最新初一数学下册二元一次方程组知识点归纳
七年级二元一次方程组知识点总结

人教版七年级下册第八章第一课时认识二元一次方程组一、二元一次方程及其解(1)二元一次方程:含有两个未知数(x 和y ),并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程,它的一般形式是(0,0)ax by c a b +=≠≠.(2)二元一次方程的解:一般地,能够使二元一次方程的左右两边相等的两个未知数的值,叫做二元一次方程的解. 【二元一次方程有无数组解】二、二元一次方程组及其解(1)、二元一次方程组:含有两个未知数(x 和y ),并且含有未知数的项的次数都是1,将这样的两个或几个一次方程合起来组成的方程组叫做二元一次方程组.(2)、二元一次方程组的解:二元一次方程组中的几个方程的公共解,叫做二元一次方程组的解.【二元一次方程组解的情况:①无解,例如:16x y x y +=⎧⎨+=⎩,1226x y x y +=⎧⎨+=⎩;②有且只有一组解,例如:122x y x y +=⎧⎨+=⎩;③有无数组解,例如:1222x y x y +=⎧⎨+=⎩.】 例1、若方程213257m n xy --+=是关于x y 、的二元一次方程,求m 、n 的值.解:∵方程213257m n x y --+=是关于x y 、的二元一次方程 ∴211321m n -=⎧⎨-=⎩解得11m n =⎧⎨=⎩ 例2、将方程102(3)3(2)y x --=-变形,用含有x 的代数式表示y .解:去括号得,106263y x -+=- 移项得,261063y x =-+-合并同类项得,223y x =- 系数化为1得,232x y -=例3、方程310x y +=在正整数范围内有哪几组解?解:有三组解,分别是147,,321x x x y y y ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩ 例4、若23x y =⎧⎨=⎩是方程组2315x m nx my -=⎧⎨-=-⎩的解,求m n 、的值. 解:∵23x y =⎧⎨=⎩是方程组2315x m nx my -=⎧⎨-=-⎩的解 ∴431235m n m -=⎧⎨-=-⎩解得11m n =⎧⎨=-⎩ 例5、已知(1)(1)1n m m x n y ++-=是关于x y 、的二元一次方程,求m n 的值. 解:∵(1)(1)1n m m x n y ++-=是关于x y 、的二元一次方程∴101101m m n n +≠⎧⎪=⎪⎨-≠⎪⎪=⎩ 解得11m n =⎧⎨=-⎩ ∴1(1)1m n =-=-(变式训练)已知218(26)(2)0n m m x n y +--++=是关于x y 、的二元一次方程,当2y =-时,求x 的值. 知识点1:二元一次方程及其解1、下列各式是二元一次方程的是( )..A 67x y -= .B 105x y-= .C 45x xy -= .D 210x x ++= 2、若32x y =⎧⎨=⎩是关于x y 、的二元一次方程30x ay -=的一个(组)解,则a 的值为( ) .A 3 .B 4 .C 4.5 .D 63、对于二元一次方程21x y -=有无数个解,下列四组值不是该方程的解的一组是( ).A 012x y =⎧⎪⎨=⎪⎩ .B 11x y =⎧⎨=⎩ .C 10x y =⎧⎨=⎩.D 11x y =-⎧⎨=-⎩ 4、二元一次方程27x y +=在正整数范围内的解有( )..A 无数个 .B 两个 .C 三个 .D 四个5、若226n m x y +=是二元一次方程,则m = n = .6、关于x y 、的方程11()()0,33m x m y ++-=当m = 时,是一元一次方程;当m = 时,是二元一次方程.7、已知在方程352x y -=中,若用含有x 的代数式表示y ,则y = ,用含有y 的代数式表示x ,则x =8、若5m n -=,则15m n -+=9、已知221(31)0x y ++-=,则2x y -= 10、在二元一次方程2(5)3(2)10x y ---=中,当0x =时,则y = ;当4y =时,则x = . 知识点2:二元一次方程组及其解1、有下列方程组:(1)30430x y x y +=⎧⎨-=⎩ (2)3049x y xy +=⎧⎨=⎩ (3)52m n =⎧⎨=-⎩ (4)1426x x y =⎧⎨+=⎩其中说法正确的是( ). .A 只有(1)、(3)是二元一次方程组 .B 只有(3)、(4)是二元一次方程组 .C 只有(4)是二元一次方程组 .D 只有(2)不是二元一次方程组2、下列哪组数是二元一次方程组324x y x +=⎧⎨=⎩的解( ) .A 30x y =⎧⎨=⎩ .B 12x y =⎧⎨=⎩ .C 52x y =⎧⎨=-⎩ .D 21x y =⎧⎨=⎩ 3、若方程组162ax y x by -=⎧⎨+=⎩有无数组解,则a 、b 的值分别为( ) .A 1,1a b == .B 2,1a b == .C 1,2a b ==- .D 2,2a b ==-4、写出一个以 ⎩⎨⎧-==24y x 为解的二元一次方程组 ;写出以12x y =⎧⎨=⎩为解的一个二元一次方程 . 5、已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解,则a b -的值为 。
七年级数学下册第八章二元一次方程组基础知识手册(带答案)

