2016-2017学年湖北省黄冈市罗田县七年级(上)期中数学试卷含答案

合集下载

黄冈市罗田县2016-2017学年七年级上期中数学试卷含答案解析

黄冈市罗田县2016-2017学年七年级上期中数学试卷含答案解析
2016-2017 学年湖北省黄冈市罗田县七年级(上)期中数学试卷
一、精心选一选 1.下列四个有理数中,既是分数又是正数的是( )
A.3 B.﹣3
C.0 D.2.4
2.如果 a 与 1 互为相反数,则|a|=( ) A.2 B.﹣2 C.1 D.﹣1 3.下列各组数中是同类项的是( ) A.4x和 4y B.4xy2 和 4xy C.4xy2 和﹣8x2y D.﹣4xy2 和 4y2x 4.下列各近似数中,精确度一样的是( ) A.0.28与 0.280 B.0.70与 0.07 C.5 百万与 500万 D.1.1×103 与 1100 5.若 a+b<0,ab<0,则下列说法正确的是( ) A.a、b 同号 B.a、b 异号且负数的绝对值较大 C.a、b 异号且正数的绝对值较大 D.以上均有可能 6.下列计算正确的是( ) A.4x﹣9x+6x=﹣x B.xy﹣2xy=3xy C.x3﹣x2=x D.a﹣a=0 7.数轴上的点 M 对应的数是﹣2,点 N 与点 M 距离 4 个单位长度,此时点 N 表示的数是( ) A.﹣6 B.2 C.﹣6 或 2 D.都不正确 8.一组数 1,1,2,x,5,y…满足“从第三个数起,每个数都等于它前面的两个数之和”,那么 这组数中 y 表示的数为( ) A.8 B.9 C.13 D.15 9.若﹣3xy2m与 5x2n﹣3y8 的和是单项式,则 m、n 的值分别是( ) A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2, n=3 10.当 x=1时,代数式 ax3﹣3bx+4 的值是 7,则当 x=﹣1 时,这个代数式的值是( )
3.下列各组数中是同类项的是(

第 4 页(共 17 页)
A.4x和 4y B.4xy2 和 4xy C.4xy2 和﹣8x2y D.﹣4xy2 和 4y2x 【考点】同类项. 【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,结合选项进行判断. 【解答】解:A、4x和 4y所含字母不同,不是同类项,故本选项错误; B、4xy2 和 4xy所含字母相同,但相同字母的指数不相同,不是同类项,故本选项错误; C、4xy2 和﹣8x2y 所含字母相同,但相同字母的指数不相同,不是同类项,故本选项错误; D、﹣4xy2 和 4y2x 所含字母相同,并且相同字母的指数也相同,是同类项,故本选项正确. 故选 D. 【点评】本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字 母的指数相同.

2016年湖北省七年级期中考试数学试题

2016年湖北省七年级期中考试数学试题

湖北省2016-2017年期中考试七年级数学试题满分:120分时间:120分钟一.选择题.(每空3分,共30分)1.在实数3.1415926,,1.010010001……,,,,中,无理数有()个 A、1 B、2 C、3 D、42.下列说法中,正确的是()A、64的平方根是8B、的平方根是2和-2C、没有平方根D、16的平方根是4和-43.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上,如果∠1=20°,那么∠2等于( )A.30° B.25° C.20° D.15°4.王芳同学到文具店购买中性笔和笔记本,中性笔每支0.8元,笔记本每本1.2元,王芳同学花了10元钱,则可供她选择的购买方案的个数为(两样都买,余下的钱少于0.8元)() A. 6 B. 7 C. 8 D. 95.按如图的运算程序,能使输出结果为3的x,y的值是()A.x=5,y=﹣2 B.x=3,y=﹣3 C.x=﹣4,y=2 D.x=﹣3,y=﹣9 6.图为歌神KTV的两种计费方案说明.若晓莉和朋友们打算在此KTV的一间包厢里连续欢唱6小时,经服务生试算后,告知他们选择包厢计费方案会比人数计费方案便宜,则他们至少有多少人在同一间包厢里欢唱?()A.6 B.7 C.8 D.97.的值为() A.5 B..1 D.8、今年学校举行足球联赛,共赛17轮(即每队均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次足球比赛中,小虎足球得16分,且踢平场数是所负场数的整数倍,则小虎足球队所负场数的情况有( )A . 2种B . 3种C . 4种D . 5种9.如图,若在中国象棋盘上建立平面直角坐标系,使“帅”位于点(-1,-2),“马”位于点(2,-2),则“兵”位于点( )A .(-1,1)B .(-2,-1)C .(-3,1)D .(1,-2)10.如图,AD ∥BC ,∠B=30°,DB 平分∠ADE ,则∠DEC 的度数为( )A .30°B .60°C .90°D .120°二、填空题(每空3分,共24分)11. 已知点P(0,a)在y 轴的负半轴上,则点Q(-2a -1,-a+1)在第 象限.12. 某公园“6•1”期间举行特优读书游园活动,成人票和儿童票均有较大折扣.张凯、李利都随他们的家人参加了本次活动.王斌也想去,就去打听张凯、李利买门票花了多少钱.张凯说他家去了3个大人和4个小孩,共花了38元钱;李利说他家去了4个大人和2个小孩,共花了44元钱,王斌家计划去3个大人和2个小孩,请你帮他计算一下,需准备 元钱买门票.13. 已知实数x 、y 满足2x ﹣3y=4,并且x ≥﹣1,y <2,现有k=x ﹣y ,则k 的取值范围是14. A 、B 两点的坐标分别为(1,0)、(0,2),若将线段AB 平移至A 1B 1,点A 1、B 1的坐标分别为(2,a )、(b ,3),则a+b=____________.15. 如图,折叠宽度相等的长方形纸条,若∠1=700,则∠2= 度。

黄冈市2016年春季七年级期中考试数学试题

黄冈市2016年春季七年级期中考试数学试题

第Ⅰ卷选择题一、选择题(每小题3分,共30分)1、在中,无理数的个数()A.1个B.2个C.3个D.4个2、已知方程组,则x+y的值为()A.-1 B.0C.2 D.33、若a>b,则下列不等式变形错误的是()A.a+1>b+1 B.C.3a-4>3b-4 D.4-3a>4-3b4、把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.5、已知不等式ax-2>0的解集为x<-2,则关于y的方程ay+3=0的解是()A.y=1 B.y=-1C.y=3 D.y=-36、在平面直角坐标系中,点P(x2+1,-2)所在的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限7、已知|a|=3,b2=1,且|a+b|=a+b,则a-b的值为()A.2或-2 B.2或4C.-2或4 D.-2或-48、已知y=1+(x+2)2,下列结论正确的是()A.x=-2时,y有最大值1 B.x=-2时,y有最小值1C.x=0时,y有最大值5 D.x=0时,y有最小值59、若关于x的一元一次不等式组的解是x<2,则m的取值范围为()A.B.C. D.10、今年校团委举办了“中国梦,我的梦”歌咏比赛,张老师为鼓励同学们,带了50元钱去购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本7元,乙种笔记本每本5元,每种笔记本至少买1本,50元钱刚好用完,则张老师一共购买笔记本的数量是()A.8本B.9本C.10本 D.7本1、A2、D,两式相加3(x+y)=9,x+y=3.3、D4、B5、C 由的解集为x<-2可知a=-1,代入ay+3=0,得y=3.6、D x2+1>0,点P(x2+1,-2)在第四象限.7、B 由|a|=3可知a=±3,由b2=1可知b=±1,由|a+b|=a+b可知a+b>0,∴a=3,b=±1,∴a-b=2或4.8、B9、C由得x<3m,x<2,∵不等式组的解集是x<2,∴.10、A 设购甲x本,购乙y本,则7x+5y=50,,又,∴x=5,y=3.第Ⅱ卷非选择题二、填空题(每小题3分,共30分)11、如图,AB∥CD,∠1=60°,FG平分∠EFD,则∠2=__________°.12、将点P(-2,1)先向左平移1个单位长度,再向上平移2个单位长度得到点P′,则点P′的坐标为__________.13、某药品说明书上标明药品保存的温度是(20±2)℃,由此可知该药品的保存温度t的范围是__________℃.14、直角坐标系中,点P(x,y)在第二象限,且P到x轴、y轴的距离分别为2个单位和5个单位,则P点坐标为__________.15、若m、n为实数,且,则(m+n)2016的值为__________.16、已知P(-1,2),PA∥y轴,PA=2,则A点的坐标是__________.17、关于x、y的二元一次方程组的解也是方程x-y=2的解,则k 的值为__________.18、不等式2x-k≤0的正整数解是1,2,3,4,那么k的取值范围是__________.19、某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到敬老院慰问老人.如果分给每位老人4盒牛奶,那么剩下28盒牛奶;如果分给每位老人5盒牛奶,那么最后一位老人分得的牛奶不足4盒,但至少1盒.则这个敬老院的老人最少有__________人.20、已知关于x,y的方程组,其中-3≤a≤1.给出下列结论:①是方程组的解;②当a=-2时,x,y的值互为相反数;③当a=1时,方程组的解也是方程x+y=4-x的解;④若x≤1,则1≤y≤4.其中正确的是__________(填序号)11、30°12、(-3,3)13、18℃≤t≤22℃14、(-5,2)15、1解析:依题意可知,∴(m+n)2016=1.16、如图A1(-1,0),A2(-1,4).17、4解析:由.把x,y的值代入kx+2y=5得k=4.18、8≤k<10解析:由2x-k≤0得.如图.可知,∴8≤k<10.19、30解析:设有x位老人,则1≤4x+28-5(x-1)<4∴29<x≤32.又x取正整数,∴x的最小值是30.20、②④解析:①把x=5,y=-1代入原方程组,求得a=2,又-3≤a≤1,∴x=5,y=-1不是方程组的解.②a=-2时,解得x=-3,y=3,x与y互为相反数.③a=1时,x=3,y=0,显然x+y≠4-x.④由x≤1得1+2a≤1,∴a≤0.又-3≤a≤1,∴-3≤a≤0.由y=1-a得a=1-y,∴-3≤1-y≤0,∴1≤y≤4.三、解答题(共60分)21、(本题满分16分)解方程(不等式)组,并把不等式组的解集在数轴上表示出来.(1)(2)(3)(4)(1)解:,①³③得:3x+9y=-3,③③-②得:11y=-11,y=-1.把y=-1代入①得:x=2,(2)解:由①得y=3-x,代入②得:5x-9=1,x=2.把x=2代入①得:y=1.(3)由①得:x>-1,由②得:x≤3.∴-1<x≤3.(4)设原式为由①得:x<4,由②得:x≤1,∴x≤1.22、(6分)如图,FA⊥AB,DB⊥BA,∠3=∠4,求证:AE∥BC.证明:∵FA⊥AB,DB⊥BA,∴FA∥DB,∴∠FAB=∠DBH.即∠1+∠3=∠2+∠4.又∠3=∠4,∴∠1=∠2. ∴AE∥BC.23、(8分)已知关于x、y的方程组的解满足不等式组求满足条件的m的整数值.解:解法一:①³2得:2x-4y=2m ③②-③得:7y=4,.把代入①得:.由④得:由⑤得:m>-4..又m为整数,∴m=-3,-2.解法二:①+②得:3x+y=3m+4≤0;②-①解:x+5y=m+4>0.又m为整数,∴m=-3,-2.24、(8分)某学校将周三“阳光体育”项目定为跳绳活动,为此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的两倍多4元,且购买2条长跳绳与购买5条短跳绳的费用相同.(1)两种跳绳的单价各是多少元?(2)若学校准备用不超过2000元的现金购买200条长、短跳绳,且短跳绳的条数不超过长跳绳的6倍,问学校有几种购买方案可供选择?解:(1)设短绳单价为x元,长绳单价为y元.∴短绳单价为8元,,长绳单价为20元.(2)设长绳a条,短绳为(200-a)条;由①得:由②得:又a为整数,∴a=29,30,31,32,33.∴有5种方案可供选择.25、(10分)某镇水库的可用水量为12000万立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.(1)问:年降水量为多少万立方米?每人年平均用水量多少立方米?(2)政府号召节约用水,希望将水库的保用年限提高到25年,则该镇居民人均每年需节约多少立方米才能实现目标?(3)某企业投入1000万元设备,每天能淡化5000立方米海水,淡化率为70%. 每淡化1立方米海水所需的费用为1.5元,政府补贴0.3元. 企业将淡化水以3.2元/立方米的价格出售,每年还需各项支出40万元,按每年实际生产300天计算,该企业至少几年后能收回成本(结果精确到个位)?解:(1)设年降水量为x万立方米,每人年平均用水量y立方米,解得:∴年降水量为200万立方米,每人年平均用水量50立方米.(2)设每年用水a m3,20a²25=12000+25³200500a=17000a=34∴每年节约50-a=16m3.(3)设n年能收回成本,[3.2³5000³70%-(1.5-0.3)³5000]²300n-400000n≥10000000又a为整数,∴n≥9.∴至少9年后能收回成本.26、(12分)如图1,长方形OABC中,O为平面直角坐标系的原点,点A、C的坐标分别为A(10,0),C(0,6),点B在第一象限.(1)写出点B的坐标:B(,)(2)若过点B的直线交长方形的一边于点D,且把长方形OABC的面积分成1∶2的两部分,求出点D的坐标;(3)在(2)的条件下,若点P在x轴上,且S△CDP=24,求点P的坐标.(1)B(10,6)(3)设P(a,0)。

