边三角形不是中心对称图形;选项D、正六边形是中心对称图形;故选C.【点睛】本题考查了中心对称图形的判定,熟知中心对称图形的定义是解决问题的关键.11.斐波那契螺旋线也称为“黄金螺旋线”,是根据斐波那契数列画出来的螺旋曲线,自然界中存在许多斐波那契螺旋线图案.下列斐波那契螺旋线图案中属于轴对称图形的是()A.B.C.D.【答案】A【解析】【分析】如果一个图形沿着一条直线对折,直线两边的图形能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】根据轴对称图形的定义,只有选项A是轴对称图形,其他不是.故选:A【点睛】考核知识点:轴对称图形.理解定义是关键.12.如图,若将线段AB平移至A1B1,则a+b的值为( )A.﹣3 B.3 C.﹣2 D.0【答案】A【解析】【分析】根据点的平移规律即点A平移到A1得到平移的规律,再按此规律平移B点得到B1,从而得到B1点的坐标,于是可求出a、b的值,然后计算a+b即可.【详解】解:∵点A(0,1)向下平移2个单位,得到点A1(a,﹣1),点B(2,0)向左平移1个单位,得到点B1(1,b),∴线段AB向下平移2个单位,向左平移1个单位得到线段A1B1,∴A1(﹣1,﹣1),B1(1,﹣2),∴a=﹣1,b=﹣2,∴a+b=﹣1﹣2=﹣3.故选:A.【点睛】本题考查了直角坐标系中点的平移规律,解决本题的关键是熟知坐标平移规律上加下减、右加左减.13.如图,△ABC中,∠BAC=45°,∠ACB=30°,将△ABC绕点A顺时针旋转得到△AB1C1,当点C1、B1、C三点共线时,旋转角为α,连接BB1,交AC于点D.下列结论:①△AC1C 为等腰三角形;②△AB1D∽△BCD;③α=75°;④CA=CB1,其中正确的是()A.①③④B.①②④C.②③④D.①②③④【答案】B【解析】【分析】将△ABC绕点A顺时针旋转得到△AB1C1,得到△ABC≌△AB1C1,根据全等三角形的性质得到AC1=AC,于是得到△AC1C为等腰三角形;故①正确;根据等腰三角形的性质得到∠C1=∠ACC1=30°,由三角形的内角和得到∠C1AC=120°,得到∠B1AB=120°,根据等腰三角形的性质得到∠AB1B=30°=∠ACB,于是得到△AB1D∽△BCD;故②正确;由旋转角α=120°,故③错误;根据旋转的性质得到∠C1AB1=∠BAC=45°,推出∠B1AC=∠AB1C,于是得到CA=CB1;故④正确.【详解】解:∵将△ABC绕点A顺时针旋转得到△AB1C1,∴△ABC≌△AB1C1,∴AC1=AC,∴△AC1C为等腰三角形;故①正确;∴AC1=AC,∴∠C1=∠ACC1=30°,∴∠C1AC=120°,∴∠B1AB=120°,∵AB1=AB,∴∠AB1B=30°=∠ACB,∵∠ADB1=∠BDC,∴△AB1D∽△BCD;故②正确;∵旋转角为α,∴α=120°,故③错误;∵∠C1AB1=∠BAC=45°,∴∠B1AC=75°,∵∠AB1C1=∠BAC=105°,∴∠AB1C=75°,∴∠B1AC=∠AB1C,∴CA=CB1;故④正确.故选:B.【点睛】本题考查了相似三角形的判定和性质,等腰三角形的判定和性质,旋转的性质,正确的识别图形是解题的关键.14.如图所示的网格中各有不同的图案,不能通过平移得到的是()A.B.C.D.【答案】C【解析】【分析】根据平移的定义:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,结合各选项所给的图形即可作出判断.【详解】A 、可以通过平移得到,不符合题意;B 、可以通过平移得到,不符合题意;C 、不可以通过平移得到,符合题意;D 、可以通过平移得到,不符合题意.故选C .【点睛】本题考查平移的性质,属于基础题,要掌握图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.15.点M(﹣2,1)关于y 轴的对称点N 的坐标是( )A .(﹣2,﹣1)B .(2,1)C .(2,﹣1)D .(1,﹣2)【答案】B【解析】【分析】根据“关于y 轴对称的点,纵坐标相同,横坐标互为相反数”解答.【详解】点M (-2,1)关于y 轴的对称点N 的坐标是(2,1).故选B .【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.16.如图,ABC V 的三个顶点都在方格纸的格点上,其中点A 的坐标是()1,0-.现将ABC V 绕点A 顺时针旋转90︒,则旋转后点C 的坐标是( )A .()3,3B .()2,1C .()4,1--D .()2,3【答案】B【解析】【分析】 在网格中绘制出CA 旋转后的图形,得到点C 旋转后对应点.【详解】如下图,绘制出CA绕点A顺时针旋转90°的图形由图可得:点C对应点的坐标为(2,1)故选:B【点睛】本题考查旋转,需要注意题干中要求顺时针旋转还是逆时针旋转.∆绕点A顺时针旋转90︒到17.如图,点E是正方形ABCD的边DC上一点,把ADE∆的位置.若四边形AECF的面积为20,DE=2,则AE的长为()ABFA.4 B.5C.6 D.26【答案】D【解析】【分析】利用旋转的性质得出四边形AECF的面积等于正方形ABCD的面积,进而可求出正方形的边长,再利用勾股定理得出答案.【详解】Q绕点A顺时针旋转90︒到ABF∆ADE∆的位置.∴四边形AECF的面积等于正方形ABCD的面积等于20,∴==AD DC25Q,DE=2∴∆中,2226Rt ADE=+=AE AD DE故选:D.【点睛】本题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键.18.