七年级数学下册第八章二元一次方程组基础知识手册单选题1、幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x与y的和是()A.9B.10C.11D.12答案:D分析:根据题意设出相应未知数,然后列出等式化简求值即可.解:设如图表所示:根据题意可得:x+6+20=22+z+y,整理得:x-y=-4+z,x+22+n=20+z+n,20+y+m=x+z+m,整理得:x=-2+z,y=2z-22,∴x-y=-2+z-(2z-22)=-4+z,解得:z=12,∴x +y=3z -24=12故选:D .小提示:题目主要考查方程的应用及有理数加法的应用,理解题意,列出相应方程等式然后化简求值是解题关键.2、《九章算术》中记载.“今有人共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”其大意是:“现有一些人共同买一个物品,每人出8钱,还盈余3钱;每人出7钱,还差4钱,问人数、物品价格各是多少?”设人数为x 人,物品的价格为y 钱,根据题意,可列方程组为( )A .{y =8x −3y =7x +4B .{x =8y +3x =7y −4C .{y =8x +3y =7x −4D .{x =8y −3x =7y +4答案:A分析:根据“每人出8元,还盈余3元;每人出7元,则还差4元”,即可得出关于x ,y 的二元一次方程组,此题得解.解:设人数为x 人,物品的价格为y 钱,依题意,得{y =8x −3y =7x +4. 故选:A .小提示:本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.3、解方程组{2x +3y =5①x −2y =−1②时,经过下列步骤,能消去末知数y 的是( ) A .①×2−②×3B .①×3−②×2C .①×3+②×2D .①×2+②×3答案:D分析:由消去未知数y ,可得方程组中y 的未知数系数化为绝对值相等,符号相反,①×2+②×3可消去y . 解:∵消去未知数y ,解方程组{2x +3y =5①x −2y =−1②中y 的未知数系数化为绝对值相等,符号相反,∴①×2+②×3可消去y .故选:D小提示:本题考查二元一次方程组加减消元法,关键是化某一未知数系数化为绝对值相等,系数相同用减法,系数相反用加法.4、《算法统宗》中有一道题为“隔沟计算”,其原文是:甲乙隔沟放牧,二人暗里参详,甲云得乙九只羊,多你一倍之上;乙说得甲九只羊,二家之数相当,两人闲坐恼心肠,画地算了半晌.这个题目的意思是:甲、乙两个牧人隔着山沟放羊,两人都在暗思对方有多少只羊,甲对乙说:“我若得你9只羊,我的羊多你一倍.”乙对甲说:“我若得你9只羊,我们两家的羊数就一样多.”设甲有x 只羊,乙有y 只羊,根据题意列出二元一次方程组为( )A .{x −9=2(y +9),y +9=x −9.B .{x +9=2(y −9),y +9=x −9.C .{x +9=2y,y +9=x.D .{x −9=2y,y +9=x −9.答案:B分析:根据“我若得你9只羊,我的羊多你一倍.”和“我若得你9只羊,我们两家的羊数就一样多.”为等量关系,列出方程即可求解.解:由题意得:{x +9=2(y −9)y +9=x −9, 故选:B .小提示:本题考查了二元一次方程组的应用,找准等量关系,根据等量关系列出方程组是解题的关键.5、甲乙两辆小车同时从A 地开出,甲车比乙车每小时快10km ,结果甲车行驶了40分钟到达了B 地,而乙车比甲车晚5分钟到达B 地,设甲车和乙车的速度分别为x km/h ,y km/h ,则下列方程组正确的是( )A .{40x =45y y −x =10B .{4060x =4560y x −y =10C .{40x =35y x −y =10D .{4060x =3560y y −x =10答案:B分析:根据甲车比乙车每小时快10km ,得x-y =10,根据甲车行驶了40分钟到达了B 地,而乙车比甲车晚5分钟到达B 地,得4060x =4560y ,由此得到方程组.解:设甲车和乙车的速度分别为x km/h,y km/h,根据甲车比乙车每小时快10km,得x-y=10,根据甲车行驶了40分钟到达了B地,而乙车比甲车晚5分钟到达B地,得4060x=4560y,故选:B.小提示:此题考查了二元一次方程组的实际应用,正确理解题意是列得方程组的关键.6、一个两位数,若交换其个位数与十位数的位置,则所得新两位数比原两位数大9,则这样的两位数共有()A.5个B.6个C.7个D.8个答案:D分析:设原来的两位数为10a+b,则新两位数为10b+a,根据新两位数比原两位数大9,列出方程,找出符合题意的解即可.解:设原来的两位数为10a+b,根据题意得:10a+b+9=10b+a,解得:b=a+1,因为可取1到8个数,所以这两位数共有8个,它们分别,12,23,34,45,56,67,78,89,都是个位数字比十位数字大1的两位数.故选:D.小提示:本题考查了二元一次方程的应用,解题的关键是弄清题意,找合适的等量关系,列出方程,再求解,弄清两位数的表示是:10×十位上的数+个位上的数,注意不要漏数.7、已知{m+2n=−42m+n=9,则代数式m−n的值是()A.-5B.5C.13D.1答案:C分析:两式相减即可得出答案.解:{m+2n=−4①2m+n=9②将②-①,得m−n=13故选C.小提示:本题考查了二元一次方程的特殊解法,找到两式与m −n 的关系是解题的关键.8、春节将至,某超市准备用价格分别是36元/kg 和20元/kg 的两种糖果混合成100kg 的什锦糖出售,混合后什锦糖的价格是28元/kg .若设需要36元/kg 的糖果x kg ,20元/kg 的糖果y kg ,则下列方程组中能刻画这一问题中数量关系的是( )A .{x +y =10036x +20y =28B .{x +y =10036x +20y =28×100C .{x +y =10028x +28y =100×(36+20) D .{x +y =10020x +36y =28×100 答案:B分析:由题意得等量关系:两种糖果混合成100kg 的什锦糖;36元/kg 的糖果x kg 的费用+20元/kg 的糖果y kg 的费用=100kg×28,即可得出方程组.解:设需要36元/kg 的糖果x kg ,20元/kg 的糖果y kg ,由题意得:{x +y =10036x +20y =28×100故选:B .