2016-2017学年新人教版七年级上册期中数学试卷含答案

2016-2017学年新人教版七年级上册期中数学试卷含答案

2016-2017学年七年级(上)期中数学试卷一、选择题(每题3分,共30分)1.在2.5,﹣2.5,0,3这四个数中,最小的数是()A.2.5 B.﹣2.5 C.0 D.32.用一个平面去截一个正方体,截出截面不可能是()A.三角形B.五边形C.六边形D.七边形3.扬州市旅游经济发展迅速,据扬州市统计局统计,2005年全年接待境内外游客约11 370 000人次,11 370 000用科学记数法表示为()A.1.137×107B.1.137×108C.0.1137×108D.1137×1044.下列说法中正确的是()A.任何有理数的绝对值都是正数B.最大的负有理数是﹣1C.0是最小的数D.如果两个数互为相反数,那么它们的绝对值相等5.一个数的倒数是它本身,则这个数是()A.1 B.﹣1 C.O D.±16.下列各组数中,互为相反数的是()A.﹣2和|﹣2|B.﹣2和C.2和D.﹣(﹣2)和|﹣2|7.一个两位数,十位数字是a,个位数字是b,则这个两位数是()A.ab B.a+b C.10a+b D.10b+a8.下列图形不能围成正方体的是()A. B.C. D.9.一个数是10,另一个数比10的相反数大2,则这两个数的和是()A.18 B.﹣2 C.﹣18 D.210.某种细菌在营养过程中,细菌每半小时分裂一次(由一个分裂为两个),经过两小时,这种细菌由1个可分裂繁殖成()A.8个B.16个C.4个D.32个二、填空题(每小题3分,共30分)11.的相反数是,绝对值是,倒数是.12.单项式﹣的系数为,次数是.13.某商店上月收入为a元,本月的收入比上月的2倍还多10元,本月的收入是元.14.某日中午,北方某地气温由早晨的零下2℃上升了9℃,傍晚又下降了3℃,这天傍晚北方某地的气温是℃.15.绝对值不大于4的所有整数的积是,和是.16.有理数2,+7.5,﹣0.03,﹣0.4,0 中,非负数是.17.x=﹣时,代数式x2﹣x+6的值为.18.如图是一个数值转换机,若输入的x为﹣5,则输出的结果是.19.若(a+2)2+|b﹣3|=0,则a+b=.20.对有理数a与b,定义运算a*b=,则3*4=.三、解答题21.分别画如图几何体的主视图、左视图、俯视图.22.计算:(1)﹣12+11﹣8+39(2)23÷[(﹣2)3﹣(﹣4)](3)(﹣)×(﹣﹣)×0(4)﹣10+8÷(﹣2)2﹣(﹣4)×(﹣3)(5)(﹣﹣)×(﹣60).23.在数轴上把下列各数表示出来,并将它们从小到大排列起来.7,﹣,﹣3.5,0,.24.已知x,y互为相反数,a,b互为倒数,|n|=4,求x+y+的值.25.如图,用代数式表示图中阴影部分的面积,并求当a=4时阴影部分的面积(π取3).26.某巡警骑摩托车在一条南北大道上巡逻,某天他从岗亭出发,晚上停留在A处,规定向北方向为正,当天行驶情况记录如下(单位:千米):+10,﹣8,+7,﹣15,+6,﹣16,+4,﹣2(1)A处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油0.5升,这一天共耗油多少升?27.观察下列计算:=1﹣,=,,…(1)第n个式子是;(2)从计算结果中找规律,利用规律计算: ++++…+.2016-2017学年七年级(上)期中数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.在2.5,﹣2.5,0,3这四个数中,最小的数是()A.2.5 B.﹣2.5 C.0 D.3【考点】有理数大小比较.【分析】根据有理数的大小比较法则是负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【解答】解:∵﹣2.5<0<2.5<3,∴最小的数是﹣2.5,故选B.2.用一个平面去截一个正方体,截出截面不可能是()A.三角形B.五边形C.六边形D.七边形【考点】截一个几何体.【分析】正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.【解答】解:正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.因此不可能是七边形.故选:D.3.扬州市旅游经济发展迅速,据扬州市统计局统计,2005年全年接待境内外游客约11 370 000人次,11 370 000用科学记数法表示为()A.1.137×107B.1.137×108C.0.1137×108D.1137×104【考点】科学记数法—表示较大的数.【分析】科学记数法就是将一个数字表示成a×10的n次幂的形式,其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.【解答】解:11 370 000=1.137×107.故选A.4.下列说法中正确的是()A.任何有理数的绝对值都是正数B.最大的负有理数是﹣1C.0是最小的数D.如果两个数互为相反数,那么它们的绝对值相等【考点】有理数;相反数;绝对值.【分析】根据有理数的定义和特点,绝对值、互为相反数的定义及性质,对选项进行一一分析,排除错误答案.【解答】解:A、0的绝对值是0,故选项A错误;B、没有最大的负有理数也没有最小的负有理数,故选项B错误;C、没有最大的有理数,也没有最小的有理数,故选项C错误;D、根据绝对值的几何意义:互为相反数的两个数绝对值相等,故选项D正确.故选D.5.一个数的倒数是它本身,则这个数是()A.1 B.﹣1 C.O D.±1【考点】倒数.【分析】根据倒数的定义分别进行解答即可.【解答】解:一个数的倒数是它本身,则这个数是±1;故选D.6.下列各组数中,互为相反数的是()A.﹣2和|﹣2|B.﹣2和C.2和D.﹣(﹣2)和|﹣2|【考点】绝对值;相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:A、|﹣2|=2,﹣2的相反数是2,故本选项正确;B、﹣2的相反数是2,故本选项错误;C、2的相反数是﹣2,故本选项错误;D、﹣(﹣2)=2,|﹣2|=2,相等,故本选项错误.故选A.7.一个两位数,十位数字是a,个位数字是b,则这个两位数是()A.ab B.a+b C.10a+b D.10b+a【考点】列代数式.【分析】根据数的表示,用数位上的数字乘以数位即可.【解答】解:这个两位数是:10a+b.故选C.8.下列图形不能围成正方体的是()A. B.C. D.【考点】展开图折叠成几何体.【分析】根据正方体展开图的常见形式作答即可.【解答】解:由展开图可知:A、C、D能围成正方体;B围成几何体时,有两个面重合,故不能围成正方体.故选B.9.一个数是10,另一个数比10的相反数大2,则这两个数的和是()A.18 B.﹣2 C.﹣18 D.2【考点】有理数的加法;相反数.【分析】根据题意表示出另一个数,相加即可得到结果.【解答】解:根据题意得:10+(﹣10+2)=10﹣10+2=2.故选D10.某种细菌在营养过程中,细菌每半小时分裂一次(由一个分裂为两个),经过两小时,这种细菌由1个可分裂繁殖成( )A .8个B .16个C .4个D .32个【考点】有理数的乘方.【分析】本题考查有理数的乘方运算,细菌每半小时分裂一次(由一个分裂为两个),经过两小时,进行4次分裂,即24,计算出结果即可.【解答】解:2×2×2×2=24=16.故选B .二、填空题(每小题3分,共30分)11.的相反数是 ,绝对值是 ,倒数是 ﹣6 .【考点】倒数;相反数;绝对值.【分析】根据只有符号不同的两个数互为相反数,负数的绝对值是它的相反数,乘积为1的两个数互为倒数,可得答案.【解答】解:的相反数是,绝对值是,倒数是﹣6,故答案为:,,﹣6.12.单项式﹣的系数为 ﹣ ,次数是 3 .【考点】单项式.【分析】根据单项式系数和次数的概念求解即可.【解答】解:单项式﹣的系数为﹣,次数是3,故答案为:﹣,3.13.某商店上月收入为a 元,本月的收入比上月的2倍还多10元,本月的收入是 2a +10 元.【考点】列代数式.【分析】由已知,本月的收入比上月的2倍即2a ,还多10元即再加上10元,就是本月的收入.【解答】解:根据题意得:本月的收入为:2a +10(元).故答案为:2a +10.14.某日中午,北方某地气温由早晨的零下2℃上升了9℃,傍晚又下降了3℃,这天傍晚北方某地的气温是 4 ℃.【考点】有理数的加减混合运算.【分析】气温上升用加,下降用减,列出算式后进行有理数的加减混合运算.【解答】解:根据题意列算式得,﹣2+9﹣3=﹣5+9=4.即这天傍晚北方某地的气温是4℃.故答案为:4.15.绝对值不大于4的所有整数的积是0,和是0.【考点】有理数的乘法;有理数的加法.【分析】根据绝对值的性质列出算式,再根据有理数的乘法和加法运算进行计算即可得解.【解答】解:(﹣4)×(﹣3)×(﹣2)×(﹣1)×0×1×2×3×4=0;(﹣4)+(﹣3)+(﹣2)+(﹣1)+0+1+2+3+4=0.故答案为:0;0.16.有理数2,+7.5,﹣0.03,﹣0.4,0 中,非负数是2,+7.5,0.【考点】有理数.【分析】非负数是指正数和0.【解答】解:故答案为:非负数是2,+7.5,0.17.x=﹣时,代数式x2﹣x+6的值为6.【考点】代数式求值.【分析】把x的值代入原式计算即可得到结果.【解答】解:当x=﹣时,原式=++6=6,故答案为:618.如图是一个数值转换机,若输入的x为﹣5,则输出的结果是21.【考点】有理数的乘法.【分析】根据转换机的设置,结合有理数的混合运算法则求出即可.【解答】解:如图所示:若输入的x为﹣5,则输出的结果是:(﹣5﹣2)×(﹣3)=﹣7×(﹣3)=21.故答案为:21.19.若(a+2)2+|b﹣3|=0,则a+b=1.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列出算式,求出a、b的值,计算即可.【解答】解:由题意得,a+2=0,b﹣3=0,解得,a=﹣2,b=3,则a+b=1,故答案为:1.20.对有理数a与b,定义运算a*b=,则3*4=﹣12.【考点】有理数的混合运算.【分析】根据所给的运算,把a、b换成3、4即可.【解答】解:3*4==﹣12.故答案是﹣12.三、解答题21.分别画如图几何体的主视图、左视图、俯视图.【考点】作图-三视图.【分析】从正面看从左往右3列正方形的个数依次为1,3,2;从左面看从左往右2列正方形的个数依次为2,1;从上面看从左往右3列正方形的个数依次为1,2,1.【解答】解:如图所示:22.计算:(1)﹣12+11﹣8+39(2)23÷[(﹣2)3﹣(﹣4)](3)(﹣)×(﹣﹣)×0(4)﹣10+8÷(﹣2)2﹣(﹣4)×(﹣3)(5)(﹣﹣)×(﹣60).【考点】有理数的混合运算.【分析】(1)原式结合后,相加即可得到结果;(2)原式先计算括号中的运算,再计算除法运算即可得到结果;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(4)原式利用乘法分配律计算即可得到结果.【解答】解:(1)原式=﹣20+40=20;(2)原式=23÷(﹣4)=﹣;(3)原式=﹣10+2﹣12=﹣20;(4)原式=﹣40+5+16=﹣19.23.在数轴上把下列各数表示出来,并将它们从小到大排列起来.7,﹣,﹣3.5,0,.【考点】有理数大小比较;数轴.【分析】根据数轴可知:负数都在原点的左边,它们比0小,而正数都在原点的右边,它们比0大,正数也比负数大;在数轴上,越向右,数越大,越向左,数越小;据此解答即可.【解答】解:如图所示:从小到大排列:﹣3.5<﹣<0<<7.24.已知x,y互为相反数,a,b互为倒数,|n|=4,求x+y+的值.【考点】代数式求值.【分析】先根据题意得出x+y=0,ab=1,n2=16,再代入代数式进行计算即可.【解答】解:∵x,y互为相反数,a,b互为倒数,|n|=4,∴x+y=0,ab=1,n2=16,∴x+y+=0+=16.25.如图,用代数式表示图中阴影部分的面积,并求当a=4时阴影部分的面积(π取3).【考点】代数式求值;列代数式.【分析】根据阴影部分面积=正方形的面积﹣扇形的面积列式,把a=4代入代数式进行计算即可得解.【解答】解:阴影部分面积=a2﹣πa2;当a=4,π=3时,阴影部分的面积=42﹣×3×42,=16﹣12,=4.26.某巡警骑摩托车在一条南北大道上巡逻,某天他从岗亭出发,晚上停留在A处,规定向北方向为正,当天行驶情况记录如下(单位:千米):+10,﹣8,+7,﹣15,+6,﹣16,+4,﹣2(1)A处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油0.5升,这一天共耗油多少升?【考点】正数和负数.【分析】(1)由已知,把所有数据相加,如果得数是正数,则A处在岗亭北方,否则在北方.所得数的绝对值就是离岗亭的距离.(2)把所有数据的绝对值相加就是行驶的路程,已知摩托车每行驶1千米耗油0.5升,那么乘以0.5就是一天共耗油的量.【解答】解:(1)根据题意:10+(﹣8)+(+7)+(﹣15)+(+6)+(﹣16)+(+4)+(﹣2)=﹣14,答:A处在岗亭南方,距离岗亭14千米;(2)由已知,把记录的数据的绝对值相加,即10+8+7+15+16+4+2=68,已知摩托车每行驶1千米耗油0.2升,所以这一天共耗油,68×0.2升.答:这一天共耗油13.6升.27.观察下列计算:=1﹣,=,,…(1)第n个式子是=﹣;(2)从计算结果中找规律,利用规律计算: ++++…+.【考点】有理数的混合运算.【分析】(1)根据题中给出的例子找出规律即可;(2)根据(1)中的规律即可进行计算.【解答】解:(1)∵第一个式子为:=1﹣,第二个式子为:=,第三个式子为:,第11页(共12页)第四个式子为:…, ∴第n 个式子为:=﹣.故答案为:=﹣; (2)原式=1﹣+﹣+﹣+…+﹣ =1﹣=.2016年10月25日第12页(共12页)。