我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(如图1),它是分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形. 图2是等宽的勒洛三角形和圆形滚木的截面图.图1图2有如下四个结论:①勒洛三角形是中心对称图形②图1中,点A到BC上任意一点的距离都相等③图2中,勒洛三角形的周长与圆的周长相等④使用截面是勒洛三角形的滚木来搬运东西,会发生上下抖动上述结论中,所有正确结论的序号是()A.①②B.②③C.②④D.③④【答案】B【解析】【分析】逐一对选项进行分析即可.【详解】①勒洛三角形不是中心对称图形,故①错误;②图1中,点A到BC上任意一点的距离都相等,故②正确;③图2中,设圆的半径为r∴勒洛三角形的周长=12032180rrππ⨯=g g圆的周长为2rπ∴勒洛三角形的周长与圆的周长相等,故③正确;④使用截面是勒洛三角形的滚木来搬运东西,不会发生上下抖动,故④错误故选B【点睛】本题主要考查中心对称图形,弧长公式等,掌握中心对称图形和弧长公式是解题的关键. 19.已知互不平行的两条线段AB,CD关于直线l对称,AB,CD所在直线交于点P,下列结论中:①AB=CD;②点P在直线l上;③若A、C是对称点,则l垂直平分线段AC;④若B、D是对称点,则PB=PD.其中正确的结论有( )A.1个B.2个C.3个D.4个【答案】D【解析】【分析】【详解】由轴对称的性质知,①②③④都正确.故选D.20.已知点A(m﹣1,3)与点B(2,n+1)关于x轴对称,则m+n的值为()A.﹣1 B.﹣7 C.1 D.7【答案】A【解析】【分析】【详解】∵点A(m﹣1,3)与点B(2,n+1)关于x轴对称,∴m-1=2,n+1+3=0,∴m=3,n=-4,∴m+n=3+(﹣4)=﹣1.故选A.【点睛】本题考查平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于x轴对称的点,纵坐标互为相反数,横坐标相等.。

图形的变换⑵平移、旋转、翻折含答案

图形的变换⑵平移、旋转、翻折含答案

第25课时 图形的变换⑵平移、旋转、翻折【基础知识梳理】 1.平移在平面内,将一个图形沿着某个 移动一定的 ,这样的图形运动称作平移;平移不改变图形的 和 . 2.平移的特征平移前后的两个图形对应点连线 且 ,对应线段 且 ,对应角 . 3.旋转在平面内,将一个图形绕一个定点沿某个方向 一定的角度,这样的图形运动称为图形的旋转.这个定点称为 ,转动的角称为 .4.旋转的基本性质⑴旋转不改变图形的 和 .⑵图形上的每一点都绕 沿 转动了相同的角度. (3)任意一对对应点与 的连线所成的角度都是旋转角. (4)对应点到旋转中心的距离 . 【基础诊断】1、如图,△DEF 经过怎样的平移得到△ABC( ) A .把△DEF 向左平移4个单位,再向下平移2个单位 B .把△DEF 向右平移4个单位,再向下平移2个单位 C .把△DEF 向右平移4个单位,再向上平移2个单位 D .把△DEF 向左平移4个单位,再向上平移2个单位2、如图,△AOB 是正三角形,OC⊥OB,OC =OB ,将△AOB 绕点O 按逆时针方向 旋转,使得OA 与OC 重合,得到△OCD,则旋转角度是( ) A .150º B.120º C.90º D.60º3、如图:△ABC 的周长为30cm ,把△ABC 的边AC 对折,使顶点C 和点A 重合,折痕交BC 边于点D ,交AC 边与点E ,连接AD ,若AE=4cm ,则△ABD 的周长是( ) A. 22cm B.20cm C. 18cm D.15cm【精典例题】例1、如图,将等腰直角△ABC 沿BC 方向平移得到△A 1B 1C 1.若BC =32,△ABC 与△A 1B 1C 1重叠部分面积为2,则BB 1= .第1题图第2题图 第3题图例1图【点拨】∵△ABC 与△A 1B 1C 1重叠部分面积为2,则由三角形面积公式可知,重叠部分小三角形的直角边长为2,从而由勾股定理得B 1C =22,则BB 1=BC -B 1C =2。

最新初中数学图形的平移,对称与旋转的知识点总复习含答案解析(1)

最新初中数学图形的平移,对称与旋转的知识点总复习含答案解析(1)

最新初中数学图形的平移,对称与旋转的知识点总复习含答案解析(1)一、选择题1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】C【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A、是轴对称图形,不是中心对称的图形,故本选项不符合题意;B、不是轴对称图形,是中心对称的图形,故本选项不符合题意;C、既是轴对称图形,又是中心对称的图形,故本选项符合题意;D、是轴对称图形,不是中心对称的图形,故本选项不符合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.在平行四边形、菱形、矩形、正方形这四种图形中,是轴对称图形的有( )A.1个 B.2个 C.3个 D.4个【答案】C【解析】【分析】根据轴对称图形的概念求解.【详解】解:平行四边形不是轴对称图形,菱形、矩形、正方形都是轴对称图形.故选:C.【点睛】本题考查轴对称图形的概念,解题关键是寻找轴对称图形的对称轴,图形两部分沿对称轴折叠后可重合.3.如图,已知△A1B1C1的顶点C1与平面直角坐标系的原点O重合,顶点A1、B1分别位于x 轴与y轴上,且C1A1=1,∠C1A1B1=60°,将△A1B1C1沿着x轴做翻转运动,依次可得到△A2B2C2,△A3B3C3等等,则C2019的坐标为()A .(2018+6723,0)B .(2019+6733,0)C .(40352+6723,3)D .