小提示:此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.9、若二元一次方程组{x +y =3,3x −5y =4的解为{x =a,y =b, 则a −b 的值为( ) A .1B .3C .−14D .74答案:D分析:先解方程组求出x −y =74,再将{x =a,y =b, 代入式中,可得解. 解:{x +y =3,①3x −5y =4,② ①+②,得4x −4y =7,所以x −y =74,因为{x =a,y =b,所以x −y =a −b =74.故选D.小提示:本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a-b的值,本题属于基础题型.10、如图,三个天平的托盘中形状相同的物体质量相等.图①、图②所示的两个天平处于平衡状态,要使第三个天平也保持平衡,可在它的右盘中放置( )A.3个球B.4个球C.5个球D.6个球答案:C分析:题目中的方程实际是说明了两个相等关系:设球的质量是x,小正方形的质量是y,小正三角形的质量是z.根据第一个天平得到:5x+2y=x+3z;根据第二个天平得到:3x+3y=2y+2z,把这两个式子组成方程组,解这个关于y,z 的方程组即可.解:设球的质量是x,小正方形的质量是y,小正三角形的质量是z.根据题意得到:{5x+2y=x+3z;3x+3y=2y+2z解得:{y=xz=2x;第三图中左边是:x+2y+z=x+2x+2x=5x,因而需在它的右盘中放置5个球.答:需在它的右盘中放置5个球.所以C选项是正确的.小提示:解决本题的关键是借助方程关系进行等量代换,进而求出球的数量. 填空题11、如果{x+2y=32x−3y=4,那么2x+4y−22+6x−9y3=______.答案:6分析:观察方程组,容易发现,可以整体求得2x+4y和6x-9y的值,直接代入即可.解:{x +2y =3①2x −3y =4②①×2得:2x +4y =6,②×3得:6x -9y =12,整体代入可得:2x+4y−22+6x−9y 3=6−22+123=6,所以答案是:6.小提示:本题考查了解二元一次方程组、代数式求值,注意整体代入思想的应用.12、已知x 、y 满足方程组{3x +y =2021x +3y =2022,则x −y =______. 答案:−12##﹣0.5分析:方程组两方程相减得2x -2y =﹣1,两边同除以2得出x ﹣y 即可.解:{3x +y =2021①x +3y =2022② ①-②得,2x -2y =﹣1,两边同除以2得,x -y =−12, 所以答案是:−12小提示:此题考查了二元一次方程组,整体法的应用是求解此题的关键.13、如果x a−2+2y b+1=0是二元一次方程,则a =____,b =_____.答案: 3 0分析:根据二元一次方程的定义可知a −2=1,b +1=1,据此可解出a 、b .解:依题意,得:{a −2=1b +1=1, 解得:{a =3b =0. 所以答案是:3,0.小提示:此题考查的是对二元一次方程的定义理解,根据未知数的次数为1,可以列出方程组求解.14、《张丘建算经》里有一道题:“今有鸡翁一值钱五,鸡母一值钱三,鸡雏三值钱一.凡百钱买鸡百只,问鸡翁、母、雏各几何.”译文:每一只公鸡值五文钱,每一只母鸡值三文钱,每三只小鸡值一文钱.现在用一百文钱买一百只鸡,问这一百只鸡中,公鸡、母鸡、小鸡各有多少只?请你结合你学过的知识,写出一组能够按要求购买的方案:公鸡买______只,母鸡买_______只,小鸡买_______只.答案: 4(答案不唯一) 18(答案不唯一) 78(答案不唯一)分析:设买了x 只公鸡,y 只母鸡,则买了(100−x −y )只小鸡,利用总价=单价×数量,即可得出关于x ,y 的二元一次方程,结合x ,y ,(100−x −y )均为自然数,即可求出结论.解:设买了x 只公鸡,y 只母鸡,则买了(100−x −y )只小鸡,依题意得:5x +3y +13(100−x −y )=100,即y =25−74x ,又∵x ,y ,(100−x −y )均为自然数,∴{x =0y =25100−x −y =75 或{x =4y =18100−x −y =78 或{x =8y =11100−x −y =81 或{x =12y =4100−x −y =84 , ∴买的公鸡、母鸡、小鸡各0、25、75只或4、18、78只或8、11、81只或12、4、84只,所以答案是:0、25、75只或4、18、78只或8、11、81只或12、4、84.小提示:本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.15、如图是一个正方体的展开图,正方体相对面的数字或代数式互为相反数,则x 的值为______,y 的值为______.答案: 2 −12##-0.5分析:根据相对面的数字或代数式互为相反数得到方程组{x +4y =02x −1=3,求出x 和y 的值. 解:根据题意得{x +4y =02x −1=3, 解得{x =2y =−12 ,故答案为2,−12 . 小提示:本题考查正方体的展开图以及解二元一次方程组,注意相隔的面是相对的面.解答题16、已知:用2辆A 型车和1辆B 型车装满货物一次可运货10吨;用1辆A 型车和2辆B 型车装满货物一次可运货11吨.某物流公司现有36吨货物,计划同时租用A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:(1)1辆A 型车和1辆B 型车都装满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案.答案:(1)1辆A 型车和1辆B 型车都装满货物一次可分别运货3吨,4吨;(2)故共有四种租车方案,分别为:①A 型车0辆,B 型车9辆;②A 型车4辆,B 型车6辆;③A 型车8辆,B 型车3辆;④A 型车12辆,B 型车0辆.