黄冈中学初一上数学期中考试试题及参考答案

黄冈中学初一上数学期中考试试题及参考答案

黄冈中学秋季七年级数学期中考试试题(分数:120分 时间:120分钟)一、填空题(每小题3分,共30分)1.-3的相反数为 ;-1.5的倒数为 ;35.2.零下5℃比零下8℃低 ℃;将收入200元记作:+200,则支出150元记作: ;某天白天的平均气温为5℃,夜晚平均气温比白天下降了8℃,则夜晚的平均气温为 ℃.3.废旧电池对环境的危害十分大,一粒纽扣电池能污染600立方米的水(相当于一个人一生的饮水量).我校七年级有6个班,每班60人,如果每名学生一年丢弃一粒纽扣电池,且没有回收,那么我们年级学生一年丢弃的纽扣电池能污染的水用科学记数法表示为 立方米. 4.若单项式1413x a b 与2146x a b 的和仍为单项式,则x = .5.若31520a b ,则3(65)6(65)2(65)a b a b a b = .6.若y=-3是方程2(51)40my m y 的解,则m= .7.已知3,2x y ,且x y y x ,则x y 的值为 .8.已知2(1)(1)80m x m x 是关于x 的一元一次方程,则m x 的值为 .9.已知方程1152()620066x,则代数式211545()2006x = . 10.我们平常的数都是十进制数,如322639210610310+9,表示十进制的数要用10个数码(也叫数字):0,1,2,3,4,5,6,7,8,9.在电子数字计算机中用二进制,只要两个数码0和1.如二进制数21101120215,故二进制的101等于十进制的数5;43210111120212121=23,故二进制的10111等于十进制的数23.那么二进制的110111等于十进制的数 .二、选择题(每小题3分,共30分)11.下列各数中:53,.3.3,0, 3.14,4,1,227.整数有a 个,负数有b 个,则a+b 等于( )A .5B .6C .7D .812.把数轴上表示4的点沿数轴移动5个单位后所得的点所表示的数为( )A .9B .-1C .9或-1D .-9或1 13.有理数a b 、在数轴上的位置如图所示,下列各式错误的是( )A .(1)(1)ab >0 B .ab <1 C .a b <2 D .(1)(1)a b >414.下列等式变形,正确的是( )A .若22x x ,则2x B .若ax ay ,则xyC .若382x ,则12x D .若x ya a,则bx by15.方程247236x x 去分母得( )A .22(24)(7)x xB .122(24)7x xC .1248(7)x x D .122(24)(7)x x16.下列计算:①224a a a ;②22321x yx y;③330ab ba;④538a b ab .其中正确的个数有( )A .1个B .2个C .3个D .4个 17.已知3,4,5ab bc cd ,则()()a c d b 的值为( )A .7B .9C .-63D .-718.某商场先将彩电按原价提高40%,然后在广告中写上“大酬宾,八折优惠”,结果每台彩电比原价多赚了270元,那么每台彩电原价应是( )A .2150元B .2200元C .2250元D .2300元 19.某书中有道方程题:213xx ,在印刷时被墨水盖住了,查后面的答案,这道方程的解是 2.5x ,那么处应该是数( )A . 2.5B .2.5C .5D .7 20.下面的数阵是由50个连续偶数排列而成的(如图).现有一菱形恰好能框住其中的4个数.则这4个数的和可能是( )A .322B .328C .332D .340三、解答题(60分)21.计算:(每小题4分,共8分)(1)225332(3)5; (2)241310.25()(12 3.75)24283.22.解方程:(每小题4分,共8分)2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 … … … … … 92 94 96 98 100(1)3(1)2(2)23x x x ; (2)21534xx .23.(6分)化简求值:222232(2)4x yx y xyz x z x zxyz .其中2,3,1x y z24.(8分)已知关于x 的方程42313261xm x x m x 与的解相同.(1)求m 的值; (2)求200520063(42)()2mm的值. 25.(7分)某商店有两台进价不同的计算器都卖80元,其中一台赢利60%,另一台赔本20%,在这次买卖中,这家商店是赔了、赚了还是不赔也不赚?试说明你的理由. 26.(5分)已知有理数a b c 、、在数轴上的位置如图所示.试化简:ab c b c a .27.(6分)如图摆放在地上的正方体的大小均相等,现在把露在外面的表面涂成红色,从上向下数,每层正方体被涂成红色的面数分别为: 第一层:侧面个数+上面个数=1×4+1=5; 第二层:侧面个数+上面个数=2×4+3=11;第三层:侧面个数+上面个数=3×4+5=17;第四层:侧面个数+上面个数=4×4+7=23;……根据上述的计算方法,总结规律,并完成下列问题: (1)求第6层有多少个面被涂成了红色?(2)求第n 层有多少个面被涂成了红色?(用含n 的式子表示)(3)若第m 层有89个面被涂成红色,请你判断这是第几层?并说明理由。