(2020+6743,0) 【答案】B【解析】【分析】根据题意可知三角形在x 轴上的位置每三次为一个循环,又因为20193673÷=,那么2019C 相当于第一个循环体的3673C 个即可算出.【详解】由题意知,111C A =,11160C A B ︒∠=,则11130C B A ︒∠=,11222A B A B ==,1122333C B C B C B ===,结合图形可知,三角形在x 轴上的位置每三次为一个循环,Q 20193673÷=,∴2019673(123)20196733OC =++=+,∴2019C (20196733,0)+,故选B .【点睛】考查解直角三角形,平面直角坐标系中点的特征,结合找规律.理解题目中每三次是一个循环是解题关键.4.如图,△ABC 绕点A 逆时针旋转使得点C 落在BC 边上的点F 处,则以下结论:①AC =AF ;②∠FAB =∠EAB ;③EF =BC ;④∠EAB =∠FAC .其中正确的结论有( )A .4个B .3个C .2个D .1个【答案】B【解析】【分析】根据旋转的性质,旋转前后对应线段相等、对应角相等即可解答.【详解】由旋转可知△ABC≌△AEF,∴AC=AF,EF=BC,①③正确,∠EAF=∠BAC,即∠EAB+∠BAF=∠BAF+∠FAC,∴∠EAB=∠FAC,④正确,②错误,综上所述,①③④正确.故选B.【点睛】本题考查了旋转的性质,属于简单题,熟悉旋转的性质,利用旋转的性质找到对应角之间的关系是解题关键.5.如图,在锐角△ABC中,AB=4,∠ABC=45°,∠ABC的平分线交AC于点D,点P,Q 分别是BD,AB上的动点,则AP+PQ的最小值为()A.4 B.42C.2 D.22【答案】D【解析】【分析】作AH⊥BC于H,交BD于P′,作P′Q′⊥AB于Q′,此时AP′+P′Q′的值最小.【详解】作AH⊥BC于H,交BD于P′,作P′Q′⊥AB于Q′,此时AP′+P′Q′的值最小.∵BD平分∠ABC,P′H⊥BC,P′Q′⊥AB,P′Q′=P′H,∴AP′+P′Q′=AP′+P′H=AH,根据垂线段最短可知,PA+PQ的最小值是线段AH的长,∵AB=4,∠AHB=90°,∠ABH=45°,∴2.故选:D.【点睛】考查了轴对称-最短路线问题,解题关键是从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.6.已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,3),且|a﹣c|+7b-=0,将线段PQ向右平移a个单位长度,其扫过的面积为20,那么a+b+c的值为()A.12 B.15 C.17 D.20【答案】C【解析】【分析】由非负数的性质得到a=c,b=7,P(a,7),故有PQ∥y轴,PQ=7-3=4,由于其扫过的图形是矩形可求得a,代入即可求得结论.【详解】∵且|a-c|++7b-=0,∴a=c,b=7,∴P(a,7),PQ∥y轴,∴PQ=7-3=4,∴将线段PQ向右平移a个单位长度,其扫过的图形是边长为a和4的矩形,∴4a=20,∴a=5,∴c=5,∴a+b+c=5+7+5=17,故选C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ∥y 轴,进而求得PQ是解题的关键.7.如图,在平面直角坐标系中,AOB∆的顶点B在第一象限,点A在y轴的正半轴上,2AO AB==,120OAB∠=o,将AOB∠绕点O逆时针旋转90o,点B的对应点'B的坐标是()A.3(23)-B.33(22--C.3(3,22--D .(3,3)- 【答案】D 【解析】 【分析】 过点'B 作x 轴的垂线,垂足为M ,通过条件求出'B M ,MO 的长即可得到'B 的坐标.【详解】解:过点'B 作x 轴的垂线,垂足为M ,∵2AO AB ==,120OAB ∠=︒,∴'''2A O A B ==,''120OA B ∠=︒,∴'0'6M B A ∠=︒,在直角△''A B M 中,3==2=B'M B'M 'sin B A M B '''A ∠ , 1==22=A'M A'M 'cos B A M B '''A ∠, ∴'3B M =,'1A M =,∴OM=2+1=3,∴'B 的坐标为(3,3)-.故选:D.【点睛】本题考查坐标与图形变化-旋转,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.8.下面是同学们利用图形变化的知识设计的一些美丽的图案,其中既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】A【解析】【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.【详解】A、是中心对称图形,又是轴对称图形,故此选项正确;B、是中心对称图形,不是轴对称图形,故此选项错误;C、不是中心对称图形,是轴对称图形,故此选项错误;D、不是中心对称图形,是轴对称图形,故此选项错误;故选A.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.9.在Rt△ABC中,∠BAC=90°,AD是△ABC的中线,∠ADC=45°,把△ADC沿AD对折,使点C落在C′的位置,C′D交AB于点Q,则BQAQ的值为()A B C.2D.2【答案】A【解析】【分析】根据折叠得到对应线段相等,对应角相等,根据直角三角形的斜边中线等于斜边一半,可得出AD=DC=BD,AC=AC′,∠ADC=∠ADC′=45°,CD=C′D,进而求出∠C、∠B的度数,求出其他角的度数,可得AQ=AC,将BQAQ转化为BQAC,再由相似三角形和等腰直角三角形的边角关系得出答案.