分析:(1)设1辆A 型车和1辆B 型车都装满货物一次可分别运货x 吨,y 吨,根据“用2辆A 型车和1辆B 型车装满货物一次可运货10吨;用1辆A 型车和2辆B 型车装满货物一次可运货11吨”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)由(1)的结论结合某物流公司现有36吨货物,即可得出3a +4b =36,即b =36−3a 4,由a 、b 均为整数即可得出租车方案.解:(1)设1辆A 型车和1辆B 型车都装满货物一次可分别运货x 吨,y 吨,根据题意得:{2x +y =10x +2y =11, 解得:{x =3y =4, 答:1辆A 型车和1辆B 型车都装满货物一次可分别运货3吨,4吨;(2)由题意可得:3a +4b =36,∴b =36−3a 4=9−34a , ∵a ,b 均为整数,∴有{a =0b =9、{a =4b =6、{a =8b =3和{a =12b =0四种情况,故共有四种租车方案,分别为:①A 型车0辆,B 型车9辆②A 型车4辆,B 型车6辆;③A 型车8辆,B 型车3辆;④A 型车12辆,B 型车0辆.小提示:本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)根据等量关系,列出关于x 、y 的二元一次方程组;(2)由(1)的结论结合共运货36吨,找出3a +4b =36.17、重庆某超市有A ,B 两种产品进行销售,购买50件A 产品,30件B 产品,一共花费1450元,如果购买60件A 产品,10件B 产品,则一共花费1350元.(1)请问A 、B 两种产品的单价为多少元?(2)五一即将来临,超市分别针对A 、B 商品进行打折销售.购买A 种商品数量超过20的每件商品打八折销售;购买B 种品数超过30的每件商品打六折销售.小红去超市购买A ,B 两种产品54件,一共花费了640元,请问小红分别购买A 、B 两种产品多少件?答案:(1)A 种产品的单价为20元、B 种产品的单价为15元(2)小红购买A 种产品为22件、B 种产品的32件或小红购买A 种产品为14件、B 种产品的40件分析:(1)设A 种产品的单价为x 元、B 种产品的单价为y 元,由题意列出方程组,解方程组即可;(2)设购买A 种产品为m 件、B 种产品的n 件,由题意列出方程组,解方程组解可.(1)解:设A 种产品的单价为x 元、B 种产品的单价为y 元,由题意得:{50x +30y =145060x +10y =1350, 解得{x =20y =15. 答:A 种产品的单价为20元、B 种产品的单价为15元.(2)解:设购买A 种产品为m 件、B 种产品的n 件,①购买A 种商品数量超过20件,购买B 种品数超过30件,由题意得:{m +n =5420×0.8m +15×0.6n =640 ,解得:{m =22n =32; ②购买A 种商品数量超过20件,购买B 种品数不超过30件,由题意得:{m +n =5420×0.8m +15n =640, 解得:{m =−170n =224, 不合题意舍去,③购买A 种商品数量不超过20件,购买B 种品数超过30件,由题意得:{m +n =5420m +15×0.6n =640, 解得:{m =14n =40, 答:小红购买A 种产品为22件、B 种产品的32件或小红购买A 种产品为14件、B 种产品的40件.小提示:此题考查了二元一次方程组的应用,解答此类应用类题目的关键是仔细审题,得出等量关系,从而转化为方程解题,难度一般,第二问需要分类讨论,注意不要遗漏.18、甲、乙两人同时加工一批零件,前3小时两人共加工126件,后5小时中甲先花了1小时修理工具,之后甲每小时比以前多加工10件,乙由于体力消耗较大,每小时比原来少加工1件,结果在后5小时内,甲比乙多加工了15件,甲、乙两人原来每小时各加工多少件?答案:甲原来每小时加工20件,乙原来每小时加工22件分析:设甲原来每小时加工x 件,乙每小时加工y 件,利用工作总量=工作效率×工作时间,结合“前3小时两人共加工126件,后5小时内,甲比乙多加工了15件”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.解:设甲原来每小时加工x 件,乙每小时加工y 件,依题得:{3x +3y =1264(x +10)−5(y −1)=15, 解方程组得:{x =20y =22, 答:甲原来每小时加工20件,乙原来每小时加工22件.小提示:本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.。
七年级下册数学二元一次方程组知识点

七年级下册数学二元一次方程组知识点一元一次方程是指只有一个未知数的一次方程,例如:2x - 3 = 7。
而二元一次方程是指含有两个未知数的一次方程,例如:2x + 3y= 7。
在七年级下册的数学课程中,我们将学习关于二元一次方程组的知识。
方程组是一个由多个方程组成的集合,其中每个方程都有相同的未知数。
接下来,我们将学习以下知识点:1.二元一次方程组的概念:二元一次方程组是由两个二元一次方程组成的集合。
一般形式为:a1x + b1y = c1a2x + b2y = c22.解二元一次方程组的方法:a.消元法:通过某种操作使得方程组中的一个未知数的系数相等,然后将方程相加或相减,从而消去该未知数。
b.代入法:选取一个方程,将其中一个未知数表示成另一个未知数的式子,然后将其代入另一个方程,从而得到一个只含一个未知数的方程。
c.矩阵法:将方程组的系数分别放入矩阵中,计算矩阵的行列式,从而求得方程组的解。
3.解二元一次方程组的步骤:a.利用某种方法将方程组化简为易于求解的形式。
b.求解方程组中的一个未知数。
c.将求解得到的未知数代入另一个方程,求解另一个未知数。
d.检验所求解是否满足原方程组。