2016-2017学年人教版初一数学七年级上册期中测试卷及答案

2016-2017学年人教版初一数学七年级上册期中测试卷及答案

2016-2017学年人教版初一数学七年级上册期中测试卷及答案2016-2017学年七年级(上)期中数学试卷一.选择题(在每小题给出的四个选项中,只有一项是符合题目要求的,请将符合要求的选项前面的字母代号填写在答题卡上的指定位置.每小题3分,共30分)1.相反数是2的数是()A.﹣2B.C.2D.2.下列计算正确的是()A.23=6B.﹣42=﹣16C.﹣8﹣8=0 D.﹣5﹣2=﹣33.在有理数,(﹣1)2。

A.4B.3C.2D.1,﹣|﹣2|,(﹣2)3中正数有()个.4.下列说法中正确的是()A.没有最小的有理数B.既是正数也是负数C.整数只包括正整数和负整数D.﹣1是最大的负有理数5.2011年,XXX公布了第六次全国人口普查结果,总人口约为人,将用科学记数法表示正确的是()A.0.×1010B.1.3397×109C.13.397×108D.×1056.下列说法错误的是()A.2x2﹣3xy﹣1是二次三项式B.﹣x+1不是单项式C.的系数是D.﹣22xab2的次数是67.下列各式中与多项式2x﹣3y+4z相等的是()A.2x+(3y﹣4z)B.2x﹣(3y﹣4z)C.2x+(3y+4z)D.2x﹣(3y+4z)8.若﹣3x2my3与2x4yn是同类项,那么m﹣n=()A.B.1C.﹣1D.﹣29.已知a,b两数在数轴上对应的点如下图所示,下列结论正确的是()A.a+b>B.ab<C.b﹣a>D.a>b10.解为x=﹣3的方程是()A.3x﹣2=﹣7B.3x+2=﹣11C.2x+6=0D.x﹣3=0第1页(共17页)二.填空题(请将答案填写在答题卡指定的位置.每小题3分,共15分)11.如果水位升高3m时,水位变化记作+3m,那么水位下降5m时,水位变化记作:m.12.5与x的差的比x的2倍大1的方程是:.13.一个单项式加上﹣y2+x2后等于x2+y2,则这个单项式为.14.如果m、n互为相反数,a,b互为倒数,则|m+n﹣ab|等于.15.观察一列数。

【6套打包】黄冈市七年级上册数学期中考试检测试题(含答案)

【6套打包】黄冈市七年级上册数学期中考试检测试题(含答案)