【详解】解:如图,过点A作AE⊥BC,垂足为E,∵∠ADC=45°,∴△ADE是等腰直角三角形,即AE=DE=2AD,在Rt△ABC中,∵∠BAC=90°,AD是△ABC的中线,∴AD=CD=BD,由折叠得:AC=AC′,∠ADC=∠ADC′=45°,CD=C′D,∴∠CDC′=45°+45°=90°,∴∠DAC=∠DCA=(180°﹣45°)÷2=67.5°=∠C′AD,∴∠B=90°﹣∠C=∠CAE=22.5°,∠BQD=90°﹣∠B=∠C′QA=67.5°,∴AC′=AQ=AC,由△AEC∽△BDQ得:BQAC=BDAE,∴BQ AQ =BQ AC =AD AE =2AE AE=2. 故选:A .【点睛】考查直角三角形的性质,折叠轴对称的性质,以及等腰三角形与相似三角形的性质和判定等知识,合理的转化是解决问题的关键.10.如图,ABC V 的三个顶点都在方格纸的格点上,其中点A 的坐标是()1,0-.现将ABC V 绕点A 顺时针旋转90︒,则旋转后点C 的坐标是( )A .()3,3B .()2,1C .()4,1--D .()2,3【答案】B【解析】【分析】 在网格中绘制出CA 旋转后的图形,得到点C 旋转后对应点.【详解】如下图,绘制出CA 绕点A 顺时针旋转90°的图形由图可得:点C 对应点的坐标为(2,1)故选:B本题考查旋转,需要注意题干中要求顺时针旋转还是逆时针旋转.11.有两条或两条以上对称轴的轴对称图形是( )A .等腰三角形B .角C .等边三角形D .锐角三角形【答案】C【解析】A.等腰三角形只有一条对称轴;B.角也只有一条对称轴,是角平分线所在的直线;C.等边三角形有三条对称轴;D.锐角三角形的对称轴数量不确定.故选:C12.如图,将△ABC 绕点C (0,1)旋转180°得到△A'B'C ,设点A 的坐标为(,)a b ,则点的坐标为( )A .(,)a b --B .(,1)a b ---C .(,1)a b --+D .(,2)a b --+【答案】D【解析】 试题分析:根据题意,点A 、A′关于点C 对称,设点A 的坐标是(x ,y ),则 0122a xb y ++==,,解得2x a y b =-=-+,,∴点A 的坐标是(2)a b --+,.故选D . 考点:坐标与图形变化-旋转.13.如图,在ABC ∆中,2AB =,=3.6BC ,=60B ∠o ,将ABC ∆绕点A 顺时针旋转度得到ADE ∆,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为( )A .1.6B .1.8C .2D .2.6【答案】A【分析】由将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上,可得AD=AB ,又由∠B=60°,可证得△ABD 是等边三角形,继而可得BD=AB=2,则可求得答案.【详解】由旋转的性质可知,AD AB =,∵60B ∠=o ,AD AB =,∴ADB ∆为等边三角形,∴2BD AB ==,∴ 1.6CD CB BD =-=,故选:A .【点睛】此题考查旋转的性质,解题关键在于利用旋转的性质得出AD=AB14.我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(如图1),它是分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形. 图2是等宽的勒洛三角形和圆形滚木的截面图.图1 图2有如下四个结论:①勒洛三角形是中心对称图形②图1中,点A 到BC 上任意一点的距离都相等③图2中,勒洛三角形的周长与圆的周长相等④使用截面是勒洛三角形的滚木来搬运东西,会发生上下抖动上述结论中,所有正确结论的序号是( )A .①②B .②③C .②④D .③④【答案】B【解析】【分析】逐一对选项进行分析即可.【详解】①勒洛三角形不是中心对称图形,故①错误;②图1中,点A到BC上任意一点的距离都相等,故②正确;③图2中,设圆的半径为r∴勒洛三角形的周长=12032180rrππ⨯=g g圆的周长为2rπ∴勒洛三角形的周长与圆的周长相等,故③正确;④使用截面是勒洛三角形的滚木来搬运东西,不会发生上下抖动,故④错误故选B【点睛】本题主要考查中心对称图形,弧长公式等,掌握中心对称图形和弧长公式是解题的关键. 15.下列几何图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故本选项错误;B、是中心对称图形,不是轴对称图形,故本选项错误;C、是中心对称图形,也是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误;故选:C.【点睛】此题考查中心对称图形与轴对称图形的概念,注意掌握轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.16.在等边三角形ABC中,CD是∠ACB的平分线,过D作DE∥BC交AC于E,若△ABC的边长为a,则△ADE的周长为()A.2a B.4 3 aC.1.5a D.a【答案】C【解析】解:△ABC是等边三角形,由折叠可知,AD=BD=0.5AB=0.5a,易得△ADE是等边三角形.故周长是1.5a。

初中数学图形的平移,对称与旋转的知识点总复习附答案解析(1)

初中数学图形的平移,对称与旋转的知识点总复习附答案解析(1)