4.二元一次方程组的解的情况:a.唯一解:方程组有且仅有一个解。
b.无解:方程组没有解,即方程组的解不存在。
c.无穷多解:方程组有无数个解。
5.在解二元一次方程组时要注意的问题:a.方程组是否有解。
b.方程组是否有无穷多解。
c.是否可以进行消元操作。
d.是否正确地代入方程。
通过学习二元一次方程组的知识,我们可以解决一些实际问题,例如在解答题或应用题中,通过列方程组来求解问题。
希望以上简要介绍的二元一次方程组的知识点能对你的学习有所帮助!。
人教版七年级数学下册知识点总结(第八章-二元一次方程组)

第八章 二元一次方程组一、知识网络结构二、知识要点1、含有未知数的等式叫方程,使方程左右两边的值相等的未知数的值叫方程的解。
2、方程含有两个未知数,并且含有未知数的项的次数都是1,这样的方程叫二元一次方程,二元一次方程的一般形式为c by ax =+(c b a 、、为常数,并且00≠≠b a ,)。
使二元一次方程的左右两边的值相等的未知数的值叫二元一次方程的解,一个二元一次方程一般有无数组解。
3、方程组含有两个未知数,并且含有未知数的项的次数都是1,这样的方程组叫二元一次方程组。
使二元一次方程组每个方程的左右两边的值相等的未知数的值叫二元一次方程组的解,一个二元一次方程组一般有一个解。
⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⎩⎨⎧三元一次方程组解法问题二元一次方程组与实际加减法代入法二元一次方程组的解法方程组的解定义二元一次方程组方程的解定义二元一次方程二元一次方程组4、用代入法解二元一次方程组的一般步骤:观察方程组中,是否有用含一个未知数的式子表示另一个未知数,如果有,则将它直接代入另一个方程中;如果没有,则将其中一个方程变形,用含一个未知数的式子表示另一个未知数;再将表示出的未知数代入另一个方程中,从而消去一个未知数,求出另一个未知数的值,将求得的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值。
5、用加减法解二元一次方程组的一般步骤:(1)方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使同一个未知数的系数相等或互为相反数;(2)把两个方程的两边分别相加或相减,消去一个未知数;(3)解这个一元一次方程,求出一个未知数的值;(4)将求出的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值,从而得到原方程组的解。
6、解三元一次方程组的一般步骤:①观察方程组中未知数的系数特点,确定先消去哪个未知数;②利用代入法或加减法,把方程组中的一个方程,与另外两个方程分别组成两组,消去同一个未知数,得到一个关于另外两个未知数的二元一次方程组;③解这个二元一次方程组,求得两个未知数的值;④将这两个未知数的值代入原方程组中较简单的一个方程中,求出第三个未知数的值,从而得到原三元一次方程组的解。
第8章二元一次方程组单元复习2022—2023学年人教版数学七年级下册

第8章 二元一次方程组 单元复习【知识网络】二元一次方程组{二元一次方程{定义:①方程中含有两个未知数;②含有未知数的项的次数是1;③方程两边是整式方程的解:使方程两边的值相等的未知数的值二元一次方程组{ 定义:①方程组中含有两个未知数;②每个方程中含未知数的项的次数都是1;③由两个方程组成方程组的解:两个方程的 解法:①代入消元法;② 应用:关键是找出题中的等量关系,根据等量关系列出方程(组)具体步骤:①审题;② ;③ ;④解方程组;⑤检验、作答*三元一次方程组{定义:①方程组中含有三个未知数;②每个方程中含未知数的项的次数都是1;③由三个方程组成解法:①代入消元法;②加减消元法 【知识梳理】1.二元一次方程:含有两个未知数的方程并且所含未知项的最高次数是1,这样的整式方程叫做二元一次方程。
2.方程组:有几个方程组成的一组方程叫做方程组。
如果方程组中含有两个未知数,且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组。
3.二元一次方程组的解:二元一次方程的两个方程的公共解叫二元一次方程组的解二、消元二元一次方程组有两种解法:一种是代入消元法,一种是加减消元法.1.代入消元法:把二元一次方程中的一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。
2.加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或向减,就能消去这个未知数,得到一个一元一次方程。
【方法指导】如果这两个方程中有同一个未知数的系数相反或相等,可以直接对其两个方程相加减,消去其中的一个未知数;如果没有同一个未知数的系数相反或相等,则可以根据等式的性质对某一个方程进行变形,使得这两个方程中某个未知数的系数相反或相等.【方法指导】运用二元一次方程组这一数学模型解决方案设计问题,首先要准确分析实际问题中的数量关系,找出已知量和未知量,并能发现其中的几个等量关系,然后根据等量关系列出方程组,并解方程组.在此基础上,用方程组的解来解释问题.【考点突破】考点1:二元一次方程组及其解【例1】已知⎩⎨⎧ x =2y =1是方程组⎩⎨⎧ax +by =5bx +ay =1的解,则a +b 的值是( ) A .-1 B .2 C .3 D .4【针对训练1-1】在方程组①⎩⎨⎧2x -y =1,y =3z +1;②⎩⎨⎧x =2,3y -x =1;③⎩⎨⎧x +y =0,3x -y =5;④⎩⎨⎧xy =1,x +2y =3;⑤⎩⎪⎨⎪⎧1x +1y =1,x +y =1中,二元一次方程组有 ( ) A .2个 B .3个 C .4个 D .5个【针对训练1-2】若⎩⎨⎧x =2,y =1是关于x ,y 的方程kx -y =3的解,则k 的值是____ . 