人教版七年级数学上册期中考试试题及答案一、选择题(每题4分,共48分)1.如果+10%表示“增加10%”,那么“减少8%”可以记作()A.﹣18% B.﹣8% C.+2% D.+8%2.﹣2的相反数是()A.﹣2 B.﹣C.2 D.3.下列代数式中:,2x+y,,,,0,整式有()A.3个B.4个C.5个D.6个4.当x<3时,式子|x﹣3|化简为()A.﹣3 B.x C.x﹣3 D.3﹣x5.在﹣22,(﹣2)2,﹣(﹣2),﹣|﹣2|中,负数的个数是()A.1个B.2个C.3个D.4个6.我市加大农村沼气等清洁能源推广,年产沼气21700000立方米,这个数用科学记数法精确到百万位可表示为()A.217×105B.21.7×106C.2.17×107D.2.2×1077.下列单项式中,系数最大的是()A.﹣2ax3B.﹣xy2C.﹣abc3D.﹣xy28.现有以下四个结论:①任何数都不等于它的相反数;②互为相反数的两个数的同一偶数次方相等;③如果a>b,那么a的倒数小于b的倒数;④倒数等于其本身的有理数只有1.其中正确的有()A.1个B.2个C.3个D.4个9.如果2x3n y m+4与﹣3x9y2n是同类项,那么m、n的值分别为()A.m=﹣2,n=3 B.m=2,n=3 C.m=﹣3,n=2 D.m=3,n=2 10.对于多项式﹣x3﹣3x2+x﹣7,下列说法正确的是()A.最高次项是x3B.二次项系数是3C.多项式的次数是3 D.常数项是711.2012年6月15日,重庆市物价局发出相关通知,从今年7月1日起,我市将开始执行居民生活用电试行阶梯电价方案.方案的具体电价标准为:凡我市实行“一户一表”的城乡居民用户,月用电量200千瓦时(含)以内的为第一档,维持现行电价标准,即每千瓦时0.52元;月用电量201﹣400千瓦时(含)的为第二档,每千瓦时提高5分,即每千瓦时0.57元;月用电量在401千瓦时(含)以上的为第三档,每千瓦时提高0.30元,即每千瓦时0.82元.某居民今年11月用电量为t千瓦时(200<t≤400),则该居民所付电费为()A.0.52tB.0.57tC.0.52×20 0+0.57tD.0.52×200+0.57×(t﹣200)12.下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为()A.116 B.144 C.145 D.150二、填空题(每题4分,共24分)13.(﹣3)2﹣1=.14.的系数为,次数为.15.关于x的多项式4x n+1﹣3x2﹣x+2是四次多项式,则n=.16.多项式x2﹣3kxy﹣3y2+6xy﹣8不含xy项,则k=.17.已知=﹣1,则的值为.18.若规定一种运算:a*b=(a+b)﹣(a﹣b),其中a,b为有理数,则a*b+(b﹣a)*b 等于.三、解答题(每题8分,共16分)19.(8分)在数轴上表示下列各数,并用“<”把这些数连接起来.﹣2.5,﹣3,0,2,|﹣3|20.(8分)把下面各数对应的序号填在相应的大括号里.①﹣5,②|﹣|,③0,④﹣3.14,⑤,⑥﹣12,⑦0.1010010001…,⑧+1.99,⑨﹣,⑩﹣(﹣3)2分数集合:(…)负有理数集合:(…)四、解答题(21题12分,22题8分,23-25每题10分,26题12分,共62分)21.(12分)计算(1)(﹣18)+(+5)﹣(﹣7)﹣(+11)(2)(﹣)×(﹣1)÷(﹣2)(3)25×+(﹣25)×+25×(﹣)(4)﹣12﹣[1+(﹣12)÷6]×(﹣)322.(8分)某冰箱销售商,今年四月份销售冰箱(a﹣1)台,五月份销售冰箱比四月份的2倍少1台,六月份销售冰箱比前两个月的总和还多5台.(1)求五月份和六月份分别销售冰箱多少台?(2)六月份比五月份多销售冰箱多少台?23.(10分)先化简再求值:5abc﹣2a2b﹣[3abc+2(ab2﹣a2b)],其中a=﹣,b=﹣1,c =3.24.(10分)已知|a﹣2|+(b+1)2=0,c与互为倒数,(d﹣1)的平方是25,求代数式a c﹣2c a的值.(要求写出过程)参考答案一、选择题1.如果+10%表示“增加10%”,那么“减少8%”可以记作()A.﹣18% B.﹣8% C.+2% D.+8%【分析】正数和负数可以表示一对相反意义的量,在本题中“增加”和“减小”就是一对相反意义的量,既然增加用正数表示,那么减少就用负数来表示,后面的百分比的值不变.解:“增加”和“减少”相对,若+10%表示“增加10%”,那么“减少8%”应记作﹣8%.故选:B.【点评】解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.﹣2的相反数是()A.﹣2 B.﹣C.2 D.【分析】根据只有符号不同的两个数互为相反数,可得答案.解:﹣2的相反数是2,故选:C.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.3.下列代数式中:,2x+y,,,,0,整式有()A.3个B.4个C.5个D.6个【分析】分母不含字母的式子即为整式.解:整式有:2x+y,a2b,,0,故选:B.【点评】本题考查分式与整式的概念,注意π不是字母.4.当x<3时,式子|x﹣3|化简为()A.﹣3 B.x C.x﹣3 D.3﹣x【分析】由x<3可得x﹣3<0,再根据绝对值的性质即可求解.解:∵x<3,∴x﹣3<0,∴|x﹣3|=3﹣x.故选:D.【点评】考查了绝对值,如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.5.在﹣22,(﹣2)2,﹣(﹣2),﹣|﹣2|中,负数的个数是()A.1个B.2个C.3个D.4个【分析】根据有理数的乘方、正数和负数、绝对值的知识对各选项依次计算即可.解:﹣22,=﹣4,(﹣2)2=4,﹣(﹣2)=2,﹣|﹣2|=﹣2,∴是负数的有:﹣4,﹣2.故选:B.【点评】本题考查了有理数的乘方、正数和负数、绝对值的知识,此题比较简单,计算时特别要注意符号的变化.6.我市加大农村沼气等清洁能源推广,年产沼气21700000立方米,这个数用科学记数法精确到百万位可表示为()A.217×105B.21.7×106C.2.17×107D.2.2×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,n的值是这个数的整数部分位数减1.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.解:21700000=2.17×107≈2.2×107.故选:D.【点评】此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.7.下列单项式中,系数最大的是()A.﹣2ax3B.﹣xy2C.﹣abc3D.﹣xy2【分析】根据单项式系数的定义即可求解.解:∵﹣2ax3的系数是﹣2,﹣xy2的系数是﹣,﹣abc3的系数是﹣,﹣xy2的系数是﹣,﹣>﹣2>﹣>﹣,∴单项式中,系数最大的是﹣xy2.故选:B.【点评】考查了单项式,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.8.现有以下四个结论:①任何数都不等于它的相反数;②互为相反数的两个数的同一偶数次方相等;③如果a>b,那么a的倒数小于b的倒数;④倒数等于其本身的有理数只有1.其中正确的有()A.1个B.2个C.3个D.4个【分析】根据有理数的乘方法则,相反数、倒数的定义对四个选项进行逐一解答即可.解:①任何数都不等于它的相反数,错误,例如0;②互为相反数的两个数的同一偶数次方相等,正确;③如果a>b,那么a的倒数小于b的倒数,错误,0>﹣1,而0没有倒数;④倒数等于其本身的有理数只有1,错误,还有﹣1;故选:A.【点评】此题主要考查了有理数的乘方以及相反数,正确把握相关定义是解题关键.9.如果2x3n y m+4与﹣3x9y2n是同类项,那么m、n的值分别为()A.m=﹣2,n=3 B.m=2,n=3 C.m=﹣3,n=2 D.m=3,n=2 【分析】要使两个单项式同类项必须使其所含的字母相同且字母的指数也相同,观察可看出其所含的字母相同,则只要使其相同字母的指数相同.可得3n=9,m+4=2n,解方程即可求得.解:∵2x3n y m+4与﹣3x9y2n是同类项,∴3n=9,m+4=2n,∴n=3,m=2,故选:B.【点评】要使两个单项式成为同类项,只要使其满足同类项定义中的两个“相同”即可.10.对于多项式﹣x3﹣3x2+x﹣7,下列说法正确的是()A.最高次项是x3B.二次项系数是3C.多项式的次数是3 D.常数项是7【分析】根据多项式的项和次数的定义,确定各个项和各个项的系数,要带有符号.解:A、多项式﹣x3﹣3x2+x﹣7的最高次项是﹣x3;故A错误.B、多项式﹣x3﹣3x2+x﹣7的二次项系数是﹣3;故B错误.C、多项式﹣x3﹣3x2+x﹣7的次数是3;故C正确.D、多项式﹣x3﹣3x2+x﹣7的常数项是﹣7;故D错误.故选:C.【点评】本题考查与多项式相关的概念,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.11.2012年6月15日,重庆市物价局发出相关通知,从今年7月1日起,我市将开始执行居民生活用电试行阶梯电价方案.方案的具体电价标准为:凡我市实行“一户一表”的城乡居民用户,月用电量200千瓦时(含)以内的为第一档,维持现行电价标准,即每千瓦时0.52元;月用电量201﹣400千瓦时(含)的为第二档,每千瓦时提高5分,即每千瓦时0.57元;月用电量在401千瓦时(含)以上的为第三档,每千瓦时提高0.30元,即每千瓦时0.82元.某居民今年11月用电量为t千瓦时(200<t≤400),则该居民所付电费为()A.0.52tB.0.57tC.0.52×20 0+0.57tD.0.52×200+0.57×(t﹣200)【分析】某居民家11月份用电t千瓦时,交电费y元,根据等量关系列出关于y的方程即可.解:设该居民所付电费为y元,则依题意有y=0.52×150+0.57(t﹣200),故选:D.【点评】本题主要考查了列代数式的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出代数式即可.12.下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为()A.116 B.144 C.145 D.150【分析】根据题意将每个图形都看作两部分,一部分是上面的构成规则的矩形的,另一部分是构成下面的近似金字塔的形状,然后根据递增关系得到答案.解:∵4=1×2+2,11=2×3+2+321=3×4+2+3+4第4个图形为:4×5+2+3+4+5,∴第⑨个图形中的颗数为:9×10+2+3+4+5+6+7+8+9+10=144.故选:B.【点评】此题主要考查了图形变化规律,正确得出每个图形中小星星的变化情况是解题关键.二、填空题(每题4分,共24分)13.(﹣3)2﹣1=8 .【分析】根据有理数的运算法则进行计算.解:(﹣3)2﹣1=9﹣1=8.故填8.【点评】本题考查的是有理数的运算能力,注意符号的处理.14.的系数为,次数为 3 .【分析】根据单项式系数、次数的定义来求解.解:的系数为,次数为3.故答案为:,3.【点评】此题考查的是单项式,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.15.关于x的多项式4x n+1﹣3x2﹣x+2是四次多项式,则n= 3 .【分析】由于多项式是关于x的四次多项式,所以n+1=4,解方程可求n的值.解:∵关于x的多项式4x n+1﹣3x2﹣x+2是四次多项式,∴n+1=4,解得n=3.故答案为:3.【点评】本题考查了多项式的知识,几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.16.多项式x2﹣3kxy﹣3y2+6xy﹣8不含xy项,则k= 2 .【分析】先将原多项式合并同类项,再令xy项的系数为0,然后解关于k的方程即可求出k.解:原式=x2+(﹣3k+6)xy﹣3y2﹣8,因为不含xy项,故﹣3k+6=0,解得:k=2.故答案为:2.【点评】本题考查了合并同类项法则及对多项式“项”的概念的理解,题目设计巧妙,有利于培养学生灵活运用知识的能力.17.已知=﹣1,则的值为 1 .【分析】由=﹣1,可得m、n、p两负一正,再去绝对值计算即可求解.解:∵=﹣1,∴m、n、p两负一正,∴==1.故答案为:1.【点评】考查了绝对值的性质,能够根据已知条件正确地判断出m、n、p的值是解答此题的关键.18.若规定一种运算:a*b=(a+b)﹣(a﹣b),其中a,b为有理数,则a*b+(b﹣a)*b 等于4b.【分析】先根据新定义展开,再去括号合并同类项即可.解:a*b+(b﹣a)*b=(a+b)﹣(a﹣b)+(b﹣a+b)﹣(b﹣a﹣b)=a+b﹣a+b+2b﹣a+a=4b.故答案为4b.【点评】本题考查了整式的加减,主要考查学生的理解能力和计算能力,题目比较好,难度适中.三、解答题(每题8分,共16分)19.(8分)在数轴上表示下列各数,并用“<”把这些数连接起来.﹣2.5,﹣3,0,2,|﹣3|【分析】先在数轴上表示出各个数,再比较即可.解:﹣3<﹣2.5<0<2<|﹣3|.【点评】本题考查了有理数的大小比较法则和数轴、绝对值等知识点,能熟记有理数的大小比较法则的内容是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.20.(8分)把下面各数对应的序号填在相应的大括号里.①﹣5,②|﹣|,③0,④﹣3.14,⑤,⑥﹣12,⑦0.1010010001…,⑧+1.99,⑨﹣,⑩﹣(﹣3)2分数集合:(②,④,⑤,⑧…)负有理数集合:(①,④,⑥,⑩…)【分析】根据有理数的分类填空即可.解:分数集合:(②,④,⑤,⑧,…)负有理数集合:(①,④,⑥,⑩…),故答案为:②,④,⑤,⑧;①,④,⑥,⑩.【点评】本题考查了有理数的分类,解题的关键是正确掌握分类的标准以及注意0既不是正数也不是负数.四、解答题(21题12分,22题8分,23-25每题10分,26题12分,共62分)21.(12分)计算(1)(﹣18)+(+5)﹣(﹣7)﹣(+11)(2)(﹣)×(﹣1)÷(﹣2)(3)25×+(﹣25)×+25×(﹣)(4)﹣12﹣[1+(﹣12)÷6]×(﹣)3【分析】(1)先把减法转化加法,然后根据有理数的加法即可解答本题;(2)根据有理数的乘除法可以解答本题;(3)根据乘法分配律可以解答本题;(4)先算小括号里的,再算中括号里的,最后根据有理数的加减法即可解答本题.解:(1)(﹣18)+(+5)﹣(﹣7)﹣(+11)=(﹣18)+5+7+(﹣11)=﹣17;(2)(﹣)×(﹣1)÷(﹣2)=﹣=﹣;(3)25×+(﹣25)×+25×(﹣)=25×﹣25×+25×(﹣)=25×()=25×=;(4)﹣12﹣[1+(﹣12)÷6]×(﹣)3=﹣1﹣()×(﹣)=﹣1﹣(﹣)×(﹣)=﹣1﹣=﹣.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算顺序.22.(8分)某冰箱销售商,今年四月份销售冰箱(a﹣1)台,五月份销售冰箱比四月份的2倍少1台,六月份销售冰箱比前两个月的总和还多5台.(1)求五月份和六月份分别销售冰箱多少台?(2)六月份比五月份多销售冰箱多少台?【分析】(1)分别表示出五月份和六月份销售的台数即可;(2)用六月份减去五月份的销量即可求解.解:(1)五月份的销量为:2(a﹣1)﹣1=2a﹣3,六月份的销量为:(a﹣1)+(2a﹣3)+5=3a+1;(2)3a+1﹣(2a﹣3)=3a+1﹣2a+3=a+4.故六月份比五月份多销售冰箱(a+4)台.