初中数学图形的平移,对称与旋转的知识点总复习附答案解析(1)一、选择题1.如图所示,共有3个方格块,现在要把上面的方格块与下面的两个方格块合成一个长方形的整体,则应将上面的方格块( )A .向右平移1格,向下3格B .向右平移1格,向下4格C .向右平移2格,向下4格D .向右平移2格,向下3格【答案】C【解析】 分析:找到两个图案的最右边移动到一条直线,最下边移动到一条直线上的距离即可. 解答:解:上面的图案的最右边需向右平移2格才能与下面图案的最右边在一条直线上,最下边需向下平移4格才能与下面图案的最下面重合,故选C .2.如图,已知△A 1B 1C 1的顶点C 1与平面直角坐标系的原点O 重合,顶点A 1、B 1分别位于x 轴与y 轴上,且C 1A 1=1,∠C 1A 1B 1=60°,将△A 1B 1C 1沿着x 轴做翻转运动,依次可得到△A 2B 2C 2,△A 3B 3C 3等等,则C 2019的坐标为( )A .(30)B .(3,0)C .(403523,32D .(30) 【答案】B【解析】【分析】根据题意可知三角形在x 轴上的位置每三次为一个循环,又因为20193673÷=,那么2019C 相当于第一个循环体的3673C 个即可算出.【详解】由题意知,111C A =,11160C A B ︒∠=,则11130C B A ︒∠=,11222A B A B ==,1122333C B C B C B ===结合图形可知,三角形在x 轴上的位置每三次为一个循环,Q 20193673÷=, ∴2019673(123)20196733OC =++=+,∴2019C (20196733,0)+,故选B .【点睛】 考查解直角三角形,平面直角坐标系中点的特征,结合找规律.理解题目中每三次是一个循环是解题关键.3.已知点P (a +1,12a -+)关于原点的对称点在第四象限,则a 的取值范围在数轴上表示正确的是( )A .B .C .D . 【答案】C【解析】试题分析:∵P (1a +,12a -+)关于原点对称的点在第四象限,∴P 点在第二象限,∴10a +<,102a -+>,解得:1a <-,则a 的取值范围在数轴上表示正确的是.故选C .考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组;3.关于原点对称的点的坐标.4.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是( )A .主视图B .左视图C .俯视图D .主视图和左视图【答案】C【解析】 【分析】根据所得到的主视图、俯视图、左视图结合中心对称图形的定义进行判断即可.【详解】观察几何体,可得三视图如图所示:可知俯视图是中心对称图形,故选C.【点睛】本题考查了三视图、中心对称图形,正确得到三视图是解决问题的关键.5.已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(﹣2,1).则点B的对应点的坐标为()A.(5,3)B.(﹣1,﹣2)C.(﹣1,﹣1)D.(0,﹣1)【答案】C【解析】【分析】根据点A、点A的对应点的坐标确定出平移规律,然后根据规律求解点B的对应点的坐标即可.【详解】∵A(1,3)的对应点的坐标为(﹣2,1),∴平移规律为横坐标减3,纵坐标减2,∵点B(2,1)的对应点的坐标为(﹣1,﹣1),故选C.【点睛】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.6.如图是一个由7个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是()A.俯视图B.主视图C.俯视图和左视图D.主视图和俯视图【答案】A【解析】画出三视图,由此可知俯视图既是轴对称图形又是中心对称图形,故选A.7.如图,将ABC V 绕点A 逆时针旋转110o ,得到ADE V ,若点D 在线段BC 的延长线上,则ADE ∠的大小为( )A .55oB .50oC .45oD .35o【答案】D【解析】【分析】根据旋转的性质可得AB AD =,BAD 110∠=o ,ADE ABC ∠∠=,根据等腰三角形的性质可得ABC ADE 35∠∠==o .【详解】如图,连接CD ,Q 将ABC V 绕点A 逆时针旋转110o ,得到ADE V ,AB AD ∴=,BAD 110∠=o ,ADE ABC ∠∠=,∴∠ABC=∠ADB=(180°-∠BAD )÷2=35°,∴∠ADE=ABC 35∠=o ,故选D .【点睛】本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是解本题的关键.8.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A .66°B .104°C .114°D .124°【答案】C【解析】【分析】 根据平行四边形性质和折叠性质得∠BAC =∠ACD =∠B′AC =12∠1,再根据三角形内角和定理可得.【详解】∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ACD =∠BAC ,由折叠的性质得:∠BAC =∠B′AC ,∴∠BAC =∠ACD =∠B′AC =12∠1=22° ∴∠B =180°-∠2-∠BAC =180°-44°-22°=114°;故选C .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC 的度数是解决问题的关键.9.下列图形中,是轴对称图形但不是中心对称图形的是( )A .B .C .D .【答案】A【解析】A.是轴对称图形不是中心对称图形,正确;B.是轴对称图形也是中心对称图形,错误;C.是中心对称图形不是轴对称图形,错误;D. 是轴对称图形也是中心对称图形,错误, 故选A.【点睛】本题考查轴对称图形与中心对称图形,正确地识别是解题的关键.10.如图,将线段AB 绕点O 顺时针旋转90°得到线段''A B 那么()2, 5A -的对应点'A 的坐标是 ( )A .()5,2B .()2,5C .()2,5-D .()5,2-【答案】A【解析】【分析】 根据旋转的性质和点A (-2,5)可以求得点A′的坐标.