【针对训练1-3】若方程组{y -(a -1)x =5,y |a |+(b -5)xy =3是关于x ,y 的二元一次方程组,则代数式ab 的值是 .考点2:解二元一次方程组【例2】解二元一次方程组⎩⎨⎧ 2x -y =7 ①3x +2y =0 ②. 【针对训练2-1】利用加减消元法解方程组{2x +3y =-6, ①3x -2y =4, ②下列做法正确的是( ) A.①×2-②×3,消去yB.①×3+②×2,消去xC.①×2+②×(-3),消去yD.①×3-②×2,消去x【针对训练2-2】方程组⎩⎨⎧x -y =1,3x +y =7的解为__ __. 【针对训练2-3】已知{x =1,y =2是方程ax +by =3的解,则代数式2a +4b -5的值为 . 【针对训练2-4】已知关于x ,y 的二元一次方程组{2ax +by +4=0,ax -by -1=0的解为{x =-1,y =1,则a -2b = .【针对训练2-5】解方程组:(1)⎩⎨⎧x +2y =5,①3x -2y =-1;②(2)⎩⎪⎨⎪⎧x +4y =14,①x -34-y -33=112.②【针对训练2-6】已知关于x,y的方程组{x+ay=5,①bx-3y=4,②由于粗心,甲看错了方程①中的a,得到方程组的解为{x=-1,y=-2;乙看错了方程②中的b,得到方程组的解为{x=2,y=3.(1)试确定a,b的值;(2)请你求出原方程组的解.考点3:列方程组解应用题【例3】为满足市民对优质教育的需求,某中学决定改变办学条件,计划拆除一部分旧校舍,建造新校舍.拆除旧校舍每平方米需80元,建造新校舍每平方米需700元,该校计划在一年内拆除旧校舍与建造新校舍共7200m2,在实施中为扩大绿化面积,新建校舍只完成了计划的80%,拆除校舍则超过了计划的10%,结果恰好完成了原计划的拆、建的总面积.(1)求原计划拆、建面积各是多少平方米?(2)若绿化1m2需200元,那么在实际完成的拆、建工程中节余的资金大约可绿化多少平方米?【针对训练3-1】如图,面积为36的正方形ABCD,分成4个完全相同的小长方形和一个面积为4的小正方形,则小长方形的长和宽分别是()A.8,4B.4,2C.6,2D.3,1【针对训练3-2】某工厂向银行申请了甲、乙两种贷款共计35万元,每年需付利息2.25万元,甲种贷款每年的利率是7%,乙种贷款每年的利率是6%,若设甲、乙两种贷款的数额分别为x 万元和y 万元,则 ( )A .x =15,y =20B .x =20,y =15C .x =12,y =23D .x =23,y =12【针对训练3-3】某抗战纪念馆馆长找到大学生团干部小张,联系青年志愿者在周日参与活动,活动累计56个小时的工作时间,需要每名男生工作5个小时,每名女生工作4个小时,小张可以安排学生参加活动的方案共有 ( )A .1种B .2种C .3种D .4种【针对训练3-4】李师傅加工1个甲种零件和1个乙种零件的时间都是固定的,现知道李师傅加工3个甲种零件和5个乙种零件共需55分钟;加工4个甲种零件和9个乙种零件共需85分钟,则李师傅加工2个甲种零件和4个零件共需____分钟.【针对训练3-5】2020年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只,李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,她将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是____次.【针对训练3-6】一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元.(1)甲、乙两组工作一天,商店应各付多少元?(2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店需付费用少?(3)在(2)的条件下,若装修完后,商店每天可盈利200元,现有如下三种方式装修:①甲组单独做;②乙组单独做;③甲、乙两组合作.你认为如何安排施工更有利于商店?考点4:三元一次方程组的解法及应用【例4】解方程组⎩⎨⎧ 2x +4y +3z =9 ①3x -2y +5z =11②5x -6y +7z =13③【针对训练4-1】若方程组⎩⎨⎧x +4=y ,2x -y =2z中的x 是y 的2倍,则z 的值为 ( )A .-9B .8C .-7D .-6【针对训练4-2】桌面上有甲、乙、丙三个杯子,三杯内原本均装有一些水,先将甲杯的水全部倒入丙杯,此时丙杯的水量为原本甲杯内水量的2倍多40毫升;再将乙杯的水全部倒入丙杯,此时丙杯的水量为原本乙杯内水量的3倍少180毫升,若过程中水没有溢出,则原本甲、乙两杯内的水量相差 ( )A .80毫升B .110毫升C .140毫升D .220毫升【综合练习】1.下列方程组中是二元一次方程组的是( )A.⎩⎨⎧ x +2y =1x 2+y 2=3 B .⎩⎨⎧ 2x -y =3z +y =8 C.⎩⎨⎧ x +2y =1xy =-6D .⎩⎨⎧x +2y =13x -5y =3 2.已知⎩⎨⎧ x =2y =1是二元一次方程组⎩⎨⎧ mx +ny =8nx -my =1的解,则2m -n 的算术平方根为( ) A .±2 B .2 C .4 D .2 3.甲、乙两人做同样的零件,如果甲先做1天,乙再开始做,5天后两人做的一样多;如果甲先做30个,乙再开始做,4天后乙反而比甲多做10个,求甲、乙两人每天各做多少个零件?若设甲、乙两人每天分别做x 、y 个零件,由题意可列出的方程组是( )A.⎩⎨⎧ 5+1x =5y 30+4x =4y +10 B .⎩⎨⎧ 1+5x =5y 30+4x =4y -10 C.⎩⎨⎧ 5+1x =5y 30+4x =4y -10 D .⎩⎨⎧1+5x =5y 30+4x =4y +104.二元一次方程3x +2y =15在自然数范围内的解的个数是( )A .1个B .2个C .3个D .4个 5.