【点评】本题考查了整式的加减,解答本题的关键是掌握去括号法则和合并同类项法则.23.(10分)先化简再求值:5abc﹣2a2b﹣[3abc+2(ab2﹣a2b)],其中a=﹣,b=﹣1,c =3.【分析】先将原式化简,然后将a、b、c的值代入原式即可求出答案.解:原式=5abc﹣2a2b﹣[3abc+2ab2﹣2a2b]=5abc﹣2a2b﹣3abc﹣2ab2+2a2b=2abc﹣2ab2,当a=﹣,b=﹣1,c=3时,原式=2×()×(﹣1)×3﹣2×()×9=3+9=12.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.24.(10分)已知|a﹣2|+(b+1)2=0,c与互为倒数,(d﹣1)的平方是25,求代数式a c﹣2c a的值.(要求写出过程)【分析】根据非负数的性质、倒数的定义和乘方分别得出a,b,c,d的值,再分别代入计算可得.解:∵|a﹣2|+(b+1)2=0,c与互为倒数,(d﹣1)的平方是25,∴a=2,b=﹣1,c=3,d=6或d=﹣4,当d=6时,a c﹣2c a=23+﹣2×32=8﹣6﹣18=﹣16;当d=﹣4时,a c﹣2c a=23+﹣2×32=8+4﹣18=﹣6;综上,代数式a c﹣2c a的值为﹣16或﹣6.【点评】本题主要考查代数式的求值,解题的关键是掌握非负数的性质、倒数的定义和乘方的运算法则.人教版七年级(上)期中模拟数学试卷(含答案)一、选择题(每小题3分,共30分)1.﹣3的倒数是()A.3B.C.﹣D.﹣32.我国首艘国产航母于2018年4月26日正式下水,排水量约为65000吨,将65000用科学记数法表示为()A.6.5×10﹣4B.6.5×104C.﹣6.5×104D.0.65×104 3.如图是用五个相同的立方块搭成的几何体,其主视图是()A.B.C.D.4.下列运算结果正确的是()A.5x﹣x=5B.2x2+2x3=4x5C.﹣n2﹣n2=﹣2n2D.a2b﹣ab2=05.下列不是三棱柱展开图的是()A.B.C.D.6.一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第六次后剩下的绳子的长度为()米.A.B.C.D.7.下列说法:①0是绝对值最小的有理数;②相反数大于自身的数是负数;③数轴上原点两侧的数互为相反数;④两个数相互比较绝对值大的反而小.其中正确的是()A.①②B.①③C.①②③D.②③④8.已知x﹣2y=﹣3,则3(x﹣2y)2﹣5(x﹣2y)+6的值是()A.﹣6B.48C.﹣36D.189.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,|a|+|b|=3,则原点是()A.M或R B.N或P C.M或N D.P或R10.用不同的方法将长方体截去一个角,在剩下的各种几何体中,顶点最多的个数以及棱数最少的条数分别为()A.9个,12条B.9个,13条C.10个,12条D.10个,13条二、填空题(每小题3分,共30分)11.比较大小:﹣3﹣1(填“>”“<”或“=”).12.﹣的系数是,次数是.13.A地海拔高度是﹣30米,B地海拔高度是10米,C地海拔高度是﹣10米,A,B,C三地中地势最高的与地势最低的相差米.14.若代数式3a5b m+1与﹣2a n b2是同类项,那么m+n=.15.如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的左视图的面积是.16.若|m﹣2|+(n+1)2=0,则2m+n=.17.若a,b互为倒数,b,c互为相反数,m的绝对值为1,则+(b+c)m﹣m2的值为.18.已知a是两位数,b是一位数,把a直接写在b的前面,就成为一个三位数.这个三位数可表示成.19.若输入整数a,按照下列程序,计算将无限进行下去且不会输出,则a所有可能取到的值为.20.已知数a,b,c的大小关系如图所示:则下列各式:①b+a+(﹣c)>0;②(﹣a)﹣b+c>0;③;④bc﹣a>0;⑤|a﹣b|﹣|c+b|+|a﹣c|=﹣2b.其中正确的有(请填写编号).三、解答题(共40分)21.(16分)计算:(1)16﹣(﹣23)+(﹣49)(2)[﹣+(﹣1)﹣(﹣)]×24(3)26×(﹣3)2+175÷(﹣5)(4)﹣42﹣6×+2×(﹣1)3÷(﹣)22.(7分)(1)合并同类项:﹣3(2m2﹣mn)+4(m2+mn﹣1)(2)先化简,再求值:(5a2+2a+1)﹣4(3﹣8a+2a2)+(3a2﹣a),其中.23.(4分)若多项式2mx2﹣x2+5x+8﹣(7x2﹣3y+5x)的值与x无关,求m2﹣[2m2﹣(5m﹣4)+m]的值.24.(5分)某天市交警大队的一辆警车在东西街上巡视,警车从钟楼A处出发,规定向东方向为正,向西方向为负,钟楼处为0千米,当天行驶纪录如下:(单位:千米)+10,﹣9,+7,﹣15,+6,﹣5,+4,﹣2(1)最后警车是否回到钟楼A处?若没有,在钟楼A处何方,距钟楼A多远?(2)警车行驶1千米耗油0.2升,油箱有油10升,够不够?若不够,途中还需补充多少升油才刚好够用?25.(8分)已知数轴上两点A,B对应的数分别为﹣4,8.(1)如图1,如果点P和点Q分别从点A,B同时出发,沿数轴负方向运动,点P的运动速度为每秒2个单位,点Q的运动速度为每秒6个单位.①A,B两点之间的距离为.②当P,Q两点相遇时,点P在数轴上对应的数是.③求点P出发多少秒后,与点Q之间相距4个单位长度?(3)如图2,如果点P从点A出发沿数轴的正方向以每秒2个单位的速度运动,点Q从点B出发沿数轴的负方向以每秒6个单位的速度运动,点M从数轴原点O出发沿数轴的正方向以每秒1个单位的速度运动,若三个点同时出发,经过多少秒后有MP=MQ?参考答案一、选择题1.﹣3的倒数是()A.3B.C.﹣D.﹣3【分析】利用倒数的定义,直接得出结果.解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:C.【点评】主要考查倒数的定义,要求熟练掌握.需要注意的是负数的倒数还是负数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.我国首艘国产航母于2018年4月26日正式下水,排水量约为65000吨,将65000用科学记数法表示为()A.6.5×10﹣4B.6.5×104C.﹣6.5×104D.0.65×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.解:65000=6.5×104,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图是用五个相同的立方块搭成的几何体,其主视图是()A.B.C.D.【分析】根据三视图的知识求解.解:从正面看:上边一层最右边有1个正方形,下边一层有3个正方形.故选:D.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.下列运算结果正确的是()A.5x﹣x=5B.2x2+2x3=4x5C.﹣n2﹣n2=﹣2n2D.a2b﹣ab2=0【分析】根据合并同类项法则判断即可.解:A、5x﹣x=4x,错误;B、2x2与2x3不是同类项,不能合并,错误;C、﹣n2﹣n2=﹣2n2,正确;D、a2b与ab2不是同类项,不能合并,错误;故选:C.【点评】此题主要考查了合并同类项知识,正确掌握相关运算法则是解题关键.5.(3分)下列不是三棱柱展开图的是()A.B.C.D.【分析】根据三棱柱的两底展开是三角形,侧面展开是三个四边形,可得答案.解:A、B、D中间三个长方形能围成三棱柱的侧面,上、下两个三角形围成三棱柱的上、下两底面,故均能围成三棱柱,均是三棱柱的表面展开图.C围成三棱柱时,两个三角形重合为同一底面,而另一底面没有.故C不能围成三棱柱.故选:C.【点评】本题考查了几何体的展开图,注意两底面是对面,展开是两个全等的三角形,侧面展开是三个矩形.6.一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第六次后剩下的绳子的长度为()米.A.B.C.D.【分析】根据乘方的意义和题意可知:第2次后剩下的绳子的长度为米,那么依此类推得到第六次后剩下的绳子的长度为米.解:∵1﹣=,∴第2次后剩下的绳子的长度为米;依此类推第六次后剩下的绳子的长度为米.故选:C.【点评】此题主要考查了乘方的意义.其中解题是正确理解题意是解题的关键,能够根据题意列出代数式是解题主要步骤.7.下列说法:①0是绝对值最小的有理数;②相反数大于自身的数是负数;③数轴上原点两侧的数互为相反数;④两个数相互比较绝对值大的反而小.其中正确的是()A.①②B.①③C.①②③D.②③④【分析】根据相反数和绝对值的概念进行判断.解:①正确;②若﹣a>a,则2a<0,即a是负数,故②正确;③数轴上原点两侧,且到原点距离相等的数互为相反数;故③错误;④两个负数相互比较,绝对值大的反而小;故④错误;所以正确的结论是①②.故选:A.【点评】理解相反数和绝对值的概念是解答此题的关键.相反数:符号不同,绝对值相等的两个数互为相反数;绝对值:数轴上,一个数到原点的距离叫做这个数的绝对值.8.已知x﹣2y=﹣3,则3(x﹣2y)2﹣5(x﹣2y)+6的值是()A.﹣6B.48C.﹣36D.18【分析】把已知等式代入原式计算即可求出值.解:∵x﹣2y=﹣3,∴原式=27+15+6=48,故选:B.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.9.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,|a|+|b|=3,则原点是()A.M或R B.N或P C.M或N D.P或R【分析】根据数轴判断出a、b两个数之间的距离小于3,然后根据绝对值的性质解答即可.解:∵MN=NP=PR=1,∴a、b两个数之间的距离小于3,∵|a|+|b|=3,∴原点不在a、b两个数之间,即原点不在N或P,∴原点是M或R.故选:A.【点评】本题考查了实数与数轴,准确识图,判断出a、b两个数之间的距离小于3是解题的关键.10.用不同的方法将长方体截去一个角,在剩下的各种几何体中,顶点最多的个数以及棱数最少的条数分别为()A.9个,12条B.9个,13条C.10个,12条D.10个,13条【分析】可考虑三个面切一个小角的情况.解:依题意,剩下的几何体可能有:7个顶点、12条棱、7个面;或8个顶点、13条棱、7个面;或9个顶点、14条棱、7个面;或10个顶点、15条棱、7个面.如图所示:因此顶点最多的个数是10,棱数最少的条数是12,故选:C.【点评】截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.二、填空题(每小题3分,共30分)11.比较大小:﹣3<﹣1(填“>”“<”或“=”).【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.解:|﹣3|=3,|﹣1|=1,∵3>1,∴﹣3<﹣1.故答案为:<.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.12.﹣的系数是,次数是3.【分析】单项式的系数是指单项式中的数字因数,次数是指所有字母的指数和.解:根据单项式系数和次数的定义可知,﹣的系数是,次数是3.【点评】解答此题的关键是理解单项式的概念,比较简单.注意π属于数字因数.13.A地海拔高度是﹣30米,B地海拔高度是10米,C地海拔高度是﹣10米,A,B,C三地中地势最高的与地势最低的相差40米.【分析】地势最高的与地势最低的相差,即地势最高的海拔高度﹣地势最低的海拔高度.解:10﹣(﹣30)=10+30=40米.答:三地中地势最高的与地势最低的相差40米.【点评】注意A,B,C三地要通过比较,找到地势最高的B地与地势最低A.比较有理数的大小的方法:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.14.若代数式3a5b m+1与﹣2a n b2是同类项,那么m+n=6.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.解:根据题意得:n=5,m+1=2,解得:m=1,则m+n=5+1=6.故答案是:6.【点评】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.15.如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的左视图的面积是18cm2.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.解:正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体为半径为3圆柱体,该圆柱体的左视图为矩形;矩形的两边长分别为3cm和6cm,故矩形的面积为18cm2.故答案为:18cm2.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图,考查了学生细心观察能力和计算能力,属于基础题.16.若|m﹣2|+(n+1)2=0,则2m+n=3.【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.解:根据题意得,m﹣2=0,n+1=0,解得m=2,n=﹣1,所以,2m+n=3.故答案为:3.【点评】本题考查了绝对值非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.17.若a,b互为倒数,b,c互为相反数,m的绝对值为1,则+(b+c)m﹣m2的值为0或﹣2.【分析】a,b互为倒数,即ab=1;c,d互为相反数即c+d=0,m的绝对值为1,m为1或﹣1两种情况,把这些数据整体代入求得结果.解:当m=1时,原式=1+0﹣1=0;当m=﹣1时,原式=﹣1+0﹣1=﹣2.故答案为:0或﹣2.【点评】此题重在考查倒数、相反数、绝对值的意义以及有理数的混合运算等知识点.18.已知a是两位数,b是一位数,把a直接写在b的前面,就成为一个三位数.这个三位数可表示成10a+b.【分析】根据a表示两位数,b表示一位数,把a放在b的左边,相当于把a扩大10倍,从而列出代数式.解:∵a表示两位数,b表示一位数,∴把a放在b的左边组成一个三位数,那么这个三位数可表示为10a+b;故答案为:10a+b.【点评】本题考查了列代数式,正确理解把a放在b的左边组成一个三位数,其中a的变化情况是关键.19.若输入整数a,按照下列程序,计算将无限进行下去且不会输出,则a所有可能取到的值为0或±1.【分析】该题实际上是求a2≤1且a是整数时,a的值.解:依题意得:a2≤1且a是整数,解得a=0或a=±1.故答案是:0或±1.【点评】此题考查了代数式求值,弄清程序中的运算过程是解本题的关键.20.已知数a,b,c的大小关系如图所示:则下列各式:①b+a+(﹣c)>0;②(﹣a)﹣b+c>0;③;④bc﹣a>0;⑤|a﹣b|﹣|c+b|+|a﹣c|=﹣2b.其中正确的有②③⑤(请填写编号).【分析】有数轴判断abc的符号和它们绝对值的大小,再判断所给出的式子的符号,写出正确的答案.解:由数轴知b<0<a<c,|a|<|b|<|c|,①b+a+(﹣c)<0,故原式错误;②(﹣a)﹣b+c>0,故正确;③,故正确;④bc﹣a<0,故原式错误;⑤|a﹣b|﹣|c+b|+|a﹣c|=﹣2b,故正确;其中正确的有②③⑤.【点评】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,。