【详解】作AD ⊥x 轴于点D ,作A′D′⊥x 轴于点D′,则OD=A′D′,AD=OD′,OA=OA′,△OAD ≌△A ′OD ′(SSS ),∵A (-2,5),∴OD=2,AD=5,∴点A′的坐标为(5,2),故选:A .【点睛】此题考查坐标与图形变化-旋转,解题的关键是明确题意,找出所求问题需要的条件.11.有两条或两条以上对称轴的轴对称图形是( )A .等腰三角形B .角C .等边三角形D .锐角三角形【答案】C【解析】A.等腰三角形只有一条对称轴;B.角也只有一条对称轴,是角平分线所在的直线;C.等边三角形有三条对称轴;D.锐角三角形的对称轴数量不确定.故选:C12.下列图案中既是轴对称又是中心对称图形的是( )A.B.C.D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的概念判断即可.【详解】A、不是轴对称图形,是中心对称图形,故本选项错误;B、不是轴对称图形,也不是中心对称图形,故本选项错误;C、是轴对称图形,是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误;故选C.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.13.如图,圆柱形玻璃杯高为8cm,底面周长为48cm,在杯内壁离杯底3cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁上,它在离杯上沿2cm且与蜂蜜相对的A处,则蚂蚁从外壁A处走到内壁B处,至少爬多少厘米才能吃到蜂蜜()A.24 B.25 C.3713D.382【答案】B【解析】【分析】将圆柱形玻璃杯的侧面展开图为矩形MNPQ,设点A关于MQ的对称点为A′,连接A′B,则A′B就是蚂蚁从外壁A处走到内壁B处的最短距离,再根据勾股定理,即可求解.【详解】圆柱形玻璃杯的侧面展开图为矩形MNPQ,则E、F分别是MQ,NP的中点,AM=2cm,BF=3cm,设点A关于MQ的对称点为A′,连接A′B,则A′B就是蚂蚁从外壁A处走到内壁B处的最短距离.过点B作BC⊥MN于点C,则BC=ME=24cm,A′C=8+2-3=7cm,∴在Rt∆A′BC中,2222′cm.+=+=72425A C BC故选B.【点睛】本题主要考查图形的轴对称以及勾股定理的实际应用,把立体图形化为平面图形,掌握“马饮水”模型,是解题的关键.14.观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.【答案】D【解析】【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】A. 是中心对称图形,不是轴对称图形,选项不符合题意;B. 是轴对称图形,不是中心对称图形,选项不符合题意;C. 不是中心对称图形,也不是轴对称图形,选项不符合题意;D. 是中心对称图形,也是轴对称图形,选项符合题意,故选D.【点睛】本题考查轴对称图形和中心对称图形,解题的关键是掌握轴对称图形和中心对称图形的定义.15.下列几何图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故本选项错误;B、是中心对称图形,不是轴对称图形,故本选项错误;C、是中心对称图形,也是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误;故选:C.【点睛】此题考查中心对称图形与轴对称图形的概念,注意掌握轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.16.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为()A.4 B.5 C.6 D.7【答案】B【解析】试题解析:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.此时DP+CP=DP+PC′=DC′的值最小.∵DC=1,BC=4,∴BD=3,连接BC′,由对称性可知∠C′BE=∠CBE=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=4,根据勾股定理可得DC′=22+=22BC BD'+=5.故选B.3417.小天从镜子里看到镜子对面的电子钟如下图所示,则此时的实际时间是()A.21:10 B.10:21C.10:51 D.12:01【答案】C【解析】【分析】利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【详解】根据镜面对称的性质,题中所显示的时刻与12:01成轴对称,所以此时实际时刻为10:51,故选C.【点睛】本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.18.下列图形中,是轴对称图形不是中心对称图形的是()A.B.C.D.【答案】A【解析】【分析】轴对称图形是指平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形;而在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,据此进一步判断求出答案即可.【详解】A:是轴对称图形,但不是中心对称图形,符合题意;B:是轴对称图形,也是中心对称图形,不符合题意;C:是中心对称图形,但不是轴对称图形,不符合题意;D:是轴对称图形,也是中心对称图形,不符合题意;故选:A.【点睛】本题主要考查了轴对称图形与中心对称图形的识别,熟练掌握相关概念是解题关键. 19.下列图形中,不是轴对称图形的是()A .有两个内角相等的三角形B .