若关于x 、y 的二元一次方程组⎩⎨⎧x +y =5k x -y =9k的解也是二元一次方程2x +3y =-8的解,则k 的值为 . 6.将三元一次方程组⎩⎨⎧ 5x +4y +z =0①3x +y -4z =11②x +y +z =-2③,经过步骤①-③和③×4+②消去未知数z 后,得到的二元一次方程组是 .7.解下列方程组: (1)⎩⎨⎧2x +3y =11,①y -2x =1;②(2)⎩⎨⎧4x +3y =14,①3x +2y =22.②8.根据要求,解答下列问题:(1)解下列方程组(直接写出方程组的解即可)①⎩⎨⎧ x +2y =32x +y =3的解为 ⎩⎨⎧ x =1y =1; ②⎩⎨⎧ 3x +2y =102x +3y =10的解为 ⎩⎨⎧ x =2y =2 ; ③⎩⎨⎧ 2x -y =4-x +2y =4的解为 ⎩⎨⎧x =4y =4. (2)以上每个方程组的解中,x 值与y 值的大小关系为 ;(3)请你构造一个具有以上外形特征的方程组,并直接写出它的解.9.七(1)班的生活委员利用周末时间为班上买了4把扫帚和6把铲子共64元,到班长那儿报账时,班长拿出了他上个月购买的扫帚和铲子的账目:3把扫帚和5把铲子,共用55元。
七年级数学下册第八章二元一次方程组知识点总结素材新版新人教版(含参考答案)

七年级数学下册知识点总结素材:
二元一次方程组
一.知识结构图
二、知识概念
1.二元一次方程:含有两个未知数,并且未知数的指数都是1,像这样的方程叫做二元一次。
方程,一般形式是 ax+by=c(a≠0,b≠0)。
2.二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。
3.二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。
4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。
5.消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。
6.代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法。
7.加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法。
本章通过实例引入二元一次方程,二元一次方程组以及二元一次方程组的概念,培养学生对概念的理解和完整性和深刻性,使学生掌握好二元一次方程组的两种解法. 重点:二元一次方程组的解法,列二元一次方程组解决实际问题. 难点:二元一次方程组解决实际问题
1。
七年级数学下册《第八章二元一次方程组》知识点归纳

第八章二元一次方程组是七年级下册数学的章节之一,主要介绍了二元一次方程组的相关知识。
本章内容比较重要,是学习方程组的基础,也是解决实际问题的基础。
以下是对该章节重要知识点的归纳:一、二元一次方程及方程组:1. 二元一次方程:二元一次方程是指含有两个未知数的一次方程,形式一般为ax+by=c。
其中,a、b、c为已知数,a和b不全为零。
2.方程的解:给定一个二元一次方程,如果存在一对数(x,y),使得将这些数代入方程使等式成立,那么这对数(x,y)就是方程的解。
3.方程组:由两个或多个方程组成的集合称为方程组。
二元一次方程组是由两个二元一次方程组成的方程组。
二、解二元一次方程组的方法:1.消元法:a.加法消元法:通过给每个方程乘以适当的倍数,使得待消元的未知数的系数相同,然后将两个方程相加,消去这个未知数。
b.减法消元法:通过给其中一个方程乘以适当的倍数,使得待消元的未知数的系数相反,然后将两个方程相减,消去这个未知数。
2.代入法:将一个方程的一元表达式代入到另一个方程中,从而将二元一次方程组转化为一个一元二次方程。
三、方程组的解的情况:1.无解的情况:当方程组中的方程互相矛盾,即无法找到同时满足所有方程的解时,方程组无解。
2.有唯一解的情况:当方程组中的方程相互独立,且无论怎样组合方程,都只能得出一个解时,方程组有唯一解。
3.有无穷多解的情况:当方程组中的方程有冗余的情况,即两个或多个方程实际上是同一个方程的时候,方程组有无穷多解。
四、应用问题:1.运用二元一次方程组解决实际问题,如两个数字之和为一些数,两数之差为一些数等。
2.通过问题中给出的条件建立方程组,然后解方程组找到问题的解。
3.运用代入法解决更复杂的实际问题,如一个数以另一个数的几倍和为一些数等。
五、实战习题:1.练习整理方程组、解方程组的方法;2.挑战实际问题,在解决问题的过程中巩固知识点;3.深入思考不同的解法对于问题的实际意义,触类旁通。
七年级数学下册二元一次方程组知识总结

二元一次方程组知识总结及典型例题◆知识要点知识点1:二元一次方程的变形:用一个未知数表示另一个未知数知识点2:二元一次方程的定义:含有两个未知数,且含有未知数的项的次数为1的整式方程叫二元一次方程。
(注:①方程中有且只有两个未知数。
②方程中含有未知数的项的次数为1。
③方程为整式方程。
)知识点3:二元一次方程组的定义:由两个二元一次方程所组成的方程组叫二元一次方程组:知识点4:二元一次方程的解的定义:使二元一次方程左右两边的值相等的未知数的值叫做二元一次方程的解。
方程组的解的定义:方程组中所有方程的公共解叫方程组的解。
知识点5:二元一次方程组的解法代入消元法:在二元一次方程组中选取一个适当的方程,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,消去一个未知数得到一元一次方程,求出这个未知数的值,进而求得这个二元一次方程组的解,这种方法叫做代入消元法.加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相差,从而消去这个未知数,得到一个一元一次方程,这种求二元一次方程组的解的方法叫做加减消元法,简称加减法.知识点6:二元一次方程组的应用对于含有多个未知数的问题,利用列方程组来解,一般比列一元一次方程解题容易得多.列方程组解应用问题有以下几个步骤:(1)选定几个未知数;(2)依据已知条件列出与未知数的个数相等的独立方程,组成方程组;(3)解方程组,得到方程组的解;(4)检验求得未知数的值是否符合题意,符合题意即为应用题的解。