黄冈市七年级上学期数学期中考试试卷

黄冈市七年级上学期数学期中考试试卷

黄冈市七年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、细心填一填 (共10题;共14分)1. (1分)若﹣a的相反数是3,那么的倒数是________.2. (1分)若x=89,|y|=122,y<0,则x+y=________.3. (1分)全球每年大约有577 000 000 000 000米3的水从海洋和陆地转化为大气中的水汽,将数577 000 000 000 000用科学记数法表示为________.4. (2分)﹣的系数是________,次数是________.5. (1分)若3xny2与xy1-m是同类项,则m+n=________.6. (1分)(﹣3)+(﹣5)=________.7. (4分)如图所示的长方体,用符号表示下列棱的位置关系:A1B1________AB,AA1________BB1 ,A1D1________C1D1 , AD________BC.8. (1分)计算:2x3•(﹣3x)2的结果等于________9. (1分) (2015八下·嵊州期中) 方程(x﹣1)2=3的解为________10. (1分) (2017七下·无棣期末) 定义新运算:对于任意实数a,b都有:a⊕b=a(a+b)+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2+5)+1=2×7+1=15,那么不等式-3⊕x<13的解集为________二、精心选一选 (共10题;共20分)11. (2分)(2018·重庆) 下列命题是真命题的是()A . 如果一个数的相反数等于这个数本身,那么这个数一定是0B . 如果一个数的倒数等于这个数本身,那么这个数一定是1C . 如果一个数的平方等于这个数本身,那么这个数一定是0D . 如果一个数的算术平方根等于这个数本身,那么这个数一定是012. (2分)下列各数中,最大的是()A . -2B . 0C . -D . 213. (2分)计算(﹣10)+(﹣6)的结果为()A . -4B . 4C . -16D . -614. (2分)下列计算正确的是()A . a2+a2=2a4B . (﹣a2b)3=﹣a6b3C . a2•a3=a6D . a8÷a2=a415. (2分)如图,数轴上点A表示的数可能是()A .B . -2.3C . -D . -216. (2分) (2016七上·揭阳期末) 下列各对数中,数值相等的是()A . 23和32B . (-2)2和-22C . ()2和D . 2和︱-2︱17. (2分)某种长途电话的收费方式如下:接通电话的第一分钟收费a元,之后的每一分钟收费b元.如果某人打该长途电话被收费8元钱,则此人打长途电话的时间是()A . 分钟B . 分钟C . 分钟D . 分钟18. (2分)如果代数式4y2-2y+5的值为7,那么代数式-2y2+y-1的值为()A . -3B . 2C . -2D . 019. (2分)已知正方形的边长为xcm,若把这个正方形的每边长都减少3cm,则正方形减少的面积为()A . 3B . 6x – 9C . (x-3)2D . 6x20. (2分)如图,是一组按照某种规律摆放而成的图案,则图5中三角形的个数是().A . 8B . 9C . 16D . 17三、用心算一算 (共3题;共25分)21. (10分) (2018七上·衢州期中) “囧”(jiong)是近时期网络流行语,像一个人脸郁闷的神情.如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分).设剪去的小长方形长和宽分别为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y.(1)用含有x、y的代数式表示图中“囧”的面积;(2)当时,求此时“囧”的面积.22. (10分) (2017七下·睢宁期中) 计算:(1)(﹣)﹣1+(﹣2)2×50﹣(﹣)﹣2;(2) 2a5﹣a2•a3+(2a4)2÷a3.23. (5分) (2019七上·绍兴期中) 先化简,再求值:,其中x=2,y=四、大胆试一试 (共4题;共37分)24. (10分) (2016七上·南昌期末) 列方程解应用题:某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)甲乙进价(元/件)2230售价(元/件)2940(1)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(2)该超市第二次以第一次的进价又购进甲、乙两种商品.其中甲种商品的件数不变,乙种商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售.第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙种商品是按原价打几折销售?25. (10分)根据所学知识填空:(1)比较下列各式的大小:|5|+|3|________|5+3|,|﹣5|+|﹣3|________|(﹣5)+(﹣3)|,|﹣5|+|3|________|(﹣5)+3|,|0|+|﹣5|________|0+(﹣5)|…(2)通过(1)的比较、观察,请你猜想归纳:当a、b为有理数时,|a|+|b|________|a+b|.(填入“≥”、“≤”、“>”或“<”)(3)根据(2)中你得出的结论,求当|x|+|﹣2|=|x﹣2|时,直接写出x的取值范围.26. (10分) (2017七上·三原竞赛) 下表是某一周某种股票每天的收盘价(收盘价:股票每天交易结束时的价格)时间星期一星期二星期三星期四星期五收盘价(元/股)13.413.4比前一天涨跌(元/股)/-0.02+0.06-0.25(1)填表,并回答哪天收盘价最高?哪天收盘价最低?(2)最高价与最低价相差多少?27. (7分) (2018七上·镇江月考) 生活与数学(1)吉姆同学在某月的日历上圈出2×2个数,正方形的方框内的四个数的和是32,那么第一个数是________;(2)玛丽也在上面的日历上圈出2×2个数,斜框内的四个数的和是42,则它们分别是________;(3)莉莉也在日历上圈出5个数,呈十字框形,它们的和是50,则中间的数是________;(4)某月有5个星期日的和是75,则这个月中最后一个星期日是________号;(5)若干个偶数按每行8个数排成下图:①图中方框内的9个数的和与中间的数的关系是________;②汤姆所画的斜框内9个数的和为360,则斜框的中间一个数是________;③托马斯也画了一个斜框,斜框内9个数的和为252,则斜框的中间一个数是________.参考答案一、细心填一填 (共10题;共14分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、精心选一选 (共10题;共20分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、用心算一算 (共3题;共25分) 21-1、21-2、22-1、22-2、23-1、四、大胆试一试 (共4题;共37分) 24-1、24-2、25-1、25-2、25-3、26-1、26-2、27-1、27-2、27-3、27-4、27-5、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年湖北省黄冈市罗田县七年级(上)期中数学试卷一、精心选一选(每小题3分,共30分)1.(3分)下列四个有理数中,既是分数又是正数的是()A.3 B.﹣3C.0 D.2.42.(3分)如果a与1互为相反数,则|a|=()A.2 B.﹣2 C.1 D.﹣13.(3分)下列各组数中是同类项的是()A.4x和4y B.4xy2和4xy C.4xy2和﹣8x2y D.﹣4xy2和4y2x4.(3分)下列各近似数中,精确度一样的是()A.0.28与0.280 B.0.70与0.07C.5百万与500万D.1.1×103与11005.(3分)若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能6.(3分)下列计算正确的是()A.4x﹣9x+6x=﹣x B.xy﹣2xy=3xy C.x3﹣x2=x D.a﹣a=07.(3分)数轴上的点M对应的数是﹣2,点N与点M距离4个单位长度,此时点N表示的数是()A.﹣6 B.2 C.﹣6或2 D.都不正确8.(3分)一组数1,1,2,x,5,y…满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y表示的数为()A.8 B.9 C.13 D.159.(3分)若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=310.(3分)当x=1时,代数式ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值是()A.7 B.3 C.1 D.﹣7二、填空题(共8小题,每小题3分,满分24分)11.(3分)某药品说明书上标明药品保存的温度是(20±2)℃,该药品在℃范围内保存才合适.12.(3分)购买1个单价为a元的面包和3瓶单价为b元的饮料,所需钱数为元.13.(3分)多项式x3y﹣2xy2+xy4﹣12x3+7是次项式,它的最高次项是.14.(3分)如果a、b互为相反数,x、y互为倒数,那么(a+b)﹣xy+a2﹣b2=.15.(3分)已知光的速度为300 000 000米/秒,太阳光到达地球的时间大约是500秒,试计算太阳与地球的距离大约是千米.(结果用科学记数法表示)16.(3分)对于有理数a,b(a≠0)定义运算“@”如下:a@b=(a+b)÷a×b,则﹣3@6=.17.(3分)船在静水中的速度为a千米/时,水流速度为18千米/时,船顺水航行5小时的行程比船逆水航行4小时的行程多千米.18.(3分)若|a|=19,|b|=97,且|a+b|≠a+b,那么a﹣b=.三、用心做一做(共66分)19.(6分)将下列七个数在数轴上边表示出来,并排序用“<”连接:32,(﹣2)2,0,|﹣6|,﹣3.5,(﹣1)10,﹣23数轴表示:排列顺序:20.(12分)运用运算律进行简便计算:(1)(﹣32)÷(﹣2)﹣(﹣2)3×﹣5×÷4(2)3+(﹣2)+5+(﹣8)(3)(﹣)×(﹣15)×(﹣)×.21.(8分)某市的出租车的起步价为5元(行驶不超过3千米),以后每增加1千米加价1.5元.某人乘出租车行驶x千米(x>3)的路程,所需费用是多少?若A、B两地相距10千米,该人身上仅有15元钱,他想从A地出发去B地,则乘出租车费用够吗?为什么?22.