有一个内角为45°的直角三角形C .有两个内角分别为50°和80°的三角形D .有两个内角分别为55°和65°的三角形【答案】D【解析】A.有两个内角相等的三角形是等腰三角形,等腰三角形是轴对称图形;B.有一个内角为45度的直角三角形是等腰直角三角形,也是等腰三角形,是轴对称图形;C.有两个内角分别为50度和80度的三角形,第三个角是50度,故是等腰三角形,是轴对称图形;D.有两个内角分别为55度和65度的三角形,不是等腰三角形,不是轴对称图形. 故选:D.20.如图,在ABC V 中,60,3,5,B AB BC ∠=︒==将ABC V 绕点A 顺时针方向旋转得到,ADE V 当点B 的对应点D 恰好落在BC 边上时,则CD 的长为( )A .3B .2.5C .2D .1【答案】C【解析】【分析】 由旋转得到AD=AB ,由此证明△ADB 是等边三角形,得到BD=AB=3,即可求出CD.【详解】由旋转得AD=AB ,∵60B ∠=︒,∴△ADB 是等边三角形,∴BD=AB=3,∴CD=BC-BD=5-3=2,故选:C.【点睛】此题考查旋转的性质,等边三角形的判定及性质,根据旋转得到AD=AB 是解题的关键,由此得到等边三角形进行求解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图形的平移与旋转前苏联数学家亚格龙将几何学定义为:几何学是研究几何图形在运动中不变的那些性质的学科.几何变换是指把一个几何图形F l变换成另一个几何图形F2的方法,若仅改变图形的位置,而不改变图形的形状和大小,这种变换称为合同变换,平移、旋转是常见的合同变换.如图1,若把平面图形F l上的各点按一定方向移动一定距离得到图形F2后,则由的变换叫平移变换.平移前后的图形全等,对应线段平行且相等,对应角相等.如图2,若把平面图F l绕一定点旋转一个角度得到图形F2,则由F l到F2的变换叫旋转变换,其中定点叫旋转中心,定角叫旋转角.旋转前后的图形全等,对应线段相等,对应角相等,对应点到旋转中心的距离相等.通过平移或旋转,把部分图形搬到新的位置,使问题的条件相对集中,从而使条件与待求结论之间的关系明朗化,促使问题的解决.注合同变换、等积变换、相似变换是基本的几何变换.等积变换,只是图形在保持面积不变情况下的形变'而相似变换,只保留线段间的比例关系,而线段本身的大小要改变.例题求解【例1】如图,P为正方形ABCD内一点,PA:PB:PC=1:2:3,则∠APD= .思路点拨通过旋转,把PA、PB、PC或关联的线段集中到同一个三角形.【例2】如图,在等腰Rt△ABC的斜边AB上取两点M,N,使∠MCN=45°,记AM=m,MN= x,DN=n,则以线段x、m、n为边长的三角形的形状是( )A.锐角三角形 B.直角三角形C.钝角三角形 D.随x、m、n的变化而改变思路点拨把△ACN绕C点顺时针旋转45°,得△CBD,这样∠ACM+∠BCN=45°就集中成一个与∠MCN 相等的角,在一条直线上的m、x、n 集中为△DNB,只需判定△DNB的形状即可.注下列情形,常实施旋转变换:(1)图形中出现等边三角形或正方形,把旋转角分别定为60°、90°;(2)图形中有线段的中点,将图形绕中点旋转180°,构造中心对称全等三角形;(3)图形中出现有公共端点的线段,将含有相等线段的图形绕公共端点,旋转两相等线段的夹角后与另一相等线段重合.【例3】如图,六边形ADCDEF中,AN∥DE,BC∥EF,CD∥AF,对边之差BC-EF=ED—AB=AF—CD>0,求证:该六边形的各角相等.(全俄数学奥林匹克竞赛题)思路点拨设法将复杂的条件BC—FF=ED—AB=AF—CD>0用一个基本图形表示,题设中有平行条件,可考虑实施平移变换.注平移变换常与平行线相关,往往要用到平行四边形的性质,平移变换可将角,线段移到适当的位置,使分散的条件相对集中,促使问题的解决.【例4】如图,在等腰△ABC的两腰AB、AC上分别取点E和F,使AE=CF.已知BC=2,求证:EF≥1. (西安市竞赛题)思路点拨本例实际上就是证明2EF≥BC,不便直接证明,通过平移把BC与EF集中到同一个三角形中.注 三角形中的不等关系,涉及到以下基本知识: (1)两点间线段最短,垂线段最短;(2)三角形两边之和大于第三边,两边之差小于第三边;(3)同一个三角形中大边对大角(大角对大边),三角形的一个外角大于任何一个和它不相邻的内角. 【例5】 如图,等边△ABC 的边长为31225+=a ,点P 是△ABC 内的一点,且PA 2+PB 2=PC 2,若PC=5,求PA 、PB 的长. (“希望杯”邀请赛试题)思路点拨 题设条件满足勾股关系PA 2+PB 2=PC 2的三边PA 、PB 、PC 不构成三角形,不能直接应用,通过旋转变换使其集中到一个三角形中,这是解本例的关键.学历训练1.如图,P 是正方形ABCD 内一点,现将△ABP 绕点B 顾时针方向旋转能与△CBP ′重合,若PB=3,则PP ′= .2.如图,P 是等边△ABC 内一点,PA =6,PB=8,PC =10,则∠APB .3.如图,四边形ABC D 中,AB ∥CD ,∠D=2∠B ,若AD=a ,AB=b ,则CD 的长为 .4.如图,把△ABC 沿AB 边平移到△A'B'C'的位置,它们的重叠部分(即图中阴影部分)的面积是△ABC 的面积的一半,若AB=2,则此三角形移动的距离AA'是( ) A .12- B .22C .lD .21 (2002年荆州市中考题)5.如图,已知△ABC 中,AB=AC ,∠BAC=90°,直角EPF 的顶点P 是BC 中点,两边PE 、PF 分别交AB 、AC 于点C 、F ,给出以下四个结论:①AE=CF ;②△EPF 是等腰直角三角形;③S 四边形AEPF =21S △ABC ;④EF=AP . 