◆例题解析例1:已知二元一次方程5x-2y=10 ①将其变形为用含x的代数式表示y的形式。
②将其变形为用含y的代数式表示x的形式例2:(1)下列方程中是二元一次方程的是()A.3x-y2=0 B.2x+y1=1 C.3x-52y=6 D.4xy=3(2)已知关于x,y的二元一次方程6)3()42(232=++---nm ynxm,求m,n的值例3:下列方程组中,是二元一次方程的是()①228423119...23754624x yx y a b xB C Dx y b c y x x y+=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩例4 (1)已知21xy=⎧⎨=⎩是方程组2(1)21x m ynx y+-=⎧⎨+=⎩的解,求(m+n)的值.(2)已知方程组44ax y-=⎧⎨⎩,(1)2x+by=14,(2)由于甲看错了方程①中的a得到方程组的解为26xy=-⎧⎨=⎩,,乙看错了方程②中的b得到方程组的解为44.xy=-⎧⎨=-⎩,若按正确的a、b计算,求原方程组的解.例5:(1)6,234()5() 2.x y x yx y x y+-⎧+=⎪⎨⎪+--=⎩(2) 已知⎩⎨⎧=-+=+-3252zyxzyx求:zyxzyx23324+--+的值(3) 已知关于x 、y 的二元一次方程组 4x+y=5 和 3x-2y=1 有相同的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品文档
初一数学下册《二元一次方程组》知识点归纳
一、目标与要求
1认识二元一次方程和二元一次方程组。
2了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解。
3会用代入法解二元一次方程组。
4初步体会解二元一次方程组的基本思想――“消元”。
通过研究解决问题的方法,培养学生合作交流意识与探究精神。
6使学生会借助二元一次方程组解决简单的实际问题,让学生再次体会二元一次方程组与现实生活的联系和作用。
7通过应用题教学使学生进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性。
二、重点
用代入消元法解二元一次方程组;
理解二元一次方程组的解的意义。
三、难点
求二元一次方程的正整数解;
探索如何用代入法将“二元”转化为“一元”的消元过精品文档.
精品文档
程。
四、结构图
五、知识点、概念总结
1二元一次方程:含有两个未知数,并且未知数的指数都是1,像这样的方程叫做二元一次方程,一般形式是ax+b=。
如果一个方程含有两个未知数,并且所含未知项都为1次方,那么这个整式方程就叫做二元一次方程,有无穷个解,若加条限定有有限个解。
二元一次方程组,则一般有一个解,有时没有解,有时有无数个解。
2二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。
3二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。
4二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。
消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。
归纳:基本思路:“消元”——把“二元”变为“一元”。
6代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元
一次方程组的解,这种方法叫做代入消元法,简称代入法。
7加减消元法:当两个方程中同一未知数的系数相反或精
品文档.
精品文档
相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法。
8教科书中没有的几种解法
加减-代入混合使用的方法:
特点:两方程相加减,单个x或单个,这样就适用接下来的代入消元。
换元法
特点:两方程中都含有相同的代数式,换元后可简化方程也是主要原因。
设参数法
9列方程解应用题步骤:
审题。
理解题意。
弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。
设元。
①直接未知数②间接未知数。
一般来说,未知数越多,方程越易列,但越难解。
用含未知数的代数式表示相关的量。
寻找相等关系,列方程。
一般地,未知数个数与方程个数是相同的。
解方程及检验。
答案。
综上所述,列方程解应用题实质是先把实际问题转化为精品文档.
精品文档
数学问题,在由数学问题的解决而导致实际问题的解决。
在这个过程中,列方程起着承前启后的作用。
因此,列方程是解应用题的关键。
10三元一次方程组:如果方程组中含有三个未知数,且含有未知数的项的次数都是一次,这样的方程组叫做三元一次方程组。
举例如下:
11三元一次方程组解法:
主要的解法就是加减消元法和代入消元法,通常采用加减消元法,若方程难解就用代入消元法,因题而异。
12简单的三元一次方程组的解法步骤:
思路:解三元一次方程组的基本思想仍是消元,其基本方法是代入法和加减法。
步骤:①利用代入法或加减法,消去一个未知数,得出一个二元一次方程组;
②解这个二元一次方程组,求得两个未知数的值;
③将这两个未知数的值代入原方程中较简单的一个方程,求出第三个未知数的值,把这三个数写在一起的就是所求的三元一次方程组的解。
灵活运用加减消元法,代入消元法解简单的三元一次方程组。
精品文档.
精品文档
精品文档.。