(8分)如图,大正方形的边长为a,小正方形的边长为b,(1)用代数式表示阴影部分的面积;(2)当a=10,b=4时,求阴影部分的面积.23.(10分)已知A=2x2+4xy﹣2x﹣3,B=﹣x2+xy+2,且3A+6B的值与x无关,求y的值.24.(10分)已知某粮库一周前存有粮食100吨,本周内粮库进出粮食的记录如下(运进为正)(1)通过计算,说明本周内哪天粮库剩下的粮食最多?(2)若运进的粮食为购进的,购买价为2000元/吨,运出的粮食为卖出的,卖出价为2300元/吨,则这一周的利润为多少?(3)若每周平均进出的粮食数量大致相同,问:再过几周粮库存粮食达到200吨?25.(12分)仔细观察下列三组数第一组:1、﹣4、9、﹣16、25…第二组:0、﹣5、8、﹣17、24…第三组:0、10、﹣16、34、﹣48…解答下列问题:(1)每一组的第6个数分别是、、;(2)分别写出第二组和第三组的第n个数、;(3)取每组数的第10个数,计算它们的和.2016-2017学年湖北省黄冈市罗田县七年级(上)期中数学试卷参考答案与试题解析一、精心选一选(每小题3分,共30分)1.(3分)下列四个有理数中,既是分数又是正数的是()A.3 B.﹣3C.0 D.2.4【解答】解:A、是整数,故A错误;B、是负分数,故B错误;C、既不是正数也不是负数,故C错误;D、是正分数,故D正确;故选:D.2.(3分)如果a与1互为相反数,则|a|=()A.2 B.﹣2 C.1 D.﹣1【解答】解:根据a与1互为相反数,得a=﹣1.所以|a|=1.故选:C.3.(3分)下列各组数中是同类项的是()A.4x和4y B.4xy2和4xy C.4xy2和﹣8x2y D.﹣4xy2和4y2x【解答】解:A、4x和4y所含字母不同,不是同类项,故本选项错误;B、4xy2和4xy所含字母相同,但相同字母的指数不相同,不是同类项,故本选项错误;C、4xy2和﹣8x2y所含字母相同,但相同字母的指数不相同,不是同类项,故本选项错误;D、﹣4xy2和4y2x所含字母相同,并且相同字母的指数也相同,是同类项,故本选项正确.故选:D.4.(3分)下列各近似数中,精确度一样的是()A.0.28与0.280 B.0.70与0.07C.5百万与500万D.1.1×103与1100【解答】解:.A、0.28精确到百分位,0.280精确到千分位,所以A选项错误;B、0.70精确到百分位,0.07精确到百分位,所以B选项正确;C、5百万精确到百万位,500万精确到万位,所以C选项错误;D、1.1×103精确到百位,1100精确到个位,所以D选项错误.故选:B.5.(3分)若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值较大,综上所述,a、b异号且负数的绝对值较大.故选:B.6.(3分)下列计算正确的是()A.4x﹣9x+6x=﹣x B.xy﹣2xy=3xy C.x3﹣x2=x D.a﹣a=0【解答】解:A、4x﹣9x+6x=x,原式计算错误,故本选项错误;B、xy﹣2xy=﹣xy,原式计算错误,故本选项错误;C、x3和x2不是同类项,故本选项错误;D、a﹣a=0,原式计算正确,故本选项正确;故选:D.7.(3分)数轴上的点M对应的数是﹣2,点N与点M距离4个单位长度,此时点N表示的数是()A.﹣6 B.2 C.﹣6或2 D.都不正确【解答】解:在数轴上与表示﹣2的点距离是4个单位长度的点所表示的数是﹣2﹣4=﹣6,﹣2+4=2.故选:C.8.(3分)一组数1,1,2,x,5,y…满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y表示的数为()A.8 B.9 C.13 D.15【解答】解:∵每个数都等于它前面的两个数之和,∴x=1+2=3,∴y=x+5=3+5=8,即这组数中y表示的数为8.故选:A.9.(3分)若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=3【解答】解:由题意,得,解得.故选:C.10.(3分)当x=1时,代数式ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值是()A.7 B.3 C.1 D.﹣7【解答】解:x=1时,ax3﹣3bx+4=a﹣3b+4=7,解得a﹣3b=3,当x=﹣1时,ax3﹣3bx+4=﹣a+3b+4=﹣3+4=1.故选:C.二、填空题(共8小题,每小题3分,满分24分)11.(3分)某药品说明书上标明药品保存的温度是(20±2)℃,该药品在18~22℃范围内保存才合适.【解答】解:温度是20℃±2℃,表示最低温度是20℃﹣2℃=18℃,最高温度是20℃+2℃=22℃,即18℃~22℃之间是合适温度.故答案为:18℃~22℃.12.(3分)购买1个单价为a元的面包和3瓶单价为b元的饮料,所需钱数为(a+3b)元.【解答】解:∵一个面包的价格为a元,3瓶饮料的总价为3a元∴购买1个单价为a元的面包和3瓶单价为b元的饮料,所需钱数为(a+3b)元.故答案为(a+3b)元.13.(3分)多项式x3y﹣2xy2+xy4﹣12x3+7是五次五项式,它的最高次项是xy4.【解答】解:故答案为:五;五;xy414.(3分)如果a、b互为相反数,x、y互为倒数,那么(a+b)﹣xy+a2﹣b2=﹣1.【解答】解:由题意得:a+b=0,xy=1,则原式=(a+b)﹣xy+(a+b)(a﹣b)=0﹣1+0=﹣1,故答案为:﹣1.15.(3分)已知光的速度为300 000 000米/秒,太阳光到达地球的时间大约是500秒,试计算太阳与地球的距离大约是 1.5×108千米.(结果用科学记数法表示)【解答】解:300 000 000×500=150 000 000 000米,=150 000 000千米,=1.5×108千米.故答案为:1.5×108.16.(3分)对于有理数a,b(a≠0)定义运算“@”如下:a@b=(a+b)÷a×b,则﹣3@6=﹣6.【解答】解:∵a@b=(a+b)÷a×b,∴﹣3@6=(﹣3+6)÷(﹣3)×6=3÷(﹣3)×6=﹣6.故答案为:﹣6.17.(3分)船在静水中的速度为a千米/时,水流速度为18千米/时,船顺水航行5小时的行程比船逆水航行4小时的行程多(a+162)千米.【解答】解:5(a+18)﹣4(a﹣18)=5a+90﹣4a+72=a+162(千米).故小时的行程多(a+162)千米.故答案为:(a+162).18.(3分)若|a|=19,|b|=97,且|a+b|≠a+b,那么a﹣b=78或116.【解答】解:∵|a|=19,|b|=97,∴a=±19,b=±97,∵|a+b|≠a+b,∴①当b=﹣97,a=﹣19时,a﹣b=78;②当b=﹣97,a=19时,a+b=116.故答案为:78或116.三、用心做一做(共66分)19.(6分)将下列七个数在数轴上边表示出来,并排序用“<”连接:32,(﹣2)2,0,|﹣6|,﹣3.5,(﹣1)10,﹣23数轴表示:排列顺序:【解答】解:数轴表示排序:﹣23<﹣3.5<0<(﹣1)10<(﹣2)2<|﹣6|<32.20.(12分)运用运算律进行简便计算:(1)(﹣32)÷(﹣2)﹣(﹣2)3×﹣5×÷4(2)3+(﹣2)+5+(﹣8)(3)(﹣)×(﹣15)×(﹣)×.【解答】解:(1)原式=9×+8×﹣5×=×(9+8﹣5)=5;(2)原式=3+5﹣2﹣8=9﹣11=﹣2;(3)原式=﹣×15××=﹣3.21.(8分)某市的出租车的起步价为5元(行驶不超过3千米),以后每增加1千米加价1.5元.某人乘出租车行驶x千米(x>3)的路程,所需费用是多少?若A、B两地相距10千米,该人身上仅有15元钱,他想从A地出发去B地,则乘出租车费用够吗?为什么?【解答】解:由题意可得,某人乘出租车行驶x千米(x>3)的路程,所需费用是:5+(x﹣3)×1.5=1.5x+0.5,若A、B两地相距10千米,该人身上仅有15元钱,他想从A地出发去B地,则乘出租车费用不够,当x=10时,1.5×10+0.5=15+0.5=15.5>15,即某人想从A地出发去B地,则乘出租车费用不够.22.(8分)如图,大正方形的边长为a,小正方形的边长为b,(1)用代数式表示阴影部分的面积;(2)当a=10,b=4时,求阴影部分的面积.【解答】解:(1)根据题意得:b2+b(a﹣b)=b2+ab ﹣b2=ab;(2)当a=10,b=4时,原式=20.23.(10分)已知A=2x2+4xy﹣2x﹣3,B=﹣x2+xy+2,且3A+6B的值与x无关,求y的值.【解答】解:∵A=2x2+4xy﹣2x﹣3,B=﹣x2+xy+2,∴3A=3(2x2+4xy﹣2x﹣3)=6x2+12xy﹣6x﹣9,∴6B=6(﹣x2+xy+2)=﹣6x2+6xy+12,∴3A+6B=(6x2+12xy﹣6x﹣9)+(﹣6x2+6xy+12),=6x2+12xy﹣6x﹣9﹣6x2+6xy+12,=18xy﹣6x+3,=6x(3y﹣1)+3.∵3A+6B的值与x无关,∴3y﹣1=0,∴.24.(10分)已知某粮库一周前存有粮食100吨,本周内粮库进出粮食的记录如下(运进为正)(1)通过计算,说明本周内哪天粮库剩下的粮食最多?(2)若运进的粮食为购进的,购买价为2000元/吨,运出的粮食为卖出的,卖出价为2300元/吨,则这一周的利润为多少?(3)若每周平均进出的粮食数量大致相同,问:再过几周粮库存粮食达到200吨?【解答】解:(1)星期一100+35=135吨;星期二135﹣20=115吨;星期三115﹣30=85吨;星期四85+25=110吨;星期五110﹣24=86吨;星期六86+50=136吨;星期日136﹣26=110吨.故星期六最多,是136吨;(2)2300×(20+30+24+26)﹣2000×(35+25+50)=2300×100﹣2000×110=230000﹣220000=10000元;(3)(200﹣100)÷(35+25+50﹣20﹣30﹣24﹣26)﹣1=100÷10﹣1=10﹣1=9周.故再过9周粮库存粮食达到200吨.25.(12分)仔细观察下列三组数第一组:1、﹣4、9、﹣16、25…第二组:0、﹣5、8、﹣17、24…第三组:0、10、﹣16、34、﹣48…解答下列问题:(1)每一组的第6个数分别是﹣36、﹣37、74;(2)分别写出第二组和第三组的第n个数(﹣1)n+1•n2﹣1、(﹣1)n•2n2+2;(3)取每组数的第10个数,计算它们的和.【解答】解:(1)每一组的第6个数分别是:﹣36,﹣37,74;(2)第一组的第n个数为(﹣1)n+1•n2,所以,第二组的第n个数为(﹣1)n+1•n2﹣1,第三组的第n个数为(﹣1)n•2n2+2;(3)当n=10时,三个组的数分别为﹣100,﹣101,202,所以,这三个数的和为:﹣100﹣101+202=1.故答案为:(1)﹣36,﹣37,74;(2)(﹣1)n+1•n2﹣1,(﹣1)n•2n2+2.。

相关文档
最新文档