当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A 、B 重合),上述结论中始终正确的有( ) A .1个 B .2个 C .3个 D .4个 (2003年江苏省苏州市中考题)6.如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于E, S四边形ABCD d=8,则BE的长为( ) A.2 B.3 C.3 D.22 (2004年武汉市选拔赛试题)7.如图,正方形ABCD和正方形EFGH的边长分别为22和2,对角线BD、FH都在直线l上,O1、O2分别为正方形的中心,线段O1O2的长叫做两个正方形的中心距,当中心O2在直线l上平移时,正方形EFGH也随之平移,在平移时正方形EFGH的形状、大小没有变化.(1)计算:O1D= ,O2F= ;(2)当中心O2在直线l上平移到两个正方形只有一个公共点时,中心距O1O2= ;(3)随着中心O2在直线l上平移,两个正方形的公共点的个数还有哪些变化?并求出相对应的中心距的值或取值范围(不必写出计算过程). (徐州市中考题)8.图形的操做过程(本题中四个矩形的水平方向的边长均为a,竖直方向的边长均为b):在图a中,将线段A1A2向右平移1个单位到B1B2,得到封闭图形A1A2B1B2(即阴影部分);在图b中,将折线A1A2A3向右平移1个单位到B1B2B3,得到封闭图形A1A2A3B1B2B3(即阴影部分);(1)在图c中,请你类似地画一条有两个折点的折线,同样向右平移1个单位,从而得到一个封闭图形,并用斜线画出阴影;(2)请你分别写出上述三个图形中除去阴影部分后剩余部分的面积:S1= ,,S2= ,S3= ;(3)联想与探索:如图d,在一块矩形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位),请你猜想空白部分表示的草地面积是多少?并说明你的猜想是正确的.(2002年河北省中考题)9.如图,已知点C为线段AB上一点,△ACM、△CBN是等边三角形,求证:AN=BM.说明及要求:本题是《几何》第二册几15中第13题,现要求:(1)将△ACM绕C点按逆时针方向旋转180°,使A点落在CB上,请对照原题图在图中画出符合要求的图形(不写作法,保留作图痕迹).(2)在①所得的图形中,结论“AN=BM”是否还成立?若成立,请证明;若不成立,请说明理由.(3)在①得到的图形中,设MA的延长线与BN相交于D点,请你判断△ABD与四边形MDNC的形状,并证明你的结论.10.如图,在Rt△ABC中,∠A=90°,AB=3cm,AC=4cm,以斜边BC上距离B点3cm的点P为中心,把这个三角形按逆时针方向旋转90°至△DEF,则旋转前后两个直角三角形重叠部分的面积是 cm2.11.如图,在梯形ABCD中,AD∥BC,∠D=90°,BC=CD=12,∠ABE=45°,点E在DC上,AE、BC的延长线交于点F,若AE=10,则S△ADE+S△CEF的值是.(绍兴市中考题)12.如图,在△ABC中,∠BAC=120°,P是△ABC内一点,则PA+PB+PC与AB+AC的大小关系是( )A.PA+PB+PC>AB+AC B.PA+PB+PC<AD+ACC. PA+PB+PC=AB+AC D.无法确定13.如图,设P到等边三角形ABC两顶点A、B的距离分别为2、3,则PC所能达到的最大值为( )A .5B .13C .5D .6 (2004年武汉市选拔赛试题)14.如图,已知△ABC 中,AB=AC ,D 为AB 上一点,E 为AC 延长线上一点,BD=CE ,连DE ,求证:DE>DC . 15.如图,P 为等边△ABC 内一点,PA 、PB 、PC 的长为正整数,且PA 2+PB 2=PC 2,设PA=m ,n 为大于5的实数,满456593022++≤++mn m n m n m ,求△ABC 的面积.16.如图,五羊大学建立分校,校本部与分校隔着两条平行的小河,1l ∥2l 表示小河甲,3l ∥4l 表示小河乙,A 为校本部大门,B 为分校大门,为方便人员来往,要在两条小河上各建一座桥,桥面垂直于河岸.图中的尺寸是:甲河宽8米,乙河宽10米,A 到甲河垂直距离为40米,B 到乙河垂直距离为20米,两河距离100米,A 、B 两点水平距离(与小河平行方向)120米,为使A 、B 两点间来往路程最短,两座桥都按这个目标而建,那么,此时A 、D 两点间来往的路程是多少米? (“五羊杯”竞赛题)17.如图,△ABC 是等腰直角三角形,∠C=90°,O 是△ABC 内一点,点O 到△ABC 各边的距离都等于1,将△ABC 绕点O 顺时针旋转45°,得△A 1B l C 1,两三角形公共部分为多边形KLMNPQ . (1)证明:△AKL 、△BMN 、△CPQ 都是等腰直角三角形; (2)求△ABC 与△A 1B l C 1公共部分的面积. (山东省竞赛题)18.(1)操作与证明:如图1,O是边长为a的正方形ACBD的中心,将一块半径足够长,圆心角为直角的扇形纸板的圆心放在O点处,并将纸板绕O点旋转,求证:正方形ABCD的边被纸板覆盖部分的总长度为定值.(2)尝试与思考:如图2,将一块半径足够长的扇形纸板的圆心放在边长为a的正三角形或正五边形的中心O点处,并将纸板绕O点旋转,当扇形纸板的圆心角为时,正三角形的边被纸板覆盖部分的总长度为定值a;当扇形纸板的圆心角为时,正五边形的边被纸板覆盖部分的总长度也为定值a.(3)探究与引申:一般地,将一块半径足够长的扇形纸板的圆心放在边长为a的正n边形的中心O点处,并将纸板绕O点旋转.当扇形纸板的圆心角为时,正n边形的边被纸板覆盖部分的总长度为定值a;这时正n边形被纸板覆盖部分的面积是否也为定值?若为定值,写出它与正n边形面积S之间的关系;若不是定值,请说明理由.(江苏省连云港市中考题)。

相关文档
最新文档